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ASYMPTOTICS OF CURVATURE IN
A SPACE OF POSITIVE CURVATURE

B. V. DEKSTER & I. KUPKA

We consider here a noncompact complete space M of positive curvature.
As it is known, the minimum sectional curvature in a compact region
vanishes as the region expands up to the whole space M. We estimate here
(Remark 1.9 and Theorem 1.7) how fast it should vanish (and reestablish
incidentally the fact of its vanishing; see (1.7.1)).

Other results are connected with the expanding family of Gromoll and
Meyer's totally convex sets. We estimate the degree of their convexity and
observe the decay of this degree as the family expands.

The proofs involve essentially an investigation of solutions of Jacobi
equations. This investigation (§3) was conducted by Kupka, and the geomet-
ric part was written by Dekster.

1. The results
1.1. Let M be a noncompact complete Riemannian space of class C 0 0

with positive sectional curvatures, and denote the distance between its subsets
by p( , ) A curve will be said to be normal if it is parametrized with respect
to the arc length. A normal geodesic c: [0, oo) -» Af is called a ray if any
segment of c is minimal between its end points.

1.2. Denote by Bt(p) (bt(p)) the closed (open) metric ball of radius t
centered at/? E M. Recall the construction of Gromoll and Meyer's compact
totally convex sets Ct(p) as described in [1, Proposition 1.3]. Let c be a ray,
c(0) = p. Put bc = U / > 0 bt(c{i)). Denote by c,: [0, oo) -> M the restricted ray
from c{t) to oo with ct(s) = c(t + s). Now put Ct(p) = Π C{M \ bc) where
the intersection is taken over all rays c emanating from/7.

We will establish in §4.1 the following simple fact.
Remark. Ct{p) D Bt(p) and

(1.2.1) lim R{t)/t = 1 where R(ή = max p(x,p)
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13. An expanding family of compact sets Dt c Λf, / G [«, υ], will be said

to be Lipschitzian if there exists a constant c such that max^g^ ρ(x, Da)/(b

— a) <c for any a, b G [w, u], a <b.

We prove in §§4.4-4.8 the following theorem.

Theorem. The family Ct(p), t G [w, ϋ], w Lipschitzian ifu > 0.

1.4. We will say that a positive continuous function k: R-* R has a

convexity function ε: (a, oo) -> iί if ε is the minimum solution of the equation

(1.4.1) φ' = - φ 2 - K

i.e., if any other solution φ: (6, oo) -» Λ of (1.4.1) (finite in (b, oo)) satisfies

6 > a and φ(/) > ε(0 for / > b.

We will see in Remark 3.6 that if (1.4.1) has any solution φ: (b, oo) -» R,

then ε exists and is positive. Obviously ε is unique and ε' < 0. We will see also

that ε(/) - v ^ O (§3.7), and ε(t) -»,_„, oo (Remark 3.6).

1.5. Denote by kb(t\ kc{t) the minimum sectional curvatures in Bt(p),

Ct(p), t > 0, respectively. Denote by A the class of functions k: [0, oo) -» Λ

which are

(i) continuous, positive, nonincreasing and locally Lipschitzian in (0, oo),

(ϋ) such that the function

(15 1) £«ί*(')if'>0,

has a convexity function ε: (a, oo) -> Λ with some α < 0.

We will call such ε a convexity function for both k and k.

1.6. Theorem. ^ G A, kc G ̂ 4.

The proof is contained in §§4.9-4.11.

Remark. A statement close to the converse is also true: we will show in

§5.1 that for any k G A there exists a surface Mo of positive curvature having

"polar" metric ds2 = dr2 + G(r)dθ2 with G(r) G C 2 for r > 0, with no vertex

at the pole and such that kb = kc = k for the point/? at the pole. (Moreover,

Ct{p) = Bt(p).)

So the study of kb and kc is reduced to a study of the class A.

1.7. Theorem. Let k EL A and k be as in (1.5.1). Then

def /* °® ~ / \

(1.7.1) K{t) = / k(x)dx < oo, tGR, (so, A (ί) -+ 0),

(1.7.2) CK\x)dx <oo,tGR,

(1.7.3) lim inf-L. ΓK\x)dx < \ .

(1.7.1) and (1.7.2) are proved in §3.8, and (1.7.3) in §3.11.
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1.8. Theorem. Let k0: [0, oo) -* R satisfy §1.5(i), k E A and k0 < k. Then

ko(=A.

This is an obvious consequence of Lemma 3.9.

