AN ORTHOGONAL TRANSFORMATION GROUP OF (8k - 1)-SPHERE

FUICHI UCHIDA

0. Introduction

We give an example of an orthogonal transformation group of (8k - 1)sphere with codimension-two principal orbits and an action possessing just two isolated singular orbits (cf. [1, p. 214], [4]). This example shows that a theorem of Hsiang and Lawson [2, Theorem 6] should be properly modified. So we give a modified theorem in a correct form. Finally, we give another example due to T. Asoh, which shows that another theorem of Hsiang and Lawson [2, Theorem 5] should be properly modified.

1. An example

Let ν_m , ν_n be the standard representations of $\mathbf{Sp}(m)$ and $\mathbf{Sp}(n)$ on \mathbf{H}^m and \mathbf{H}^n respectively, where \mathbf{H}^m , \mathbf{H}^n are the right quaternionic vector spaces. Let $(\mathbf{H}^n)^*$ denote the dual vector space of \mathbf{H}^n , which is a left quaternionic vector space. It is well known that $\mathbf{H}^m \otimes_{\mathbf{H}} (\mathbf{H}^n)^*$ is a real 4*mn*-dimensional vector space, and $\nu_m \otimes_{\mathbf{H}} \nu_n^*$ is a real representation of $\mathbf{Sp}(m) \times \mathbf{Sp}(n)$ on $\mathbf{R}^{4mn} = \mathbf{H}^m \otimes_{\mathbf{H}} (\mathbf{H}^n)^*$. This representation can be regarded as follows.

Let $M(m, n; \mathbf{H})$ denote the set of all $m \times n$ quaternionic matrices. For an $m \times n$ quaternionic matrix X, let X* denote the transpose of the conjugate of X. Then

$$\mathbf{Sp}(m) = \{A \in M(m, m; \mathbf{H}): A^*A = I \text{ the unit matrix}\},\$$

the representation space $\mathbf{H}^m \otimes_{\mathbf{H}} (\mathbf{H}^n)^*$, is identified with $M(m, n; \mathbf{H})$, and the representation $\psi = \nu_m \otimes_{\mathbf{H}} \nu_n^*$ can be expressed by

 $\psi((A, B)) \cdot X = AXB^*; A \in \mathbf{Sp}(m), B \in \mathbf{Sp}(n), X \in M(m, n; \mathbf{H}).$ Put

 $\langle X, Y \rangle$ = trace X^*Y , Re $\langle X, Y \rangle$ = real part of $\langle X, Y \rangle$

Received April 23, 1979.

FUICHI UCHIDA

for X, $Y \in M(m, n; \mathbf{H})$. Re $\langle X, Y \rangle$ is an Sp $(m) \times$ Sp(n)-invariant inner product of the real vector space $M(m, n; \mathbf{H})$. For an $m \times n$ quaternionic matrix X, let rank X be the maximum number of linearly independent column vectors of X as the right quaternionic vectors.

Example. We shall consider a real 8k-dimensional representation $\psi_k = \nu_k \otimes_{\mathbf{H}} (\nu_2^* | \mathbf{Sp}(1) \times \mathbf{Sp}(1))$ of $\mathbf{Sp}(k) \times \mathbf{Sp}(1) \times \mathbf{Sp}(1)$ on $M(k, 2; \mathbf{H})$. Suppose $k \ge 2$ in the following. For a $k \times 2$ quaternionic matrix X, let X_1, X_2 denote the first and the second column vector of X respectively. Then the representation ψ_k can be expressed by

$$\psi_k((A, q_1, q_2)) \cdot (X_1, X_2) = (AX_1\bar{q}_1, AX_2\bar{q}_2)$$

for $A \in Sp(k)$, $q_i \in Sp(1)$, $X = (X_1, X_2) \in M(k, 2; H)$. Straightforward computations show the following:

(i) Suppose that rank X = 2 and $\langle X_1, X_2 \rangle \neq 0$ for $X = (X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left[\left[\begin{array}{c|c} q & 0 & 0 \\ 0 & q & 0 \\ \hline 0 & * \end{array} \right], q, q \right] : q \in \mathbf{Sp}(1) \right\},$$

and the orbit through X is (8k - 3)-dimensional, which is diffeomorphic to $Sp(k)/Sp(k-2) \times S^3$.

(ii) Suppose that rank X = 2 and $\langle X_1, X_2 \rangle = 0$ for $X = (X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \begin{bmatrix} \begin{array}{c|c} q_1 & 0 & \\ 0 & q_2 & \\ \hline & 0 & \\ \hline \end{array} \right\}, q_1, q_2 \\ \vdots q_i \in \mathbf{Sp}(1) \\ \end{array} \right\},$$

and the orbit through X is (8k - 6)-dimensional, which is diffeomorphic to Sp(k)/Sp(k - 2).

