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TRANSVERSAL HOLOMORPHIC STRUCTURES

XAVIER GOMEZ-MONT

Among the most important global structures which one can introduce into

a differentiable manifold are those obtained by requiring that the jacobians of

the coordinate transformations belong to a given linear Lie group G. These

structures are called (integrable) G-structures. An ordinary differentiable

structure is a G-structure where G is the full linear group GL(n, R). Complex

analytic manifolds are obtained by GL(n, Q-structures. Another structure

which has been intensively investigated is that of foliate structures obtained

by the subgroups G of the real or complex general linear groups composed of

transformations leaving invariant a linear subspace of euclidean space on

which the linear group operates (see, for example, Reeb [18] or Kodaira-

Spencer[14]).

Geometrically, a (real) foliation is a decomposition of a manifold M into

disjoint connected sets {La} called the leaves of the foliation such that locally

they are isomorphic to the family of horizontal lines RΛ in Rn+q.

Additional structure may be introduced in the foliation by controlling more

carefully the way the leaves are attached. These are denominated transversal

structures and were introduced by Haefliger [11].

In the present work we are interested in transversal holomorphic structures,

that is, we assume that the leaves are glued together in a complex analytic

manner. These are G-structures where G = Hnq is the subgroup of

GL(n + 2<7, R) consisting of those matrices of the form

IA A'\
VO A")

where A G GL(n, R), A' G M2qn(R),A" e GL(q, Q ^ GL(2q, R).

An //"-'-structure in a manifold M is then given by a covering of coordi-

nate patches with coordinates (x\ • • , x"; z\ • • • , z") = (x, z) such that

the changes of coordinates are local diffeomorphisms of R" X C of the form

/(x,z) = (/,(*, z),/2(z))

where f2 is a holomorphic function of z alone.
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An #α*-structure is a complex analytic structure, and an #Λ'*-manifold

can be considered as a generalization of a complex manifold where the leaves

take the role which was played by the points. This approach is specially

appealing from a function theoretic point of view, and one can introduce a

structure sheaf ?F0 given by those local functions which are constant along

the leaves and holomorphic in the transversal variables.

In §2 we prove an interesting finiteness property which states that for

compact H"'^-manifolds any sheaf locally isomorphic to 3F6r has finite

dimensional cohomology. This result is well known for complex manifolds

and it informs us that these structures have similar finiteness properties as

compact complex manifolds.

• If Λf is an //"'^-manifold, it is a natural question to ask about the

deformations of M. That is, if M appears in a family {Mt} of transversal

holomorphic structures, what is the relation between Mt and Λf0? In §3 we

introduce the Kodaira-Spencer machinery for deformations, and as an appli-

cation of the finiteness properties of the cohomology groups we are able to

prove that the infinitesimal deformations form finite dimensional vector

spaces. In §4 we analyze marked deformations of M obtained by fixing the

topological type of the foliation.

In §5 we analyze the internal structure of the foliation by considering the

leaf space, which is obtained by collapsing the leaves of the foliation to a

point with the quotient topology. We study a special type of foliations, which

we have called "partially Hausdorff" and are defined by the property that the

union of the Hausdorff open sets of the leaf space is a Hausdorff nonempty

open set (the regular set). We prove that the regular set has a natural structure

of a normal complex analytic space.

As an application of the deformation theory we obtain a surprising finite-

ness property of the leaf space of a partially Hausdorff foliation of codimen-

sion 1, which states that every connected component of the regular set in the

leaf space is a quasiprojective curve (a finite Riemann surface), and that

except possibly for three types of curves there are only a finite number of

components. This is a generalization and was originally motivated by Ahlfors'

finiteness theorem for Kleinian groups.

Any holomorphic foliation of codimension 1 has an underlying H2(<n~X)Λ-

structure obtained by forgetting all the holomorphic structure except the way

the leaves are attached. If this foliation is partially Hausdorff, we then obtain

that the regular set has the above stated finiteness properties. There does not

seem to be a simple proof of this fact staying within the complex analytic

category. Although the deformation of complex foliations are known to be

finite dimensional we encounter nontrivial integrability conditions which
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obstruct obtaining any conclusion. But if we just remember the transversal
holomorphic structure, we still have finiteness of infinitesimal deformations,
but now we do not have any integrability conditions, so we can conclude the
finiteness properties of the regular set. The //"'̂ -category is the natural setting
where this reasoning may be displayed.

I am very grateful to Professor Robert C. Gunning for his advice and
encouragement along the elaboration of this paper.

1. Transversal holomorphic structures

Let O 1 , , xn; z\ , zq) = (x, z) be coordinates in RΛ X C7, where

the first set are real variables and the second are complex variables. Consider

the pseudogroup Hnq of local C°°-diffeomorphism of RΛ XC 9 given by

/ = (/i> ,/„; g\, ' ' ' > gq) which satisfy:
(a) dgt/dxJ = 0, / = 1, , q j = 1, , n; i.e., g, is a function of z

alone.
(b) dgJdP = 0, i,y = 1, , q; i.e., g, is a holomorphic function of z.
Geometrically, the first condition means that we are leaving the horizontal

lines invariant and the second that these lines are glued in a holomorphic
manner. Clearly Hnq is a pseudogroup (see Kodaira-Morrow [13, p. 8] or
Lawson [15, p. 2]).

Let M be a paracompact Hausdorff topological space. By a system of
Hn'q-coordinates we mean a covering { L̂  ) of M with topological homeomor-
phisms /': Ut -> Vi9 Vέ open in R" X Cq such that f = f ° (/)-* is an
element of Hnq whenever it is defined. Two systems are equivalent if their
union is again a system of //"'^-coordinates.

An //"'^-structure in M is an equivalence class of systems of //"'^-coordi-
nates on M. A manifold M provided with an //"'^-structure is said to have a
transversely holomorphic foliation of codimension q, and M is called an Hn'q-

manifold.
Let M be an //"'^-manifold. We can introduce a second topology in Λf,

callled the leaf topology in M, whose basis consists of sets of the form

[p E U\zι(p) = constant, , zq(p) = constant}

where (x, z): ί / ^ ^ x C 9 is an arbitrary //"'^-coordinate of M. In this

topology the connected components of M, {La} are the leaves and M carries

the structure of an uncountable ̂ -dimensional manifold.