1.9. Remark. Theorems 1.7 and 1.8 allow us to establish some simple

properties of a function k E A. We show in §§2.1, 2.2 that there exist

(1.9.1) Urn k(t) t3/2 > 0, lim inf k(ή t2 < \ .
/-•oo ί-»oo 4

I.e., beginning with some /, the function k(t) is less than C/t3/2 with some

constant C > 0. Moreover, "from time to time" as t grows, k(t) becomes

even less than, say, 0.251//2.

1.10. The other results deal with convexity of the sets Ct(p). A set S c M

will be said to be [x,y]-convex, x > 0, y > 0, if any C°°-curve of the

length < y and of the curvature < x having its ends in S belongs to S. A set

S C M will be said to be [x]-convex if for any S E (0, x) one can find >> > 0

such that the set S is [x — δ, >>]-convex. Notice that if 5 is [x, >>]-convex

(respectively, [x]-convex), then it is [3c, >>]-convex (respectively [3c]-convex) for

any x E (0, JC).

1.11. The following theorem proved in §§4.13-4.15 shows that the con-

vexity of Ct{p) is described by the properties of convexity functions.

Theorem. Let εb: (ab, oo) —» R and εc: (ac, oo) -» R be the convexity func-

tions for kb and kc, and let R(t) be as in §1.2. Then Ct{p) is [εb(R(t))]-convex

and [εc(t)] convex for t > 0.

1.12. Remark. Theorem 1.11 is precise in the following sense. Let us

return to the surface M o mentioned in Remark 1.6. Obviously R(t) = t

because Ct(p) = Bt(p). It will be shown in §5.2 that the function k E A in

§1.6 can be selected such that the geodesic curvature of the circumference

bd Bt(p) = bd Ct(p) is equal to its convexity function ε(t).

1.13. Properties of convexity functions are collected in the following

theorem proved in §4.12.

Theorem, (i) Let k E A, ε: (a, oo) -> R be its convexity function, K(t) be

as in (1.7.1), andη E [0, 1/4] be the left-hand part in (1.7.3). Then

(1.13.1) ε\t) < Ofor t E (α, oo); ε(t) -+ 0; ε(t) -^ oo;
t-+oo t- -

(1.13.2) e(ί) > K{t) + (°°K2(x) dx, t > a;
Jt

(1.13.3) 1< x, < lim inf-|^ < x2,

where xl9 x2 are the roots of the equation ηx2 — jc + 1 — 0 ( i / η = 0 then

xχ = 1, x2 = oo).
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(ii) Let ε: (a, oo) -^ R be the convexity function for another function k E A
satisfying k < k. Then

(1.13.4) a < άandε(t) < ε(t)for t > a.

2. A further discussion
2.1. Here and in §2.2, we prove (and specify) Remark 1.9. Denote by

k' < 0 the derivative of k determined almost everywhere in [0, oo). As A: is
locally Lipschitzian in (0, oo), (see §1.5(i)), one can calculate jυ

u K\x) dx,
0 < u < v, by parts up to appearance of k'. By continuity of k at f = 0 and a
simple limit reasoning, this integration can be also realized over any segment
[0, t], t > 0. Then

Γκ2 dx = K2(t) t + ΓlKkx dx.
Jo Jt

Passing to the limit as t -* oo and keeping in mind that /Q IKkx dx > 0
increases by t and K2t > 0, we obtain by (1.7.2) the existence of

(2.1.1) lim K\t) / < oo, f^lKkx dx < oo.
/-•oo ^ o

As above, passing to the limit in the equality

VlKkx dx = K{t) - k{t) t2 + Vk2 x2 dx + VK- \k'\ x2 dx,

we obtain by (2.1.1) the existence of

(2.1.2) lim K(t) k(ή t2 < oo, f ° V x2 dx < oo, f°°K\kf\x2 dx < oo.

In the same way, the equality

f'k2 x2 dx = \k\t) t3 + I ('k\k'\x3 dx

shows on the strength of (2.1.2) the existence of /£° A:|A;'|JC3 dx and that
. . . Γ / oo z oo "|l/2

(2.1.3) \ϊm k(t) t3/2 = 3/ k2x2dx-2 k\k'\x3 dx\ .

Thus any constant greater than the right-hand part in (2.1.3) is good as C in
§1.9.

2.2. Let us prove now that

liminfk(t) t2 < ~ .

Suppose the contrary. Then for t larger than some t0 > 0,
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Put

κ{t)\c/tl for/e[0,/0],

[c/t2 for />/ 0.

Then k0 < k, and k0 ^ A by Theorem 1.8. Application of (1.7.3) to k0 yields
c < 1/4 which contradicts the choice of c.

23. A simple calculation based on (1.7.3) shows that if k G A and there
exists l i m , ^ k(t) tq > 0, then q > 2 and, in the case # = 2, l i m , ^ k{ί) /*
< 1/4.