(iii) Suppose that rank X = 1 and $\langle X_1, X_2 \rangle \neq 0$ for $X = (X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{pmatrix} q & 0 \\ 0 & \star \end{pmatrix}, q, q \right) : q \in \mathbf{Sp}(1) \right\},\$$

and the orbit through X is (4k + 2)-dimensional, which is diffeomorphic to $S^{4k-1} \times S^3$.

(iv) Suppose that rank X = 1 and $\langle X_1, X_2 \rangle = 0$ for $X = (X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{pmatrix} q_1 & 0 \\ 0 & * \end{pmatrix}, q_1, q_2 \right) : q_i \in \mathbf{Sp}(1) \right\} \text{ for } X_1 \neq 0$$

570

$$\left\{ \left(\begin{pmatrix} q_2 & 0 \\ 0 & * \end{pmatrix}, q_1, q_2 \right) : q_i \in \mathbf{Sp}(1) \right\} \text{ for } X_2 \neq 0,$$

and the orbit through X is a (4k - 1)-sphere.

Remark. (a) The representation ψ_k induces an $\mathbf{Sp}(k) \times \mathbf{Sp}(1) \times \mathbf{Sp}(1)$ action on a sphere S^{8k-1} . The principal orbits of this action are of codimension two, and this action possesses just two isolated singular orbits which are diffeomorphic to a (4k - 1)-sphere. (b) The representation ψ_k is an example of a reducible compact linear group of cohomogeneity 3 (in the sense of Hsiang and Lawson [2]). This example shows that a theorem of Hsiang and Lawson [2, Theorem 6] should be properly modified.

2. Linear groups of cohomogeneity 3

The theorem of Hsiang and Lawson [2, Theorem 6] can be modified as follows.

Theorem. Let (G, ψ) be a reducible maximal compact connected linear group of cohomogeneity 3. Then it is one of the following:

(i) $\psi = \psi' + \theta^1$, (G, ψ') is a compact linear group of cohomogeneity 2 (cf. [2, Theorem 5]) and θ^1 is a 1-dimensional trivial representation.

(ii) $G = SO(k) \times G'$, $\psi = \rho_k + \psi'$ for $k \ge 2$, and (G', ψ') is a compact linear group of cohomogeneity 2.

(iii) $G = \mathbf{SO}(k)$ and $\psi = 2\rho_k$ for $k \ge 3$.

(iv) $G = \mathbf{Sp}(k) \times \mathbf{Sp}(1) \times \mathbf{Sp}(1)$ and $\psi = \nu_k \otimes_{\mathbf{H}} (\nu_2^* | \mathbf{Sp}(1) \times \mathbf{Sp}(1))$ for $k \ge 2$.

(v) $G = SU(k) \times U(1) \times U(1)$ and $\psi = [\mu_k \otimes_C (\mu_2^* | U(1) \times U(1))]_R$ for $k \ge 2$.

(vi) G =**Spin**(9) and $\psi = \Delta_9 + \rho_9$.

(vii) $G = \operatorname{Sp}(2) \times \operatorname{Sp}(1), \psi = (\nu_2 \otimes_H \nu_1^*) + \pi$, and $\pi: \operatorname{Sp}(2) \to \operatorname{SO}(5)$ is a surjection.

(viii) $G = \mathbf{U}(2), \psi = [\mu_2]_{\mathbf{R}} + \pi'$, and $\pi': \mathbf{U}(2) \rightarrow \mathbf{SO}(3)$ is a surjection.

(ix) G is a circle group acting on \mathbb{R}^4 .

Proof. We first discount the special cases (i), (ix). Since (G, ψ) is reducible, we have $\psi = \psi_1 + \psi_2$. Put

$$n_i = \deg \psi_i, \quad G'_i = \psi_i(G),$$
$$G_1 = (\ker \psi_2)^0, \quad G_2 = (\ker \psi_1)^0,$$

FUICHI UCHIDA

where K^0 denotes the identity component of K. Then there is a closed connected normal subgroup H of G such that

 $G = (G_1 \times G_2) \circ H$ (essential direct product).

Thus *H* is locally isomorphic to $\psi_i(H)$, and $G'_i = G_i \circ \psi_i(H)$. Consider the *G*-orbit of $u = (x_1, x_2) \in \mathbb{R}^{n_1} \oplus \mathbb{R}^{n_2}$. We can assume

$$\dim G(u) = n_1 + n_2 - 3.$$

Since

$$G(u) \subset G'_1(x_1) \times G'_2(x_2) \subset S^{n_1-1} \times S^{n_2-1},$$

we can assume that

dim
$$G'_1(x_1) = n_1 - 1$$
, dim $G'_2(x_2) = n_2 - 1$ or $n_2 - 2$.

(a) Suppose dim $G'_2(x_2) = n_2 - 2$. Then we have

$$G(u) = G'_1(x_1) \times G'_2(x_2),$$

and hence $G = G'_1 \times G'_2$ and $G'_1 = SO(n_1)$ by the maximality of G. This is the case (ii).

