AN ORTHOGONAL TRANSFORMATION GROUP OF ($8 k-1$)-SPHERE

FUICHI UCHIDA

0. Introduction

We give an example of an orthogonal transformation group of $(8 k-1)$ sphere with codimension-two principal orbits and an action possessing just two isolated singular orbits (cf. [1, p. 214], [4]). This example shows that a theorem of Hsiang and Lawson [2, Theorem 6] should be properly modified. So we give a modified theorem in a correct form. Finally, we give another example due to T. Asoh, which shows that another theorem of Hsiang and Lawson [2, Theorem 5] should be properly modified.

1. An example

Let ν_{m}, ν_{n} be the standard representations of $\mathbf{S p}(m)$ and $\mathbf{S p}(n)$ on \mathbf{H}^{m} and \mathbf{H}^{n} respectively, where $\mathbf{H}^{m}, \mathbf{H}^{n}$ are the right quaternionic vector spaces. Let $\left(\mathbf{H}^{n}\right)^{*}$ denote the dual vector space of \mathbf{H}^{n}, which is a left quaternionic vector space. It is well known that $\mathbf{H}^{m} \otimes_{\mathbf{H}}\left(\mathbf{H}^{n}\right)^{*}$ is a real $4 m n$-dimensional vector space, and $\nu_{m} \otimes_{\mathbf{H}} \nu_{n}^{*}$ is a real representation of $\mathbf{S p}(m) \times \mathbf{S p}(n)$ on $\mathbf{R}^{4 m n}=\mathbf{H}^{m}$ $\otimes_{\mathbf{H}}\left(\mathbf{H}^{n}\right)^{*}$. This representation can be regarded as follows.

Let $M(m, n ; \mathbf{H})$ denote the set of all $m \times n$ quaternionic matrices. For an $m \times n$ quaternionic matrix X, let X^{*} denote the transpose of the conjugate of X. Then

$$
\mathbf{S p}(m)=\left\{A \in M(m, m ; \mathbf{H}): A^{*} A=I \text { the unit matrix }\right\},
$$

the representation space $\mathbf{H}^{m} \otimes_{\mathbf{H}}\left(\mathbf{H}^{n}\right)^{*}$, is identified with $M(m, n ; \mathbf{H})$, and the representation $\psi=\nu_{m} \otimes_{\mathbf{H}} \nu_{n}^{*}$ can be expressed by

$$
\psi((A, B)) \cdot X=A X B^{*} ; A \in \mathbf{S p}(m), B \in \mathbf{S p}(n), X \in M(m, n ; \mathbf{H})
$$

Put

$$
\langle X, Y\rangle=\operatorname{trace} X^{*} Y, \quad \operatorname{Re}\langle X, Y\rangle=\text { real part of }\langle X, Y\rangle
$$

for $X, Y \in M(m, n ; \mathbf{H}) . \operatorname{Re}\langle X, Y\rangle$ is an $\mathbf{S p}(m) \times \mathbf{S p}(n)$-invariant inner product of the real vector space $M(m, n ; \mathbf{H})$. For an $m \times n$ quaternionic matrix X, let rank X be the maximum number of linearly independent column vectors of X as the right quaternionic vectors.

Example. We shall consider a real $8 k$-dimensional representation $\psi_{k}=\nu_{k}$ $\otimes_{\mathbf{H}}\left(\nu_{2}^{*} \mid \mathbf{S p}(1) \times \mathbf{S p}(1)\right)$ of $\mathbf{S p}(k) \times \mathbf{S p}(1) \times \mathbf{S p}(1)$ on $M(k, 2 ; \mathbf{H})$. Suppose $k \geqslant 2$ in the following. For a $k \times 2$ quaternionic matrix X, let X_{1}, X_{2} denote the first and the second column vector of X respectively. Then the representation ψ_{k} can be expressed by

$$
\psi_{k}\left(\left(A, q_{1}, q_{2}\right)\right) \cdot\left(X_{1}, X_{2}\right)=\left(A X_{1} \bar{q}_{1}, A X_{2} \bar{q}_{2}\right)
$$

for $A \in \mathbf{S p}(k), q_{i} \in \mathbf{S p}(1), X=\left(X_{1}, X_{2}\right) \in M(k, 2 ; \mathbf{H})$. Straightforward computations show the following:
(i) Suppose that rank $X=2$ and $\left\langle X_{1}, X_{2}\right\rangle \neq 0$ for $X=\left(X_{1}, X_{2}\right)$. Then the isotropy group at X is conjugate to