2.4. One can prove that if a function fc: [0, oo)—> R satisfies §1.5(i) and
lim sup,.^ ST K\x)dx/K(t) < 1/4, then k E A. We do not produce this
proof, but notice instead that the function 1/(2/ + 2)2 E A because φ(t) =
1/(2/ + 2), / > 0, is a solution of (1.4.1) with k = 1/(2/ + 2)2. Then by
Theorem 1.8, all functions in [0, oo) satisfying §1.5(i) and not exceeding
1/(2/ + 2)2 belong to A.

2.5. When η in §1.13 increases from 0 to 1/4, the root xx = X\(v)
increases from 1 to 2, and x2 = Xii?)) decreases from oo to 2. Notice that the
estimate xx < lim,^^ inf ε(t)/K(t) < x2 is not of geometric interest, since the
number η, in the case k = kb or k = kc, can depend on the point p and thus
will not be a characteristic of the space M.

2.6. The estimates (1.13.2) and (1.13.3) are sharp in the following sense.
There exists a function k E A such that

(26 1) 1 < ^
#(/) + /,°° K\x) dx

One can check that a suitable

4 for / > 1,

f o r O < / < l .

Then (1.4.1) is reduced to a special Riccati equation <f>' = - φ 2 — /4, whose

general solution is

A simple reasoning shows that

c(0 = φ('> \ ) = 7 ~ " i c o t 7 for / > 1

and

l i m l = Iime(ί) 3ί3 = l
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2.7. By Remark 1.2, kb(t) > kc(t) > kb(R(t)), so that 1 > kc(t)/kb(t) >

kb(R(t))/kb(t). Suppose there exists a l im^^ kb(i) tqφ0lox some number

q. Then passing to the limit as t -> oo in the equality

~\ϊtΓ= b kb{t) t« (ϊίWΓ
we obtain

3. On solutions of Jacobi equations

3.1. Denote the class of positive continuous functions k: R —» R by P. We

consider here the differential equation

(3.1.1) u" = -ku,

where fc 6 ?. By continuity of k9 for any 3 numbers t0, u0 and u'o €Ξ R there

exists the unique solution u(t), t G R, of class C 2 with the initial data

"Co) = «o> u'(to) = «ό

Remark. By (3.1.1), a solution u(i) of (3.1.1) is convex at any points t

where u(t) > 0. Let u(t0) > 0 and u'(t0) > 0 (u'(t0) < 0). Then obviously

there exists a number tx < t0 (tx > t0) such that u(tx) = 0, u(t) > 0 for

t e (tl910] (t e [t0, tx)). Moreover, if w'(/0) φ 0, then

3.2. Remark. Let kl9 k2G P and kx(i) < A:2(0, t G Λ. Let Wi(/), w2(0 be

solutions of (3.1.1) with k — kl9 k = k2 respectively, and let tx < t2. Suppose

further that

(1) ux(tx) * u2(tx), ux(Q = t/ 2 (^,

(2) Ml(/) > 0, u2(t) > 0 for / G (/!, ίj),

(3) either M^^) ^ 0 or ii^ίj) φ 0.

Then one can easily see that u2(t) > ux{t) for t G (/l512). In fact, if w2 > ux

at a point in (tX912\ then w2 > ux in an interval (xx, x^ c (^, ^ such

that ux(xx) = w2(^i), Wi( Xα) = "2(^2)- Thus the formula [u\u2 — uxu2]
x

x

2 =

f*2(k2 — kx)uxu2 dt (see [3,10.31]) yields a contradiction.

Obviously if kx = k2, then ux =u2.

33. Denote by Ω,o the set of numbers u'o such that the solution u(t) of

(3.1.1) with i/(ί0) = 1, u'(t0) = wό is positive for t > ί0. By Remark 3.1,

(3.3.1) u\t)>0ioτt > to.
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It follows easily from Remark 3.2 that if u'o E Ω,o and υ'o > u'o, then v'o E Ω,o.

By (3.3.1), i(t0) = inf Ω,o exists if Ω,o is not empty. Let us show that
/(/0) E Ω,o. (Then, by (3.3.1), /(/0) > 0.) Suppose the contrary. Then the
solution v(t) with t>(/0) = 1, v'(t0) = /(/0) cuts ί-axis at a point tx > t0. Thus
there exists t2 E (t0, tx) such that v'(tj < 0. Therefore if u'o E Ω,o is suffi-
ciently close to /(/0), then the corresponding solution u satisfies u'(Q < 0
and, by Remark 3.1, cuts the ί-axis. This is impossible since u'o £ Ω,Q. Thus we
have proved

Proposition. If Ω,o is not empty, then Ω,o = [/(/0), oo) for some i(t0) > 0.
3.4. Theorem. Let Ω/Q be nonempty for some t0 E R. Denote by v(t) the

solution of (3.1.1) with v(t0) = 1 and v'(t0) = /(/0), and by a <t0 the number
such that v(a) = 0, υ{t) > 0 for t > a (a exists by Remark 3.1). Then the
following hold.