Each leaf La is a connected Az-dimensional manifold embedded in M, but

the embedding may not be proper, that is, the natural manifold topology on

the leaf is not necessarily the one induced from M since the leaf may pass

through a given chart infinitely often and accumulate on itself.
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Example 1. If in the definition of Hnq we assume that n = 2m and if we
identify RΛ with Cm, we can consider the pseudogroup H™q of local biholo-
morphic maps of Cm X C7 with complex variables (x, z) which satisfy condi-
tion (a); that is, if / = (fl9 Jm; gl9 . . . , gq), then dgj^ = 0, i =
1, . . . , r̂ y = 1, , /i. A manifold with an //^-structure is in a natural
way a complex manifold provided with a holomorphic foliation of codimension
q. In this case, each leaf also possesses the structure of a complex manifold.

Example 2. Let X be an Ai-dimensional manifold, X —» X its universal
covering space, and πx(X) the fundamental group of X realized as covering
transformations on X. Let F b e a connected complex manifold of (complex)
dimension q, and Autc(F) the group of biholomorphic automorphisms of F.
Let

p: * , (*)-> Autc(F)

be any group homomorphism. π^X) acts on X X F by

Ύ(P> 0 = (Ύ(P)> P ( Ϊ ) O

Since the action in X consists of covering transformations, the action on
X X F is properly discontinuous and without fixed points so the quotient
space M has a manifold structure, and the projection map X X F—» M is a
covering map. X X F has a natural structure of an //"'̂ -manifold when we
consider coordinates for X and F separately (JC1, , xn\ z1, , zq), and
the leaves take the form {X X f} / e F . The /^"^-coordinates o n ί x f
descend to M to induce an //"'^-structure, where the leaves are now the
images of {X X t). By projecting onto the first factor, M has a natural
structure of a fiber bundle over X

M->X

where the fibers are homeomorphic with F, and the leaves of the foliation are
transversal to the fibers.

Two //"^-manifolds are isomorphic if there exists a diffeomorphism φ:
M^> M' such that in local //"'^-coordinates/'V ° g~ι belongs to Hnq; i.e., φ
preserves the leaves and is biholomorphic in the transversal variables.

The field of tangent spaces to the leaves of an //"'̂ -manifold M form a
vector bundle T of the tangent bundle Γ(M), called the tangent bundle to the
foliation. The quotient bundle v is called the normal bundle of the foliation.
We obtain an exact sequence of vector bundles over M:

(1) O^>τ-»7XM)->!?->().

These bundles can be constructed explicitly as follows: Let (Ui9f') be a
system of ^^-coordinates, f: f ° (f'y1: fj{Ut n Uj) -»/(£/, Π Uj) are the
transition functions, local diffeomoφhisms of R" X C which can be written
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as

where (xJ9 Zj) = (xj, , xf; zj, , zf) are local coordinates for If. Let-
ting Dι be the derivative with respect to (x1, ,x"), and D2 the derivative
with respect to (Re z\ , R e z 9 , I m z 1 , . . . , I m z 9 ) , the transition func-
tions of T, Γ(M) and v are given by the cocycles defined on Ui π Uj

( D fij

o

The transversal holomorphic structure allows us to define the complex
normal bundle vc obtained from the transition functions by considering only
the complex derivatives of f{, with

v ® R C = vc θ vc.

(See Matsushima [17, p. 1] for more details.)
Lemma 1. Let M be an Hnq-manifold. Then the complex normal bundle vc

has a canonical representation by a cocycle whose functions are constant along

the leaves, and vc is obtained locally by pulling back the complex tangent bundle

of the local submersions defining the foliation RΛ X C* —» C*.

Proof Immediate from (2).
So we see that the normal bundle inherits a canonical complex structure;

but this complex structure is special in the sense that if we express v in terms
of the canonical cocycle (2), the endomorphism

/,: v ® R C ^ ϋ ® R C

in Ui defining the complex structure is constant along the leaves.
We will now derive a differential geometric definition of an //"'^-manifold.
Let M be a differentiable manifold of dimension m. A subbundle T of

T(M) is involutive if for any two local vector fields X and Y with values in T,
their Lie bracket [A", Y] is also a section of r. By Frobenius Theorem
(Chevalley [6, p. 89]) there exists a distinguished set of coordinate charts

(Σ/,,(* ! > ,χH;χH+\ >*m))

in such a way that T is the tangent space of

(3) xn+ι = constant, , xm = constant,

and gives rise to a foliation in M. Let v be the normal bundle defined by (1).

Then in terms of the distinguished coordinate charts the transition functions
of the normal bundle are constant along the leaves, i.e., depend just on
Xn+l> ' Xm'
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A foliated almost complex structure in v consists of an endomorphism

/: v ® R C -> v <8>R C

with I2 = -id such that in terms of the distinguished coordinates of υ,

It = Ij(xn+i9 , xm% i.e., is constant along the leaves.

Let / be a foliated almost complex structure in v, and let

(JCJ, , xn, xn+ι, * , xm) be distinguished coordinates defined in U. Let

A(al9 , an) = {(fllf , αrt; x n + 1 , , xn) e £/} be a transversal to the

foliation in ί/. By Lemma 1 the normal bundle restricted to A(ax, , an) is

canonically identified with the tangent space to A(ax, , απ). We say that /

is integrable if for any distinguished coordinate and for every transversal

A(al9 - - , an) the almost complex structure induced on A(al9 , an) is

integrable; hence A(av •••,#„) inherits a natural structure of a complex

manifold.

Proposition 1. Let M be a differentiable manifold. There is a one to one

correspondence between Hn>q-structures on M and pairs (r, /) such that

(a) r c-^ T(M) is an involutive distribution of dimension n; n + 2q = dim M.

(b) / is an integrable C 0 0 foliated almost complex structure in the normal

bundle.

Proof. We have seen that any //"'^-structure gives rise to (T, /) with the

stated properties. Conversely, suppose given (T, /) as stated, T gives rise to a

set of distinguished coordinates as in (3). Choose coordinates of the form

Aλ X A2 °* RΛ X R2*7. Then / induces an integrable almost complex structure

on A 2, so perhaps after shrinking and a change of coordinates we may assume

that A 2 °-> C 7 and the induced complex structure from C* coincides with /.

Let these be the new distinguished coordinates. Changes of coordinates will

preserve the almost complex structures, so will be biholomorphic in the

(zj, , zq) coordinates, and hence we obtain an //"'^-structure on M.

Suppose that (T, /) and (Y, /') give rise to the same //"'^-structure on M.

Then T = T' since the identity preserves the leaves; hence v = υ' and since

/ = / ' it is an isomorphism of almost complex structures, q.e.d.