$$
\left\{\left[\left(\begin{array}{cc|c}
q & 0 & 0 \\
0 & q & 0 \\
\hline 0 & *
\end{array}\right], q, q\right\}: q \in \mathbf{S p}(1)\right\}
$$

and the orbit through X is $(8 k-3)$-dimensional, which is diffeomorphic to $\mathbf{S p}(k) / \mathbf{S p}(k-2) \times S^{3}$.
(ii) Suppose that rank $X=2$ and $\left\langle X_{1}, X_{2}\right\rangle=0$ for $X=\left(X_{1}, X_{2}\right)$. Then the isotropy group at X is conjugate to

$$
\left\{\left[\left(\begin{array}{cc|c}
q_{1} & 0 & 0 \\
0 & q_{2} & 0 \\
\hline 0 & *
\end{array}\right], q_{1}, q_{2}\right\}: q_{i} \in \mathbf{S p}(1)\right\}
$$

and the orbit through X is $(8 k-6)$-dimensional, which is diffeomorphic to $\mathbf{S p}(k) / \mathbf{S p}(k-2)$.
(iii) Suppose that rank $X=1$ and $\left\langle X_{1}, X_{2}\right\rangle \neq 0$ for $X=\left(X_{1}, X_{2}\right)$. Then the isotropy group at X is conjugate to

$$
\left\{\left(\left(\begin{array}{cc}
q & 0 \\
0 & *
\end{array}\right), q, q\right): q \in \mathbf{S p}(1)\right\}
$$

and the orbit through X is $(4 k+2)$-dimensional, which is diffeomorphic to $S^{4 k-1} \times S^{3}$.
(iv) Suppose that rank $X=1$ and $\left\langle X_{1}, X_{2}\right\rangle=0$ for $X=\left(X_{1}, X_{2}\right)$. Then the isotropy group at X is conjugate to

$$
\left\{\left(\left(\begin{array}{cc}
q_{1} & 0 \\
0 & *
\end{array}\right), q_{1}, q_{2}\right): q_{i} \in \mathbf{S p}(1)\right\} \text { for } X_{1} \neq 0
$$

or

$$
\left\{\left(\left(\begin{array}{cc}
q_{2} & 0 \\
0 & *
\end{array}\right), q_{1}, q_{2}\right): q_{i} \in \mathbf{S p}(1)\right\} \text { for } X_{2} \neq 0
$$

and the orbit through X is a $(4 k-1)$-sphere.
Remark. (a) The representation ψ_{k} induces an $\mathbf{S p}(k) \times \mathbf{S p}(1) \times \mathbf{S p}(1)$ action on a sphere $S^{8 k-1}$. The principal orbits of this action are of codimension two, and this action possesses just two isolated singular orbits which are diffeomorphic to a ($4 k-1$)-sphere. (b) The representation ψ_{k} is an example of a reducible compact linear group of cohomogeneity 3 (in the sense of Hsiang and Lawson [2]). This example shows that a theorem of Hsiang and Lawson [2, Theorem 6] should be properly modified.

2. Linear groups of cohomogeneity 3

The theorem of Hsiang and Lawson [2, Theorem 6] can be modified as follows.

Theorem. Let (G, ψ) be a reducible maximal compact connected linear group of cohomogeneity 3 . Then it is one of the following:
(i) $\psi=\psi^{\prime}+\theta^{1},\left(G, \psi^{\prime}\right)$ is a compact linear group of cohomogeneity 2 (cf. [2, Theorem 5]) and θ^{1} is a 1-dimensional trivial representation.
(ii) $G=\mathbf{S O}(k) \times G^{\prime}, \psi=\rho_{k}+\psi^{\prime}$ for $k \geqslant 2$, and $\left(G^{\prime}, \psi^{\prime}\right)$ is a compact linear group of cohomogeneity 2.
(iii) $G=\mathbf{S O}(k)$ and $\psi=2 \rho_{k}$ for $k \geqslant 3$.
(iv) $G=\mathbf{S p}(k) \times \mathbf{S p}(1) \times \mathbf{S p}(1)$ and $\psi=\nu_{k} \otimes_{\mathbf{H}}\left(\nu_{2}^{*} \mid \mathbf{S p}(1) \times \mathbf{S p}(1)\right)$ for $k \geqslant 2$.
(v) $G=\mathbf{S U}(k) \times \mathbf{U}(1) \times \mathbf{U}(1)$ and $\psi=\left[\mu_{k} \otimes_{\mathbf{C}}\left(\mu_{2}^{*} \mid \mathbf{U}(1) \times \mathbf{U}(1)\right)\right]_{\mathbf{R}}$ for $k \geqslant 2$.
(vi) $G=\operatorname{Spin}(9)$ and $\psi=\Delta_{9}+\rho_{9}$.
(vii) $G=\mathbf{S p}(2) \times \mathbf{S p}(1), \psi=\left(\nu_{2} \otimes_{\mathbf{H}} \nu_{1}^{*}\right)+\pi$, and $\pi: \mathbf{S p}(2) \rightarrow \mathbf{S O}(5)$ is a surjection.
(viii) $G=\mathbf{U}(2), \psi=\left[\mu_{2}\right]_{\mathbf{R}}+\pi^{\prime}$, and $\pi^{\prime}: \mathbf{U}(2) \rightarrow \mathbf{S O}(3)$ is a surjection.
(ix) G is a circle group acting on \mathbf{R}^{4}.