(1) Ω, is empty for t < a, and nonemtpy for t > α. (Therefore a does not
depend on t0.)

(2) For any nontrivial solution w(t) of (3.1.1) with w(a) = 0,

(3.4.1) < ( / ) " H 0 t > a

(3) k has a convexity function (see §1.4) ε(ί) = /(/), t > a.
3.5. Proof. (1) Let tλ < a. We need to prove that Ω,t is empty. Suppose the

contrary, i.e., a solution u(t) with u(tγ) = 1 is positive for / > tx. Let us
consider the solution u(t)/u(t0), so that [u(t)/u(to)]\taBtQ = 1. By definition of

''(Ό)> M0/w('o)]'l,=,0 > '('o) Then «(OΛ('o) = <*) for some t E (α, t0) and,
by Remark 3.2, u(t)/u(t0) = v(t) which is impossible as u(a) > 0. Obviously,
Ω,2 is not empty for t2 > a because the solution v(t)/v(t2) with
[v(t)/v(t2)]\ίaί2 = 1 is positive for / > t2, and therefore vXt^/v(t^ E Ω,2.

(2) The mentioned solution w(t) can be represented as cv(t) where the
constant c φ 0. So we need to prove that i(t2) = vXt^/vψ^ for t2 > a. It was
noted above that v'(t2)/υ(t2) E Ω, therefore i(t^) < v'(t^)/v(t^). Suppose
i(t2) < vXtJ/vψJ. Let u(t) be the solution with u(Q = 1, u'ψj = i(Q. By
Remark 3.1 there exists d < t2 satisfying u(d) = 0, u(t) > 0 for t > d. It
follows easily from Remark 3.2 that d < a. Then the solution u(i)/u(ά) is
positive for / > a so that uf(a)/u(a) E Ωα which contradicts (1).

(3) Direct calculation based on (3.4.1) and (3.1.1) shows that /(/) is a
solution of (1.4.1). Let now φ: (b, oo)-> R be another solution, and t0 E
(b, oo). Then the function u(t) = exp /Jo φ(t) dx defined for / E (b, oo) is the
solution of (3.1.1) with the initial data u(t0) = 1, u'(t0) = φ(t0) satisfying
u(t) > 0 for / > t0. That is why Ω,o is nonempty for any t0 > b. Then b > a
by (1), and <j>(t0) > i(t0) by definition of i(t0).
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3.6. Remark. Let k E P, and let (1.4.1) have a solution φ: (b, oo)->Λ

(perhaps the convexity function). Take some to> b and consider again the

function u(i) — exp /Jo φ(x) dx, t > b. As above, u'(t0) E Ω,o and Theorem

3.4 can be applied. Then

(i) By (3), k has a convexity function ε: {a, oo) —> Λ with some α < *0.

Arbitrariness of t0 > b implies a < b.

(ii) By (1), Ω, is nonempty if and only if t > a.

(iii) By (3) and Proposition 3.3, Ω, = [ε(t), oo) and ε(ί) > 0.

(iv) By (3) and (3.4.1), ε(t) = w'(t)/w(t), t > a, where w is any nontrivial

solution of (3.1.1) with w(a) = 0. Therefore ε(t) —»,_>αoo.

3.7. By (1.4.1), ε' < 0. Therefore there exists /d= l i m , ^ ε(t) > 0. If / > 0,

then ε'(/) < -I2 for t E (a, oo), and ε vanishes at a point which is impossible.

So / = 0.

3.8. Putting ε(0 in (1.4.1) and integrating over an interval [/, t'] we have

(3.8.1) ε(/) = ε(O + f' ε2 rfx + V'k dx.

Passage to the limit as f -> oo yields

(3.8.2) e(0 = Γε2 dx + Γ°°fc dx,
Jt Jt

where both integrals exist. Therefore

(3.8.3) ε(ί) > Γ°°A:(JC) dχd= K(t), t > a.
Λ

It follows from (3.8.3) and the existence of /," ε2 dx that ff° K\x) dx < oo.

Then by (3.8.2), (3.8.3),

(3.8.4) ε(t) > (°°K2(x) dx + K(ή, t > a.

3.9. Lemma. Let kvk2 E P, kx < k2, and let k2 have a convexity function

ε2: (a2, oo) -^ R. Then kx has a convexity junction εx\ (av oo)-^>R. Moreover,

ax < a2 and ελ(i) < ε2(t)for t > a2.