(b) Suppose dim $G'_i(x_i) = n_i - 1$ for i = 1, 2. First we shall show $G_i(x_i) \neq S^{n_i-1}$ for i = 1, 2. There is a differentiable fibration

$$G_{x_{\gamma}}/G_{u} \to G/G_{u} \to G/G_{x_{\gamma}}$$

where

$$G/G_{x_2} = G'_2(x_2) = S^{n_2-1},$$

$$G_{x_2}/G_u = G_{x_2}(u) = G_{x_2}(x_1) \times \{x_2\}, \text{ and } G_1 \subset G_{x_2}$$

If $G_1(x_1) = S^{n_1-1}$, then dim $G(u) = n_1 + n_2 - 2$ which is a contradiction. Therefore G_i is non-transitive on S^{n_i-1} , but G'_i acts transitively on S^{n_i-1} for i = 1, 2. Hence we have from a theorem of Montgomery and Samelson [3, Theorem I'] that

$$H(x_i) = S^{n_i - 1}$$
 for $i = 1, 2$.

The *H*-action on S^{n_i-1} is almost effective. It follows from the classification of compact linear groups of cohomogeneity one (i.e., the transitive actions on spheres) that the only possible cases of (H, ψ_i) are as follows:

$$(\mathbf{SO}(k), \rho_k), \quad (\mathbf{SU}(k), [\mu_k]_{\mathbf{R}}), \quad (\mathbf{U}(k), [\mu_k]_{\mathbf{R}}), \quad (\mathbf{Sp}(k), [\nu_k]_{\mathbf{R}}), \\ (\mathbf{Sp}(k) \times \mathbf{Sp}(1), \nu_k \otimes_{\mathbf{H}} \nu_1^*), \quad (\mathbf{Spin}(7), \Delta_7), \quad (\mathbf{Spin}(9), \Delta_9), \\ (\mathbf{G}_2, \omega); \ \deg \Delta_7 = 8, \ \deg \Delta_9 = 16 \ \text{and} \ \deg \omega = 7.$$

Suppose $H \neq G$ (i.e., $G_1 \neq 1$ or $G_2 \neq 1$). Since G'_i acts effectively on S^{n_i-1} , we have that

$$H = SU(k)$$
 or $Sp(k)$.

572

This is the case (iv) or (v) if $(H, \psi_1) = (H, \psi_2)$, and the case (vii) or (viii) if $(H, \psi_1) \neq (H, \psi_2)$. Suppose H = G (i.e., $G_1 = 1$ and $G_2 = 1$). Then, by the maximality of G, this is the case (iii) if $(H, \psi_1) = (H, \psi_2)$, and the case (vi) if $(H, \psi_1) \neq (H, \psi_2)$.

Remark. The cases (iv), (v), (vi), (vii), (viii) are missing in the theorem of Hsiang and Lawson [2, Theorem 6]. The case (viii) has been explained in a book of Bredon [1, p. 213], the cases (vi), (vii) have been treated by Uchida and Watabe [4].

3. Concluding remark

Here we give another example due to T. Asoh. This example shows that another theorem of Hsiang and Lawson [2, Theorem 5] should be properly modified.

There is a homomorphism σ : SU(2) \rightarrow Sp(2) defined by

$$\sigma \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix} = \begin{pmatrix} a^3 + jb^3 & -\sqrt{3} \left(a^2 \bar{b} - j \bar{a} b^2 \right) \\ \sqrt{3} \left(a^2 b - j a b^2 \right) & a^2 \bar{a} - 2ab \bar{b} + j b^2 \bar{b} - 2j a \bar{a} b \end{pmatrix}$$

where j is a quaternion such that $j^2 = -1$ and $aj = j\bar{a}$ for each complex number a. In fact, the complexification (forgetting the quaternionic structure) of σ is equivalent to the third symmetric product $S^3(\mu_2)$ of the standard representation μ_2 of SU(2) on C².

We shall consider a real 8-dimensional representation $\psi = (\nu_2 | \sigma SU(2)) \otimes_{\mathbf{H}} \nu_1^*$ of $G = \sigma(SU(2)) \times Sp(1)$ on $M(2, 1; \mathbf{H})$. Let G_i denote the isotropy group at $\binom{i}{i}$ for each real number *t*. Put

$$x = \sigma \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \times (-i) = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \times (-i),$$
$$y = \sigma \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \times (j) = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix} \times (j).$$

Let H be a subgroup of G generated by x, y. Then H is a finite group of order 8. It is seen that

$$G_t = H$$
 for $0 < t < 1/\sqrt{3}$.

Moreover, G_0 and $G_{1/\sqrt{3}}$ are 1-dimensional subgroups of G.

Remark. This example is missing in the theorem of Hsiang and Lawson [2, Theorem 5 (ii)].

FUICHI UCHIDA

References

- [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [2] W. Y. Hsiang & H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971) 1-38.
- [3] D. Montgomery & H. Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454-470.
- [4] F. Uchida & T. Watabe, A note on compact connected transformation groups on spheres with codimension two principal orbits, Sci. Rep. Niigata Univ. 16 (1979) 1-14.

YAMAGATA UNIVERSITY, JAPAN