Proof. We first discount the special cases (i), (ix). Since (G, ψ) is reducible, we have $\psi=\psi_{1}+\psi_{2}$. Put

$$
\begin{gathered}
n_{i}=\operatorname{deg} \psi_{i}, \quad G_{i}^{\prime}=\psi_{i}(G), \\
G_{1}=\left(\operatorname{ker} \psi_{2}\right)^{0}, \quad G_{2}=\left(\operatorname{ker} \psi_{1}\right)^{0},
\end{gathered}
$$

where K^{0} denotes the identity component of K. Then there is a closed connected normal subgroup H of G such that

$$
G=\left(G_{1} \times G_{2}\right) \circ H(\text { essential direct product })
$$

Thus H is locally isomorphic to $\psi_{i}(H)$, and $G_{i}^{\prime}=G_{i} \circ \psi_{i}(H)$. Consider the G-orbit of $u=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{n_{1}} \oplus \mathbf{R}^{n_{2}}$. We can assume

$$
\operatorname{dim} G(u)=n_{1}+n_{2}-3
$$

Since

$$
G(u) \subset G_{1}^{\prime}\left(x_{1}\right) \times G_{2}^{\prime}\left(x_{2}\right) \subset S^{n_{1}-1} \times S^{n_{2}-1}
$$

we can assume that

$$
\operatorname{dim} G_{1}^{\prime}\left(x_{1}\right)=n_{1}-1, \quad \operatorname{dim} G_{2}^{\prime}\left(x_{2}\right)=n_{2}-1 \text { or } n_{2}-2
$$

(a) Suppose $\operatorname{dim} G_{2}^{\prime}\left(x_{2}\right)=n_{2}-2$. Then we have

$$
G(u)=G_{1}^{\prime}\left(x_{1}\right) \times G_{2}^{\prime}\left(x_{2}\right),
$$

and hence $G=G_{1}^{\prime} \times G_{2}^{\prime}$ and $G_{1}^{\prime}=\mathbf{S O}\left(n_{1}\right)$ by the maximality of G. This is the case (ii).
(b) Suppose $\operatorname{dim} G_{i}^{\prime}\left(x_{i}\right)=n_{i}-1$ for $i=1,2$. First we shall show $G_{i}\left(x_{i}\right) \neq$ $S^{n_{i}-1}$ for $i=1,2$. There is a differentiable fibration

$$
G_{x_{2}} / G_{u} \rightarrow G / G_{u} \rightarrow G / G_{x_{2}}
$$

where

$$
\begin{aligned}
& G / G_{x_{2}}=G_{2}^{\prime}\left(x_{2}\right) \\
&=S^{n_{2}-1} \\
& G_{x_{2}} / G_{u}=G_{x_{2}}(u)
\end{aligned}=G_{x_{2}}\left(x_{1}\right) \times\left\{x_{2}\right\}, \text { and } G_{1} \subset G_{x_{2}} .
$$

If $G_{1}\left(x_{1}\right)=S^{n_{1}-1}$, then $\operatorname{dim} G(u)=n_{1}+n_{2}-2$ which is a contradiction. Therefore G_{i} is non-transitive on $S^{n_{i}-1}$, but G_{i}^{\prime} acts transitively on $S^{n_{i}-1}$ for $i=1,2$. Hence we have from a theorem of Montgomery and Samelson [3, Theorem I'] that

$$
H\left(x_{i}\right)=S^{n_{i}-1} \text { for } i=1,2
$$

The H-action on $S^{n_{i}-1}$ is almost effective. It follows from the classification of compact linear groups of cohomogeneity one (i.e., the transitive actions on spheres) that the only possible cases of $\left(H, \psi_{i}\right)$ are as follows:

$$
\begin{gathered}
\left(\mathbf{S O}(k), \rho_{k}\right), \quad\left(\mathbf{S U}(k),\left[\mu_{k}\right]_{\mathbf{R}}\right), \quad\left(\mathbf{U}(k),\left[\mu_{k}\right]_{\mathbf{R}}\right), \quad\left(\mathbf{S p}(k),\left[\nu_{k}\right]_{\mathbf{R}}\right) \\
\left(\mathbf{S p}(k) \times \mathbf{S p}(1), \nu_{k} \otimes_{\mathbf{H}} \nu_{1}^{*}\right), \quad\left(\mathbf{S p i n}(7), \Delta_{7}\right), \quad\left(\mathbf{S p i n}(9), \Delta_{9}\right) \\
\left(\mathbf{G}_{2}, \omega\right) ; \operatorname{deg} \Delta_{7}=8, \operatorname{deg} \Delta_{9}=16 \text { and } \operatorname{deg} \omega=7
\end{gathered}
$$

Suppose $H \neq G$ (i.e., $G_{1} \neq 1$ or $G_{2} \neq 1$). Since G_{i}^{\prime} acts effectively on $S^{n_{i}-1}$, we have that

$$
H=\mathbf{S U}(k) \text { or } \mathbf{S p}(k)
$$

This is the case (iv) or (v) if $\left(H, \psi_{1}\right)=\left(H, \psi_{2}\right)$, and the case (vii) or (viii) if $\left(H, \psi_{1}\right) \neq\left(H, \psi_{2}\right)$. Suppose $H=G$ (i.e., $G_{1}=1$ and $\left.G_{2}=1\right)$.. Then, by the maximality of G, this is the case (iii) if $\left(H, \psi_{1}\right)=\left(H, \psi_{2}\right)$, and the case (vi) if $\left(H, \psi_{1}\right) \neq\left(H, \psi_{2}\right)$.

Remark. The cases (iv), (v), (vi), (vii), (viii) are missing in the theorem of Hsiang and Lawson [2, Theorem 6]. The case (viii) has been explained in a book of Bredon [1, p. 213], the cases (vi), (vii) have been treated by Uchida and Watabe [4].

3. Concluding remark

Here we give another example due to T. Asoh. This example shows that another theorem of Hsiang and Lawson [2, Theorem 5] should be properly modified.

There is a homomorphism $\sigma: \mathbf{S U}(2) \rightarrow \mathbf{S p}(2)$ defined by

$$
\sigma\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right)=\left[\begin{array}{cc}
a^{3}+j b^{3} & -\sqrt{3}\left(a^{2} \bar{b}-j \bar{a} b^{2}\right) \\
\sqrt{3}\left(a^{2} b-j a b^{2}\right) & a^{2} \bar{a}-2 a b \bar{b}+j b^{2} \bar{b}-2 j a \bar{a} b
\end{array}\right]
$$

where j is a quaternion such that $j^{2}=-1$ and $a j=j \bar{a}$ for each complex number a. In fact, the complexification (forgetting the quaternionic structure) of σ is equivalent to the third symmetric product $S^{3}\left(\mu_{2}\right)$ of the standard representation μ_{2} of $\mathbf{S U}(2)$ on \mathbf{C}^{2}.

We shall consider a real 8-dimensional representation $\psi=\left(\nu_{2} \mid \sigma \mathbf{S U}(2)\right)$ $\otimes_{\mathbf{H}} \nu_{1}^{*}$ of $G=\sigma(\mathbf{S U}(2)) \times \mathbf{S p}(1)$ on $M(2,1 ; \mathbf{H})$. Let G_{t} denote the isotropy group at $\binom{t}{j}$ for each real number t. Put

$$
\begin{aligned}
& x=\sigma\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \times(-i)=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \times(-i), \\
& y=\sigma\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \times(j)=\left(\begin{array}{cc}
j & 0 \\
0 & j
\end{array}\right) \times(j) .
\end{aligned}
$$

Let H be a subgroup of G generated by x, y. Then H is a finite group of order 8. It is seen that

$$
G_{t}=H \quad \text { for } 0<t<1 / \sqrt{3} .
$$

Moreover, G_{0} and $G_{1 / \sqrt{3}}$ are 1-dimensional subgroups of G.
Remark. This example is missing in the theorem of Hsiang and Lawson [2, Theorem 5 (ii)].

References

[1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
[2] W. Y. Hsiang \& H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971) 1-38.
[3] D. Montgomery \& H. Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454-470.
[4] F. Uchida \& T. Watabe, A note on compact connected transformation groups on spheres with codimension two principal orbits, Sci. Rep. Niigata Univ. 16 (1979) 1-14.

Yamagata University, Japan