Proof. Take t0 > a2. Since ε2 is a solution of (1.4.1) with k-k2 and, by

Remark 3.6(iii), Ω,o (constructed for k2) is the segment [ε2(/0)> °°) Let u(0 be

the solution of (3.1.1) with k = k2 and initial data u(t0) = 1, u'(t0) = ε2(/0), so

that u2(t) > 0 for t > t0. Denote by v(t) the solution of (3.1.1) with k = kx

and the initial data t>(ί0) = 1, t>'(/0)
 = 2ε2(ί0). It follows easily from Remark

3.2 that v(t) > 0 for t > t0. So Ω,o (for kx) is not empty for any t0 > a2. Now

by Theorem 3.4(3), kx has a convexity function εx: (ax, oo) -^ R with tfj < /0.

Arbitrariness of t0 > a2 implies ax < a2.

Suppose now εx(t0) > ε2(t0). Let v(t) be the solution of (3.1.1) with k = kx

and initial data v(t0) = 1, v'(t0) =\(εx(t0) + ε2(/0)). The solution v should cut
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the /-axis, and therefore it cuts u(t) at a point / > tQ. This contradicts Remark
3.2. Thus ε,(/0) < ε2(t0), t0 > a2.

3.10. Remark. Let k E P have a convexity function ε: (α, oo) -> R, and
let u(t) be a nontrivial solution of (3.1.1) with t/(/*) = 0, /• > a. Then
u(t) φ 0 for / > f*. In fact, suppose the contrary. Then there exists tx > t*
such that u(tx) = 0, u(t) φ 0 for t E (/*, /j). Let t0 E (/*, /j), and let the
constant c satisfy cu(t0) = 1. Then cw'(/0) < min Ω,o = ε(ί0). Let now v(t) be
as in Theorem 3.4. Obviously there exists t2 E [a, t0) such that cu{t^)
> 0 and cw(/) > υ{t) for / E (/2, ί0). This contradicts Remark 3.2.

3.11. Lemma. Let a junction k E P have a convexity function ε: (α, oo)
R, and K(t) be defined by (3.8.3). Then

(3.11.1) limin

Proof. Suppose the contrary. Then there exists / > 1/4 and tx G. R such
that [l/K(t)]J1° K\x) dx > I when t > tv Let tx > a and q =
inf,>ri [e(/)/A:(/)]. By (3.8.3), q > 1. By (3.8.2),

for t > tv Hence

(3.11.2) q = inf

i.e., q2l — q + 1 < 0 which is impossible with / > 1/4.

4. Proofs of the results
4.1. Proof of Remark 1.2. Suppose Ct(p) 7> Bt(j>), i.e., there exists q E M

such that p(/?, q) < t and q £ Ct(p). Then there exists a ray c emanating
from/? such that q E bc (see § 1.2). So ρ(q, c(t + s)) < s for some s > 0. Now

(4.1.1) p(/?, c(t + s)) < p(/?, #) + p(q, c{t + s)) <t + s,

which is not possible since c is a ray, and p(/?, c(/ + s)) = ί + s. So C,(/?) D

4.2. To prove (1.2.1) it is enough to show that for any sequence tj -^j^^oo
there exists a subsequence tt such that lim^oJ!?(/,)/*,] = 1. Let a subse-
quence /, be such that the directions of the shortest paths pqi9 qt E C,.(/?), of
the length R{tt) converge to some direction at the point/? (if pqt is not unique,
by pqt we mean one of them). It is easy to see (and is known; see Proof of
Proposition 1.3 in [1]) that the geodesic c: [0, oo) -> M emanating from/? in
the limit direction is a ray.
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Let us consider the triangle pqtri9 where η = c(/f) and the side qiri is a

shortest path with the ends qi9 η. By the construction, the angle

(4.2.1) α, = <£ rjjqt -^ 0 as i -> oo.

Let us show that

(4.2.2) Aβ*/»ift<§ (if 4^1).

Suppose the contrary. Then obviously the points in rtqt sufficiently close to η

belong to the open ball of radius s centered at c(t + s), s > 0, and therefore

not to Ct{p). But this is impossible by the total convexity of Ct(p).

Let p'qlή be a triangle in Euclidean plane with p'q = pqi9 qjή = qtri9
r'iPf = riP- By Toponogov comparison theorem,

(4.2.3) α / ^ r y ^ α , . ; βf =^V/^/ < ft.

By the law of sines and the inclusion Ct(p) D Bt(p),

sin(α; + βf) _ p'ή t,
^ i,

cos aj + sin α/ cot βf < 1 cot 8̂/ < tan -y.

By (4.2.2) and (4.2.3),

0 < cot β. < cot βf < tan Y < tan y .