In terms of the differentiable data two i/Λ'*-manifolds M and A/' are

isomorphic if and only if there exists a diffeomorphism F: M —» Λf' such that

FJir) = T', F*(Γ) = /.

Also note that for codimension one all foliated almost complex structures are

integrable (see Lehto-Virtanen [16]).

2. Foliated sheaves

We fix throughout this section the notation 5 = 5 ' X 5 " ^ R " X C ?

where B' and B" are the unit balls in R" and C7 respectively.
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Let M be an i/^-manifold, and (U^f) a covering by if^-coordinate
charts such that/(l/J) = B^>Rn X C*. Let dx be the differential operator
defined in L̂  obtained by taking the derivatives along the leaves; that is,

dx: E(Ui9 Ar τ*) -> E(Ui9 ΛΓ+1τ*)

given by

(4) </,( Σ / ' <&') = Σ ( Σ 9/73^ <**>) Λ Λ7,

where E(Ui9 *) will always denote the C0 0 sections of the vector bundle *.
Viewing B as a 5"-parameter family of 2?'-disks, it is clear that dx is invariant
under Hnq changes of coordinates, so gives rise to the operator

From the intrinsic nature of the operator, it induces a complex of sheaves

(5) o - , f ^ ^ V ^ ^

where ^M is the kernel of dx and consists of those local junctions which are
constant along the leaves.

Proposition 2. (5) is a free resolution of sheaves, hence

Λ _ {w e E(M, Λ rτ*)/^(w) = 0} _ ^-closed
( ' M)~ dxE(M, Λ '-V ) • " ^ , - e x a c f

Proo/. SM(ΛΓ/Γ*) a r e ^ m e sheaves since we have C°° partitions of unity in
M. To show that it is a free resolution it is enough to prove that locally the
sheaves are exact, that is, that locally dx -closed forms are dx -exact. Choose
local coordinates isomorphic to A' X A", where Ar and A" are open contract-
ible open sets in Rrt and Cq respectively, with coordinates (x, z). If w is a
dx-closed form we can view it as an Λ "-parameter family of closed forms in
A'y which can be integrated explicitly by

(6) w(x,z)=

So (5) is a free resolution. But then by Gunning-Rossi [10, p. 177] we know
that the cohomology of ΦM can be calculated from the complex of global
sections of (5).

Corollary 1. Let A = A' X A" ^ RΛ X C* with A' and A" open contract-
ible sets. Then for any s > 1 we have

H°{A,%) = E(A\C)\ Hr(A9%) = 0, r > 0.

Proof. By the proposition we know how to calculate the cohomology of
ΦA, but by (6) we have that the complex of global sections has trivial
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cohomology. This proves the corollary for s = 1. To prove it for s > 1 we use

induction on

0 - > ^ - > 9 » ->S»- |->0. q.e.d.

If a vector bundle of rank r over M is given by a cocycle ξ = (^) in such a

way that the components (^),-, are constant along the leaves, we say that ξ is

a foliated vector bundle (i.e., ξ E Hι(M, GL(r, ΦM))). In such a case, the

sections of £ which are constant along the leaves form a sheaf ^(OM °f

locally free modules over S^. In particular, the complex normal bundle vc is

a foliated vector bundle of rank q by Lemma 1, and we also obtain the

associated exterior algebra sheaves ^M(/\rv*).

From the H"'^-structure on M we also obtain a 9-comρlex of sheaves

(7) 0 -> ff ©„ -> Sj,(C) Λ Sj,(c?) Λ Λ Sv(Λ«E?) - 0,

3 being defined in local coordinates (xι, , xn; z1, , zq) by

Λ <*?',

where the first sheaf is the sheaf of transversely holomorphic functions. With

the help of this sheaf, which will be called the structure sheaf of the Hn'q-

manifold, we can give a sheaf theoretic definition of i/^-manifolds:

Proposition 3. Let M be a differentiable manifold. There is a one to one

correspondence between Hn'q-structures in M and subsheaves of the sheaf of C°°

functions &M(C) which are locally isomorphic to the structure sheaf ^QB'^B"

where B' and B" are the unit balls in R" and C1 respectively.

Proof. We have associated to every //"'^-structure in M its structure sheaf

which is locally isomorphic to f Θ B , x r . By isomorphism we mean a diffeo-

morphism which is an isomorphism on the induced map of function sheaves.

Conversely, suppose given such a sheaf §. Let U be an open set in M such

that §((/ = ^^B'xB' Then we pull back a foliation and an integrable foliated

almost complex structure which glues correctly to any other trivialization. So

by Proposition 1 we obtain an //"'^-structure.

If two //"'^-structures have the same sheaf, then they have the same leaves

and the same transversal holomorphic structure, so they are the same, q.e.d.

If I is a vector bundle given by the cocycle (ξy) in such a way that the

entries of the matrix (ζβ)y are transversely holomorphic functions, we say that

ξ is an h-foliated vector bundle (i.e., £ E H\M, GL(r, Φ6M))). Given such a

bundle we can construct the sheaf of transversely holomorphic sections <S:ΘM(ξ).

Locally it is isomorphic to ^Θr

M, and we glue it with the cocycle (^). We will

denominate such sheaves h-foliated sheaves. The objective of this section is to

prove
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Theorem 1. Let ^QM{ξ) be an h-foliated sheaf over the compact Hn-g-mani-

fold M. Then all its cohomology groups Hr(M, ΦΘ (ξ)) are finite dimensional.

We use Cech cohomology to compute cohomology. The proof runs
parallel to a similar result for compact complex analytic spaces found in
Gunning-Rossi [10, p 245] and can be divided into three parts:

1. We find suitable Leray coverings to compute cohomology.
2. We induce Frechet structures on the spaces of sections and prove that if

U cU CCV then the restriction H°(V, #θ(©) -* H°(U, ^©(0) is a com-
pact operator (i.e., we prove that the sheaves are 'Montel Sheaves').

3. We use Leray's theorem for cohomology of a covering together with a
theorem of Schwartz to prove the finite dimensionality.

Proposition 4. Let A = A' X A" be the product of two contractible open

sets in Rn and Cq respectively, considered as an Hn'q-manifold. Then for every

s > 1

H°(A, <$βs

A) = H\A\ βA,,)\ Hr(A, <$6S

A) = 0, r > 0.