Then, by (4.2.1), cot βf -» 0, and α/ -^ 0 as i -» oo. So

/-•oo [ 1 , i f ^ =

43. Lemma. Let Dt c M, / G [w, t>], fee <z Lipschitzian expanding family of

compact sets, and k(t) be the minimum sectional curvature in Dr Then the

mapping k: [«, v] —» R is Lipschitzian.

The proof seems to be obvious.

4.4-4.8. Proof of Theorem 13.

4.4. Let k > 0 be the maximum sectional curvature in the set N = {q E

M\p(q, CΌ{p)) < 1}. Denote a two-dimensional sphere with the curvature k

by S; the length of its meridian is π/yϊc . Put δ = mm{τr/2yk , 1, «}. It is

known (and can be easily proved on the basis of Rauch comparison theorem

and Toponogov theorem on comparison of triangles) that any geodesic

intersecting Cv(p) and not longer than δ is a unique shortest path, and its

ends are not conjugate points in it.
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4.5. Let us show that there exists a number β > 0 such that for any
t G [w, v], any q G Ct(p), any shortest path qp, and any 5 G (0, δ/2) the
closed ball

(4.5.1) Bsβ(m) c C,(/>),

where m Eι qp and #m = s. (The point m exists since qp > u > δ > s by

Remark 1.2.) It means that 9C,(/>) does not contain "too sharp edges".

Suppose the contrary. Then there exist sequences (1) 1 > β. -» 0, i =

1, 2, , (2) *,. G [w, D], (3) 4. G C,(/?), (4) shortest paths ftp an<Γ(5) num-

bers Sg G (0, δ/2) such that BSiβi{m^ £ Ct(p), where mi G ftp, ftm, = $,.

Selecting a subsequence, if necessary, one may assume that

(4.5.2) /,. -+ t0 G [M, t?], ft ^ % e c,0O)> ^ -> %P as 1 -> 00,

where qop is a shortest path between q0 and p. Let ri G Bs^{m^) \ Ct(p). Then

(4.5.3)

p(AV, ft) < p(ft, mf) + pirn,-, r,) < s, + -̂ft < | ( 1 4- ft) < δ.

So the shortest path ^ft c N, and is unique.
def

4.6. Let us show that the angle γ, = <£ ̂ ftm^ -^^^O. To this end, we
construct on the sphere S a triangle rjqlm- whose sides are respectively equal

def

to the sides of the triangle f̂t/w,. Then the angle γ,' = ^rr

iq
f

im
f

i-^i_^(J)

because

Now by Toponogov comparison theorem,

(4.6.1) Ύi < ϊ / . - > 0.
i—>oo

4.7. Let μo be the direction (unit vector) of the shortest path qop at the

end ft,, ft be the direction of ftp at ft, and vέ be the direction of ftr, at ft, so

that <ft, i>,.> = cos γ,. (Notice that qiri > ftm, - miri = ^ - sfi{ > 0.) It fol-

lows easily from (4.5.2) and (4.6.1) that

(4.7.1) (ft, vt)

so that

def
exρ(ft, Pi ^ ) -> exρ(^r0, /Xo r̂Ojp) = /?.

By Remark 1.2 and Proposition 1.3 (1) in [1], for large i

(4.7.2) Λ G Bu(p) c CM(/0 C Cί#(/7).
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Now by the total convexity of Ct(p) the normal geodesic gέ: [0, qop] —» M

with gi(x) = exρ(^, vt x) lies in C, (/?). By (4.5.3), qiri < δ < u < qop. So

η = gags;) E C,O) which contradicts the choice of rr

4.8. Suppose now Theorem 1.4 is false. Then there exist sequences α, < bi9

aiy b( E [u, v], such that

(4.8.1) d["» 6 / ) -» oo, where rf(α, Z>) = max p(;c, Cα(/?)).
*>/ ~ ai '-*<» x^Cb(p)

Thus 6, — ax, .—> 0 because rf(α, 6), a, b E[u, v], does not exceed the diame-

ter of Cυ(p). So for large i,

(4.8.2) Δd= *>,.-*, .<!/?.

Let ^ E C (̂/>) satisfy p(̂ r, C^p)) = d(ai9 bt), and let qp be a shortest path

with the ends #,/?. Let rnG^p be such that qm = Δ/β < δ/2 by (4.8.2). By

(4.5.1), B^m) c Q(/?). Then by Proposition 1.3(1) in [1], m E C^ip). Now

= Δ/j8 = 1
, Δ 8̂

which contradicts (4.8.1).

4.9-4.11. Proof of Theorem 1.6.