Proof. We proceed by induction on s. Assume s = 1. Then the cohomol-
ogy of the global sections of (7) is also trivial since we can explicitly integrate

(8) u(x, z) = f(X»2) Σ Hz)' dz'9
J

but these sheaves are not fine anymore. So instead of arguing as in Proposi-
tion 2, we consider the subsheaves of θ-closed forms ^A(/\P^*)c a n c * s t a r t

from the top

By Proposition 2 the nonzero cohomology groups of the last two vanish, so
Hr(A, <5A(/\q~lv?)c) = 0 for r > 2. Using the long exact sequence we obtain

which is the cohomology of the global sections of the last term in (7), but by
(8) it is zero. We proceed by descending induction onp until we get

0 -> <$βA -> 9A(Q Λ 9A(Λι%)e -> 0.

By induction the nonzero cohomology of the last vanishes, by Proposition 2

the cohomology of the middle also vanishes and using again (7) and (8) we

conclude that the nonzero cohomology of (SrΘA also vanishes.

To finish the induction on s, we use the long exact sequence of
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Lemma 2. Let M be a compact Hnq-manifold. We can always refine any

covering to a finite cover U = { ί̂  } such that each Ut is isomorphic to a product

of balls B' X B" ** Rn X C7, and Uiχ Π Π Uim is isomorphic to a product

of open contractible sets A' X A " in RΛ X C7. For these coverings we have

r>0

for any h-foliated vector bundle ξ.

Proof. Given any covering we construct a triangulation of M ' adapted to
the foliation' (See Gromov [9] or Thurston [19]) such that every simplex is
contained in an open set of the original covering. We subdivide this triangula-
tion, and we take for Ut all stars of top dimensional simplices with their
boundaries. Clearly this covering will satisfy the required properties. Restrict-
ing ($ΘA(ξ) to Ui and using an isomorphism with B' X B" we obtain a
holomorphic bundle on 5", but since all holomorphic bundles in the ball B"
are holomorphically trivial we conclude that ^&A(ζ)\u. = ^S^ Using Pro-
position 4 and Leray's theorem (Gunning-Rossi [10, p. 189]) we conclude that
the cohomology of M can be computed with U. q.e.d.

Let U be an open set in M which is isomorphic to B = B' X B". Choose a
trivialization of ίFΘ(Q with WΘS. We induce a Frechet topology in
H°(U, ΦΘM(ξ)) by inducing on H°(U, ̂ ΘS

A) the Frechet topology of uniform
convergence in compact subsets. This topology is independent of any of the
choices. Let V be any open set, cover V = U Vxr by a locally finite covering
each isomorphic to B, choose trivializations in each Vi of ξ, and induce the
Frechet topologies. We induce on H°(V9 ^ΘM(ξ)) the Frechet topology
induced by considering the pseudonorms obtained by restricting to each Vt.
That this is well defined follows from similar arguments as in Gunning-Rossi
[10, p. 237].

If V^> U, the restriction map p^7: H°(U9 $eM(ξ))-* H°(V, ΦQM(ξ)) is a
continuous operator with respect to the Frechet topologies. Further, we have

Lemma 3. If V (Z V c C U, V compact, then the restriction map

p": H%U,VβM®) - H\V, %βM(0)

is a compact operator.
Proof. First assume that U is isomorphic to B = Bf X B". Pick an open

precompact set in B" which contains the image of V into the second factor
B". Then

H°(U, SO(f)) -> H°(B' X K, ̂ ©(ξ)) -> H°(V,

and it is enough to show that p&xK is a compact operator. But this restriction

map is isomorphic to
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which is a compact operator (This is MonteΓs theorem, which states that any

bounded sequence of holomorphic functions has a uniform convergent subse-

quence in compact sets; see Gunning-Rossi [10, pp. 11 and 240]).

Let U be arbitrary. Choose a covering Uv , Um of V such that each (7,

is compact and contained in U. Let (/„) be a bounded sequence, Py.(fn) is a

bounded sequence for each /; by the above case we can choose a convergent

subsequence for Uv , Um, hence a convergent subsequence for V.

Lemma 4. Let M be a compact Hnq-manifold, and ^ΘM(ξ) an h-foliated

sheaf. Then H°(M, ^ΘM(ξ)) is a finite dimensional vector space.

Proof. Since M c M c C M, from Lemma 3 we obtain that the identity

in H°(M, (S:ΘM(ξ)) is a compact operator. Thus it is locally compact, and

hence finite dimensional.

Proof of Theorem 1. Lemma 4 is the theorem for p = 0; so we may

assume p > 0. Take a finite cover Ux, - , Um of M such that U^ B' X

B". Let A' be an open contractible precompact set in B' such that Vi• = Ar X

2?" also cover Λf. The cochain groups

c(£/, ^ M f ) ) = θ J Ϊ ^ I / , , n n K ,
i u '- ,ip

inherits the direct sum topology. By Lemma 3 the restriction map

φ*: C(U, &βM(ξ)) -H. C'{V, $βM(ξ))

is a compact operator. The coboundary maps are continuous operators

δ: σ{u, ¥β

Hence

φ*: Z"(U,

is a compact operator. By Lemma 2 we have that

(9) H"( U, $eM(ξ)) = H"( V,

So consider

u: Z"(U, &eM(ξ)) θ C>-\V, 9βM(

By (9) w is surjective. But then we can write ί = w - φ * Θ O a s a difference

of a surjective map and a compact operator. By a theorem of Schwartz

(Gunning-Rossi [10, p. 290]) u has closed image of finite codimension. Hence

•HP(M, ΦΘM(Q) is finite dimensional.

Remark. This proof works for singular foliations in the sense of Haefliger

11.
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3. Differentiate families of deformations
Let X be a compact differentiable manifold of dimension n = 2q, and let U

be an open set in the space of m real variables which contains 0. Let U be a
spherical neighborhood of 0 in U. A system of local Hn'q-coordinates on
XX U is a system {h1} of local differentiable coordinates of the form

/,<: (*, /) _+ (h'(x, t\t) x (Ξ X,t <Ξ U

such that for each fixed / the maps

x ^ h'(x, t) = (hfcx, 0 , , Λ£(x, 0 , * i ί + i ( * , t)9 - , K + 2 q ( x , ή )

into R" X C7 forms a system of local //"'^-coordinates on X. A system of
local //"'^-coordinates on X X U defines a structure M -» £/ of a differentia-
ble family of compact Hnq-manifolds, if each fiber M, = vv'̂ O of M is a
compact //"'^-manifold.

Let M be a compact //^-manifold. By a differentiable family of deforma-
w

tions of M we mean a differentiable family M —» ί/ of compact //"'^-mani-
folds such that M = Mo = w~ι(0). By a differentiable family of small deforma-
tions of M we mean the restriction M\υ = w~ι(Uε) of a differentiable family
M^ U of deformations of M = Mo to a sufficiently small neighborhood Uε

ofO.
At this point, following Kodaira and Spencer, it is useful to introduce the

notion of jet forms for two reasons:
(a) Any differentiable family of deformations of M will be represented by a

family m(t) of jet forms on M depending differentiably on t.
(b) Jet forms will provide a free resolution of the sheaf of infinitesimal

automorphisms of the H "'^-structure.
Let A = 0 As be the graded algebra of real differentiable forms on M. By

a jet form of degree p on M we mean a derivation of degree p on A, that is, a
linear transformation of A satisfying

One introduces a Lie algebra structure in the jet spaces by the formula

[u, v] = uv-i-l^vu.

The exterior derivative is obviously a derivation of degree 1 on A. The
exterior derivative of any jet formed is defined to be

Du =[d,u].

We denote by %p the sheaf over M of germs of differentiable vector
/7-forms (sections of T(M) ® /\PT(M)*), and by Y the sheaf over M of
differentiable jet /?-forms.
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Theorem A (Kodaira- Spencer [14]). Let M be a differentiable manifold of
dimension m. Then the sequence of sheaves over M

o->β°Λf^f^ ^>T-*o
is exact, and Ϋ « %p θ %p~x is a canonical decomposition.

Let (JC1, , xn\ z1, , zq) be //"'^-coordinates for M. The complexi-
fied tangent bundle T(M) <g)R C with these coordinates has two distinct
complex basis:

1. Real basis: d/dx', i = 1, , n + 2q, where zJ = xn+2j-χ + ixn+2J,
2. Semicomplex basis: d/dx\ i = 1, , π, and 3/9zy, d/dzJ, j =

1, , q. We modify slightly the notation and let 7 = n + 1, , n + q.
These bases extend to give local basis for the spaces of forms and vector
forms.

By an infinitesimal automorphism of the Hn*q-structure we mean a differen-
tiable real vector field θ such that in semicomplex basis

^ + Σ
9x + I

satisfies the conditions
1. 30//3x/ = 0,1 = q + 1, , 4 + w y = 1, , n,
2. Θ0'/9F = 0, ij = q + 1, , q + n.
The first condition reflects the foliation, and the second the transversal

holomorphic structure. Denote by Θ the sheaf over M of germs of infinitesi-
mal automorphisms.

Let u be any real/7-form, and (JC1, , xn; zn+\ , zn+q) local coordi-
nates. Let β be the local (p + l)-vector form described in real basis by

n + 2q

β= Σ 0'9/9x', βi = (-l

We say that the jet p-form belongs to the Hnq- structure if the components of β
satisfy:

1. βj... k = 0; i = n + 1, , n 4- 2q; j , , k = 1, , n for real
basis,

2. βj... £ = 0 for semicomplex basis for
(i) i = /2 + 1, , M + g y, , fc = Λ + 1, , n + q, or

(ii) i = w + 1, , n + ^ y, , k = n + 1, , n + q.
Denote by Φ77 the subsheaf of Ϋ of all germs of differentiable jet /?-forms

belonging to the H "^-structure of M.
Consider a family M-> £/ of deformations of M. Let {A1} be a system of

local //"'^-coordinates with transition functions

hXx, t) = gik(hk(x, t), ή
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and for any tangent vector

9/9/ = Σ cγd/dίy

of U at the origin 0, define

θik = Σ θik(χ)d/dXi, θ* = dg?(
α

where (JC1, , xn+2q) are real coordinates. The collection (θik) of Hnq-vec-

tor fields thus defined form a 1-cocycle on Λf, and its cohomology class will

be called the infinitesimal deformation on M in the direction d/dt:

(10) ι

Theorem B (Kodaira-Spencer). (1) Φ = φ Φ^ inherits a structure of a

graded Lie algebra complex from ®Ϋ', the sequence

is exact and forms a free resolution of Θ.

(2) Every differentiable family M-^U of small deformations of M — w~ (0)

determines a family {m(t)/t E U} of jet \-forms m(t) E H°(M, Φ1) satisfying

(11) [m(0,

Conversely, given any family {m(t)/t E: Ux} of jet l-forms m(t) E H°(M, Φ1)

0A7 Λf depending differentiably on t E t/j α«ί/ satisfying (11) /Λere βxw/ ε > 0

tfΛZί/ α system of local Hn'q-coordinates {h1} on MX Uε which defines a

structure M -» Uεof a differentiable family of deformations of the HnA]-manifold

M which determines m(t) in Uε.

(3) The partial derivative (3m(/)/9/) ί = 0 is an element of ZD(Φι) (D-closed

jets) and represents the infinitesimal deformation po(3/3/).

Remark. This theorem is essentially proved in Kodaira-Spencer [14]; the

only difference consists in that the authors analyze separately the differentia-

ble and complex analytic cases. So in order to prove it one would first apply

their theorem for differentiable structures and then pose the complex analytic

problem in the transversal directions. One then solves this one by applying

their complex analytic theorem.

We now apply the finiteness theorem of §2 to prove that the infinitesimal

deformations of compact //"'^-manifolds are finite dimensional:

Theorem 2. Let M be a compact Hn'q-manifold, and Θ the sheaf of germs of

infinitesimal automorphisms. Then the cohomology groups

H"(M, Θ), p>\,

are finite dimensional vector spaces.
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Proof. Let

(12) 0 - * τ ^ Γ ( M ) Λ t ; ^ 0

be the exact sequence of vector bundles which defines the foliation. Let vc be

the holomorphic normal bundle. We have an isomorphism between C "'-sec-

tions of vc and v given by

Θ consists of those sections of T(M) such that when projected to the complex

normal bundle via π and (12) are constant along the leaves and holomorphic

in the transversal variables. Hence we get an exact sequence of sheaves

but &M(τ) is a fine sheaf since it consists of the C°°-sections of τ; so from the

long exact sequence and using the fact that SM(τ) is acyclic we obtain

(13) 0 -> 7/°(M, S(τ)) -> H°(M, θ) -> H°(M, ΦQ(ΌC)) - * 0,

(14) 0-+Hp(M, θ) -> Hp(M, ΦG(ve)) ->0, p > 1.