4.9. By Theorem 1.3 and Lemma 4.3, kc is Lipschitzian in any segment

[u, t>], u > 0. It follows easily from Proposition 1.3(1) in [1] that, for suffi-

ciently small / > 0, the set Ct(p) lies in an arbitrary small neighborhood of

C0(p). Therefore kc is continuous at t = 0, and kc satisfies §1.5(i). Obviously

kb satisfies §1.5(i).

4.10. Let us show that any nontrivial solution of (3.1.1) with k E {kb, kc}

has not more than one zero in [0, oo). Suppose the contrary. Then one can

find a solution u(t) ^ 0 such that u(tx) = u(Q = 0, 0 < tx < t2, u(t) > 0 for

/ E (/j, t^) and u'(tx) = 1.

Let um(t) be the solution of the equation

(4.10.1) u" = m-ku

with um(tx) = 0, u'm(tx) = 1 where the constant m E (0, 1). As u'(Q < 0 and

by continuity reasoning, um has a zero t3 close to t2 if m is sufficiently close to

1.

Let now c: [0, oo) -» M be a ray, c(0) = /?. Let A^ί)-Lc(0 be a parallel unit

vector field along c\[tχhγ and let Y(t) = ^ ( 0 ^ ( 0 , ί ^ [tv /J. The second

variation L" of the arc length for the variation V(t, δ) = exp(δ Y(t)} satisfies

L" = Γ' 3«y', y > - <Λ(y, c)c,
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where K(t) is the section curvature in the plane of the vectors c(t) and X(t).

By Remark 1.2, c(i) G Bt(p) c Ct(p\ t > 0. Then K(t) > k(t) > mk(t), k G
{kb, kc). By (4.10.1) we therefore obtain

L" < [\u* -mk u2

m)dt = f V 2 + 4 X ) & = ">m = 0,
'tx

which is impossible since c is a ray.

4.11. Let k G {ίcb, kc) where ~ means the extension as in (1.5.1). Thus

k G P; see §3.1. Take t0 > 0 and let κ(ί) be the solution of (3.1.1) with

u(t0) = 1, u'(t0) = l/t0. Then the equation M(0 = 0 has a root tλ G (0, ί0) by

Remark 3.1, and has no roots in [t0, oo) by §4.10. Therefore l/t0 G Ω,o; see

3.3. By Theorem 3.4(3), k(t) has a convexity function ε: (a, oo) —> R, a < t0.

Arbitrariness of t0 > 0 implies a < 0. Therefore fc^,, /cc G ̂ 4.

4.12. Proof of Theorem 1.13. (1.13.1) has been proved in §§3.7, 3.6.

(1.13.2) coincides with (3.8.4).

Put x = lim inf,^^ [ε(t)/K(t)] (possibly, x = oo) and q(τ) =

inf,>τ [ε(t)/K(ί)l Then x = l i m ^ ^ q(τ). By (3.8.2), for t > T,

Applying lim inf,,^ to this inequahty, one has

x > q2(τ)η + 1.

Passing to the limit as r -^ oo, we have

(4.12.1) x > x\ + 1,

so that xλ < x < x2- A simple consideration shows that xλ > 1 when η G

[0, 1/4] according to (1.7.3). Thus (1.13.3) has been proved.

(1.13.4) is a part of Lemma 3.9.

4.13-4.15. Proof of Theorem 1.11.

4.13. Let, for short, k G {kb,kc} and ε G {εb, εc), a G {ab, ac}, σ G

Let δ G (0, ε(σ)) and >> = y(8, σ) satisfy

(4.13.1) ε(σ+>>) > ε(σ) - δ.

It is sufficient to prove that the set Ct{p) is [ε(σ) - δ, >>]-convex.

Suppose the contrary. Then there exists a normal curve d: [0, /0] -> Λf,

0 <lo<y with the maximum curvature ε < ε(σ) - δ satisfying d(0) G Ct(p\

d(l0) G CX/7), d(lλ) ί Ct{p) for some lλ G (0, /0). Let ε* G (ε, ε(σ) - δ) c

(ε, ε(σ + y)). By Remark 3.6(iϋ), Ω σ + y = [ε(σ + y\ oo). Then the solution

v(τ) of (3.1.1) with v(σ + >>) = 1, ϋ'(σ 4- >>) = ε* has roots larger than σ + y.

Let T* be the least of them, so that t>(τ) > 0 when T G (σ + y9 T*).
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4.14. Obviously there exists a ray c emanating from/? such that */(/,) E bCt

(see §1.2) meanwhile d(0) and d(l0) E M \bc. Then, if a point q in the ray c

is sufficiently far from p, the point d(lx) belongs to the ball bp(q) of radius

p = p(q, c(t)) centered at q. Let q be also such that L = p(q, d[0, l0]) > τ* -

σ - y.