By Theorem 1, HP(M, ΦQ(ΌC)) is finite dimensional for p > 0; hence the

theorem is proved.

Corollary 2. Let M be a compact Hnq-manifold. Then the infinitesimal-de-

formations of M form a finite dimensional vector space.

Proof. The infinitesimal deformations of M are parametrized by

Hι(M, Θ) which by the above theorem is finite dimensional.

Remark. The sequence (13) informs us that we can do the infinitesimal

arguments in the normal bundle since there are no obstructions to lifting up

to Θ. Note that H°(M, Θ) is infinite dimensional since H°(λf, S(τ)) is. The

isomorphisms (14) are the ones which justify the assertion that the deforma-

tions of M depend only on the transversal structure.

Also note that in case we were analyzing deformations of foliations

(forgetting the holomorphic structure) we would get

Hp{M\ Θ') = Hp{M\ 9(v')% p > 1,

and the cohomology groups HP(M\ ^(t/)) could be infinite dimensional.

Hence the finiteness theorem depends heavily in the holomorphic transversal

structure.

4. Deformations with fixed topological type

In the deformation theory of complex manifolds as developed by Kodaira

and Spencer there are two free resolutions of the sheaf of holomorphic vector

fields, one given by the jets as in §3 and another given by the 3-operator. In

this section we generalize the 3-sequence to an //"'̂ -manifold, and obtain that
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this deformation theory consists of deformations with fixed topological type.

The distinction arises from the fact that the 8-operator gives a resolution of

the /f Λ>*-vector fields, but the sheaves are not fine anymore.

Let M be a compact manifold with a transversely holomorphic foliation. A

differentiable almost-complex family of marked deformations M —» U of M is

given by:

(i) An open neighborhood U of 0 in Rm.

(ii) A trivializing diffeomorphism φ: M -^ U X Λf.

(iii) A C°°-parameter family of foliated almost-complex structures {/,} / G { /

in M (as in §1) such that Io is the usual foliated almost-complex structure

ofΛf.

The diffeomorphism φ allows us to define a foliation in each Mt by pulling

back the foliation in Λ/, and L defines a transversal almost-complex structure.

A/—> £/ is a differentiable family of marked deformations of M if It is an

integrable almost-complex structure for each t. In this case each Mt has a

canonical //"'̂ -structure. By a differentiable family of small marked deforma-

tions of M we mean the restriction M\u = w~ι(Ue) of a family M —» U of

marked deformations of M — Mo to a sufficiently small neighborhood Ue of

0.

We define infinitesimal deformations as in (10).

Tensoring by vc the exact sequence of sheaves (7) we obtain the following

exact sequence of sheaves:

(15) 0 -> $βM(vc) -> %M{vc) Λ $M(ve ® £?) Λ

obtained by taking the usual 3-operator in the transversal variables on

"transversal forms".

We can introduce a graded Lie algebra complex structure in (15) as follows.

Let U be an open set in M which is isomorphic to A' X A" ^ RΛ X C Then
we obtain an isomorphism of graded complexes

t t t
^ &{TA") Λ S(Γ^" (8) f*^Ό Λ . Λ S(Γv4" 0 /\*f*A") -+0

the lower sequence has a Lie algebra structure obtained by the Lie brackets of

vector fields, so we pull up this structure. From the intrinsic nature of the Lie

brackets of vector fields, this structure is independent of U and we obtain a

graded Lie algebra structure on (15) as in Griffiths [8].
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Theorem 3. Every differentiable family of small marked deformations

M^> U of the compact Hnq- manifold M = Mo determines a family of foliated

vector (0, \)-forms m{t) E H°(M, <$(vc ® v*)) satisfying

(16) dm(t) - \[m(t\ m(ή] = 0, m(0) = 0.

Conversely, given any family {m(t)\t E Uλ} of foliated vector (0, l)-forms on

M depending differentiably on t E Ux and satisfying (16), there exist ε > 0

and a system of local //"'^-coordinates {Λ1} on M X Ue which defines a

structure M -+ Uε of a differentiable family of marked deformations of the

//"'^-manifold M which determines m(t) in ί/e.

Proof, This is just a translation to our case of a classical result for

complex manifolds. We follow Griffiths [8, p. 127].

By definition, M is determined by a differentiable family of foliated

almost-complex structures {It}teu. Each /, is given by a family of "admissi-

ble frames" ef = (etV - , etq\ e*v , e*q) where eti are elements of v

® R C and e% is the complex conjugate of eti. We write ef = (er e*). Given ef,

the admissible frames are of the form (Ae, Ae*) where A E GL(q, C) (every-

thing is constant along the leaves).

We let Pt and Qt be the projections associated to /, onto the vectors of

type (0, 1) and (0, 1) respectively which It determines. Let

(x\ - , xn; z\ , zq) be local //^-coordinates on M. If /, is close to I&

then Qo will be nonsingular on Image(ζ),), and we may uniquely choose

an /^-admissible frame ef = (et(z), e*(z)) such that Q0(e*) =

(θ/θz1, , a/3z«). Then

β = a/θz1' - 2 m(ty,d/dz^ eti = 3/θz1' - 2 miΦ/dP.

So m(/) = Σjj m(tyid/dzi ® rfz7 is a tensor and defines an element in

H°(M, <ΰ{vc ® ©*)). Condition (16) is then seen to be equivalent to the

integrability conditions in the Newlander-Nirenberg theorem (see Griffiths).

Since the argument is reversible, the theorem follows, q.e.d.

Now that we know how to represent marked deformations, we would like

to know which subspace of H1(M9 Θ) corresponds to marked infinitesimal

deformations. For this, we use 9-closed forms and the sequence (15) to obtain

a short exact sequence of sheaves

0 -> <$eM(vc) -> 9M(υe) X 9u(ve ® ϋ*)c -» 0.

The long exact sequence will give

>H°(M, ff(oe))Λ H\M, $ ( v c ® p * ) c ) X H \ M , < 5 ® ( υ c ) ) - » • • • ,
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and using (14) we obtain that the finite dimensional vector space

H -
dH°(M, f (ι?c))

represents the infinitesimal marked deformations of M.

5. The leaf space

In this section we analyze the leaf space of a transversely holomorphic

foliation obtained by collapsing the leaves of the foliation to a point with the

quotient topology. We then analyze a special type of foliations, which we

have called partially Hausdorff, and prove an interesting finiteness property

when the foliation has complex codimension 1.
Let M be an //"'^-manifold, and {La} the leaves of the underlying

foliation. The leaf space C of M is defined to be the quotient topological
space obtained by collapsing the leaves to a point; that is, the points of C are
the leaves of the foliation, and we induce a topology on C by requiring that if
π is the projection

U is open in C if and only if π~ι(U) is open in M. The topology of C reflects
the interrelations between the leaves.