Let l2 satisfy p(q, d(l2)) = L. Then </(/2) E 6p(?) c 6Cr, so that l2 φ 0,

Denote by g: [0, L] -> M a normal shortest path with g(0) = ^(/j), g(L) =

r̂. J(/2)±g(0) because l2 E (0, /0). Let * ( » , 5 E [0, L], be the parallel unit

vector field along g with Â O) = d(l£. Denote by K(s) the sectional curvature

in the plane of the vectors X(s) and g(s). By triangle inequality, p(g(s),p) <

R(t) + y + s, so that

(4.14.1) K(s) > kb(p(g(ή>P)) > kb(R(t) + y + s), sG [0, L].

Obviously, ρ(g(s), Ct(p)) <s + lo<s+y. It follows easily from Proposition

1.3 in [1] thatg(s) E C ί + 5 + > ;(^). Hence

(4.14.2) K(s) > kc{t +y + s\ s E[0, L].

Now (4.14.1) and (4.14.2) can be rewritten as

(4.14.3) K{s) >k(σ+y + s), ί £ [0, L].

4.15. The following calculation was influenced by Lemma 1 in [2]. Let us

consider a variation of the shortest path g corresponding to the vector field

ί X(s) v(σ -I- y + s) for s E Γ0, T* - σ - J>1,
(4.15.1) y(^) = W V ' L J

and such that its end g(0) slides along the curve d. The second variation L" of

its length L satisfies

L" = ιd(γ(θ), y(o» + f L « r r > - <R(γ,g)g,

where /̂  is the second quadratic form of the curve d with respect to its normal

g(0). Since | Y(0)\ = \X(0)\ v(σ + 7) = 1, we have ^(7(0), y(0)) < έ. Then

by (4.15.1),

L" < ε + ΓT*~σ~'VΓϋ/2(σ 4- 7 + s)

-t; 2 (σ + y + j)<Λ(Jf(j), «<5))g(j)f * ( * ) > ] *

y[ί; / 2(σ + 7 + j) - υ2(σ + ^ + j) JSΓ(j)lΛ
L

'[t;/2(σ + ^ + .y) - A:(σ 4-j + ^) ϋ2(σ +>> + j ) ] Λ

(by (4.14.3))

Γ T
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s)

-k(σ + >> + s) v2(σ + >> + j

+ 7 + ί) ϋ(σ + >> + s)]ds.

By (3.1.1), the last integral is zero. Hence L" < ε — ε * < 0 which is im-
possible since d(l2) = g(0) is the point in the curve d closest to the point q.

5. Construction of a space with given kb9 kc

5.1. We construct here the surface Mo mentioned in Remark 1.6. Let
k G A, k be as in (1.5.1), and ε: (a, oo)-» R be their convexity function.
Denote by u(t) the solution of the equation

(5.1.1) u" = -ku

with the initial data w(0) = 0, ι/'(0) = 1. By Remark 3.10, u(t) > 0 for t > 0.
We mean by Λf0 the "polar" metric ds2 = dr2 + G(r)dθ2 where G(r) = u\r\
r > 0. Let us show that this metric is the one described in §1.6.

As a solution of (5.1.1), u G C 2 and therefore G(r) G C 2. The length /(r)
and the geodesic curvature g(r) of the circumference r = const satisfy

(5.1.2) l{r) = VW) • 2π = 2«ι(r), g(r) ^ ^

Then its total curvature / g = 2mu\r) goes to 2ττ as r -* 0. Thus there is no
curvature at the pole.

One can easily see that the geodesies θ = const, r > 0, are rays. Then
Ct{p) = Bt(p) for the point/? at the pole. Due to (5.1.1), the curvature at a
point (r, θ) is -[VG(r) ]"/λ/G(r) = -u"(r)/u(r) = £(r) - Λ(r). Thus **(/)
= fcc(0 = m i n r e [ 0 / ] fc(r) = Λ(ί).

5.2. Let us prove now Remark 1.12. Let k0E: A, and ε0: (α0, oo)—» R9

a0 < 0, be its convexity function. Put k{t) = ίco(t + αo)|[O ^ see (1.5.1).
Obviously fc(ί) = ko(t + α0). Therefore the solutions of the equation φ' = - φ 2

- fc are obtained from the solutions of φ' = - φ 2 - k0 by means of their
"parallel shift by the distance \ao\ in the postive direction of the /-axis". It
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implies that k has the convexity function e{t) = εo(t + α0), / E (0, oo). (I.e.,
a = 0 for A:.) By Remark 3.6(iv), the last quotient in (5.1.2) is ε(r). Therefore
the geodesic curvature g(t) of bd Bt(p) = bd Ct(p) is equal to e(0
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