Theorem 4. Let M be an Hnq-manifold, and U an open subset of the leaf

space C of M which is Hausdorff. Then U has a natural structure of a normal

analytic space.

Proof. Let t E U, and p a point in the leaf *π~x(t). Let
(JC1, , xn; z1, , zq) be coordinates around/? contained in π~ι(U) such
that p has coordinates (0, , 0; 0, , 0). Let A =
{(0, , 0; z1, , zq)\ |z'"| < ε} be a small transversal to the foliation.

Every leaf L in π~ι(U) is closςd in U, hence L n A is closed. On the other
hand L intersects A at most in a countable number of times, so that actually
L π A is a discrete set of points (for otherwise it would be a perfect set,
which has an uncountable number of elements).

The equivalence relation induced on A by π is then open (since it comes
from a foliation), closed (since the quotient is Hausdorff, Bourbaki (5) p. 79)
and discrete. By Holman [12, p. 338] we have that U has a natural structure
of a normal complex anaytic space in a neighborhood of /; and since t is
arbitrary and U is Hausdorff we have that U has a natural structure of a
normal analytic space, q.e.d.

Let M be an H"'^-manifold, and C its leaf space with projection m\M-*C.
We define the regular set Ω of M to be the union of those leaves which have a
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Hausdorff neighborhood in the leaf space. The complement Λ = M — Ω is

called the limit set.

Definition. The foliation in the H Λ'*-manifold M is partially Hausdorff if

1. the regular set Ω is nonempty,

2. τr(Ω) ̂  C is a Hausdorff open set.

By definition ττ(Ω) is the union of Hausdorff open sets in C. Condition (2)

then means that this union is actually Hausdorff. Condition (2) is nontrivial,

as can be seen from the following example.

Example 3. Consider the group action

Z X (R1 X P2(C)) -> R1 X P2(C)

generated by

This action is properly discontinuous and without fixed points, and the

quotient M has a structure of an H ^-manifold as in Example 2 where the

leaves are transverse to the /^(Q-bundle structure over Sι:

Since each leaf intersects any fiber of the fibration M —» Sι

9 we have that the

leaf space of M is homeomorphic to the orbit space on P2(C)/(g2). Consider

the open set U of P2 given by affine coordinates (z°, z1), z2 = 1. Then the

group action in U — (0, 0) is not properly discontinuous, although it is in

U - {z° = 0} and U - {z1 = 0). So U - (0, 0)/(g2) has the structure of a

local analytic space but it is not Hausdorff. It seems likely that this happens

also for codimension-1 foliations.

To motivate what follows, consider the example:

Example 4. A (geometrically) ruled surface S is a compact complex

analytic surface with a holomorphic map to a complete complex curve B of

genus g

(17) p:S-*B

such that every fiber is isomorphic to a complex projective line.

The holomorphic foliations of S are described by immersions of complex

line bundles into the holomorphic tangent bundle of S

ε ^ T(S)

since in this case there are no integrability conditions. The ruling (17)

determines a foliation, let
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be its defining sequence. We have

Theorem {Gomez-Mont [7]). (a) // g φ 1 and ξ ̂  T(S), then ξ = r as a

subline bundle of T(S) or ξ = v as a complex analytic bundle.

(b) There exists a one to one correspondence between foliations arising from v

and reductions of the bundle structure of (17) to a discrete structure group of

PL(l, C).

This means that if g > 1 besides the ruling the holomorphic foliations are

obtained by representations

φ: πλ(B) -> PL(\, R) Θ PL(1, C),

where we act on U X P \C), U being the unit disk. The first component is

universal representation U-> B, and the second is arbitrary. The leaves are

the images of { U X t}tξΞP\ into S.

The leaf space can also be obtained as

and we see that there are two distinct types of foliations. If <p2(jτx{B)) is not a

Kleinian group, then every leaf of the foliation is dense. In case it is a

Kleinian group, we have that the foliation is partially Hausdorff. In particu-

lar, Ahlfors' finiteness theorem (Ahlfors [1]) informs us that there are only a

finite number of components in the regular set Ω and that each component

has the structure of a quasiprojective curve (or a finite Riemann surface). We

will now generalize this result to

Theorem 5. Let M be a compact HnΛ-manifold with a locally Hausdorff

foliation, π: M -» C the map into the leaf space, and Ω the regular set. Then

(a) each connected component ofπ(ίl) is a quasiprojective curve,

(b) except possibly for Pι(C) — {0, I or 2 points} there are only a finite

number of components o/π(Ω).

The proof is a direct generalization of Ahlfor's proof, and it is obtained by

using marked infinitesimal deformations of M. The exceptions arise from the

fact that Pι(C) - (0, 1, 2 points} are rigid, so they cannot be detected by

deformation theory. It seems very likely that only a finite number of these

can occur.

Let M be an HnΛ -manifold, that is, M has a transversely holomorphic

foliation of complex codimension 1. Denote by vc its complex normal bundle.

Using Theorem 3 we have that small deformations of the complex structure

in vc are parametrized by elements close to 0 in H\M, ^{VC ® ϋ*)). Given an

element μ e H°(M, ^(vc ® £»*)), | μ\ is a real valued function so we can

define its norm to be

(18) MI
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If μ has norm strictly less than one, we can pose in local coordinates
(JC1, , xn\ z) a Beltrami equation

f=-f
Beltrami equations always have local solutions defined up to conformal
equivalence (Ahlfors [2]), so if we change coordinates

(x\ ,x";z)->(**,• , *"; w) = (x\ ' , x " ; Λ 4
we obtain from a covering {(£/; xι, ,JC";Z)} another //"^-structure on

M given by {(£/; JC1, , xn; w)}.
More generally, let L°°(M, ̂ {υc ® ϋ*)) be the essentially bounded mea-

surable sections of vc ® ΰ* which are constant along the leaves. The elements
of its unit ball BCO(M, ^{υc ® v*)) will be denominated Beltrami coefficients.
By solving in local coordinates the equation (19) (Lehto-Virtanen 16) we
obtain a new i/^-structure on M which we denote by Mμ. Note that we
might have to change the differentiable structure of M (to an equivalent one)
since by definition Mμ has a C °°-structure, and the identity might only be
continuous since we are allowing arbitrary measurable coefficients.

We want to construct a deformation theory with fixed topological type in
this wider context. The exact sequence which takes the place of (15) is

(20) 0 -> &eM(ve) -> ^e(vc) Λ L°°(M, 9{ΌC ® €?)) -> 0

where Fβ(ϋc) is the sheaf of continuous sections constant along the leaves
with distributional derivatives such that 9/is in L°°(M, ̂ (vc ® ϋ*)).

Lemma 5. The sequence of sheaves (20) is exact.

Proof. The assertion is local. Since everything is constant along the leaves,
we reduce it to a sequence in the complex plane, which is proved in Bers [4],
q.e.d.

Part of the associated long exact sequence is

-> H°(M, $e(Όe)) -> H°(M, 9β(ve)) Λ L«>(M, $(vc ® ϋ*))

By theorem 1 the two extremes are finite dimensional showing that 9 is an
isomorphism except for finite dimensional spaces.

Assume now that the foliation in M is partially Hausdorff, and let Ω =
U Ω, be its regular region, and π(Ω) = B = U ή be the corresponding open
set in the leaf space. We obtain an isomorphism

L°°(B, vc ® cf) -> L°°(Ω, 9(vc ® fi?)),

where the first are the usual Beltrami differentials in B.
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The space of quadratic differentials on B has a norm given by integration

ΊΨI

since |ψ| is a 2-form. Let Lι(B, T(B)~2) be the Banach space of integrable

quadratic differentials with respect to this norm, and A ι(B, T(B)~2) the closed

subspace of the holomorphic integrable ones. Pulling these spaces to Ω, let

L*(Ω, ^(V;2)) and ^ ( Ω , ?F(u~2)) be the space of integrable and integrable

holomorphic sections of v~2 which are constant along the leaves.

Lemma 6. ^(Ω,., ^{v~2)) is finite dimensional if and only if Bt is of finite

type {a quasiprojectiυe curve).

Proof. If Bt is a hyperbolic curve, this is [1, Theorem 1, p. 419].

If Bg is not hyperbolic, then it is always of finite type, and A ι(Bi9 T(B$~2) has

dimension 0 or 1, so the lemma is proved.

Lemma 7. (a) The pairing

L°°(Ω, 9(ve ® £?)) ® L !(Ω, ^(t ; ; 2 )) -» C

given by

represents L°°(Ω, <5(vc ® ϋ*)) as the dual space of L\Ώ,

(b) Under this duality, we have

Proof (a) Since the sections are constant along the leaves, we can con-

sider them as sections in B. In B they become usual functions. Locally this

corresponds to the usual duality between L 0 0 and L1, and globally they glue

correctly.

(b) Since all the sections are constant along the leaves, we obtain an

equivalent duality in Bi9 and what we have to prove is that

A\Bt, mrY = lH\B,, e(7XB,))),
where Q(T(Bi)) is the sheaf of continuous vector fields in Bt with distribu-

tional derivatives such that 3 of them is essentially bounded.

If Bf is a hyperbolic curve, this is a classical statement (Ahlfors [2, p. 134]).

If Bf is not hyperbolic, a case by case analysis gives the same result.

Proof of Theorem 5. (a) By Lemma 6 we have to prove that A l{Bt, T(Bf)~2)

is finite dimensional, and by Lemma 7 this is equivalent to showing that

dH°(Bi9 βiTiBf))) has finite codimension in L°°(Bi9 T{Bt)

We obtain an inclusion
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by extending a section as 0 in M — Ω,; using (20) we have

> Λ L ^ Ω ff( ® ?»

6(2?,-, Γ(^)) Λ L*>(Bi9 T(Bt)

If 2?f is not compact, note that the last two expressions cannot be considered
as the sections of a sheaf, since being essentially bounded is only a local
property if the manifold is compact. Since Hι(M, ^Θ(vc)) is finite dimen-
sional by Theorem 1, dH°(M, ^&(vc)) has finite codimension, so

dH°(M, 9Q(ΌC)) n L°°(Ωf, 9(υe ® €?)) ^ L^ί^, ^(t;c ® ΰc*))

has finite codimension; which in turn implies that 96(2?,-, 7X-S,-)) has finite
codimenson in L 0 0 ^., Γ(5f ) ® T{Bt)*) which is what we wanted to prove,

(b) Let

Let Ω,., , Ωf be m distinct components. We have an inclusion (22) for
each. If we prove that when we add (22) for ix, , ιm, we still get an
inclusion; this will imply that only for a finite number of / is

dH°(M, 9e(ve)) J L°°(^, 9(ve ® t?))

since //̂  !(Λ/, 5"6 (oc)) is fimte dimensional. This will prove part (b).
Let

A- θ A2 © * ®Dim^H\M9 Vβ(ve)),

and suppose 8*(μiι + +ftm) = 0. Then this means that μiι +
= δψ for some ψ; in particular, 9ψ = μ̂  restricted to Ωf since all the rest are
zero there, so μ, = 0.

The problem reduces now to analyzing those curves which are rigid. They
are known to be (Bers [3]) P\C) - {0, 1, 2, 3 points}. The first three are the
exceptions in the statement of the theorem.

Let Bt = P\C) - {0, 1, oo}. We follow Bers [4]. The idea consists in
observing that although Bt does not have any integrable quadratic differen-
tials, it will have higher order differentials. So if there were an infinite number
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of components isomorphic to Bi9 we could get an infinite dimensional vector
space, which contradicts Theorem 1. Formally we generalize the sequence
(20) to

0 -> $eM(vc

r) -> 9eM{υe') Λ L~(M, υr

c ® c?) -> 0.

Again we have that Hι(M, ^Q(V^)) is finite dimensional, and repeating the
argument as before we conclude that there are only a finite number of
components which are isomorphic to Br For more details, see Bers [4].

Remarks. (1) The hypothesis are satisfied for a partially Hausdorff holo-
morhic foliation of codimension 1 in a compact complex manifold.

(2) We are using strongly the fact that any deformation of the leaf space
can be lifted to a deformation of M. If we wanted to do this argument in the
complex analytic category we would have to worry about giving "compatible"
complex structures to the leaves, which becomes a nonlinear problem.

(3) For codimension q > 2, the integrability conditions obstruct this method
to give any finiteness properties. It would be interesting to find out if the
components of the regular set in the leaf space are analytic open sets in
compact analytic space.
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