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NEW ATTRACTORS IN HYPERBOLIC
DYNAMICS

F. T. FARRELL & L. E. JONES

0. Introduction

Recall that a hyperbolic set for a diffeomorphism f of a smooth compact
manifold M is a compact subset A of M satisfying

(@) f: A —> A is a homeomorphism;

(b) the tangent bundle of M splits over A, T(M)|A = £, © £, as the
Whitney sum of continuous subbundles each of which is left invariant by df
(the differential of f);

(c) for some Riemannian metric | | on M, |df(X)| > |X| for each nonzero
X € ¢, and |df(X)| < | X| for each nonzero X € &,.

The hyperbolic set A is an attractor for f : M — M provided there exists a
compact neighborhood U for A satisfying:

f(U) is contained in the interior of U,

N ;@ =

and each point of A is nonwandering.

A natural problem is to classify all hyperbolic attractors f : A — A.

Towards solving this problem, R. F. Williams [10], [13], has shown that
every attractor f : A — A, for which the dimension of the fiber in §, equals
the topological dimension of A, (these are called expanding attractors), is
obtained by a simple construction from an expanding endomorphism on a
compact smooth branched manifold (without boundary). (He makes the extra
assumption that the stable foliation is C') Conversely, every expanding
endomorphism on a compact smooth branched manifold which satisfies three
properties (cf. [13, 3.0]) yields an expanding attractor. Recall an expanding
endomorphism on a compact smooth manifold N is a smooth map h: N > N
such that

|dh(X)| > |X|
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for all nonzero vectors X € T(N) with respect to some Riemann metric | | on
M.

More generally, a self-map 42 : K— K of a compact smooth branched
manifold X is an expanding endomorphism if h is a smooth immersion, and

ldh(X)| > |X|

for all nonzero vectors X tangent to K with respect to some Riemann metric
on K. (Smooth branched manifolds and smooth immersions of branched
manifolds are defined in [13, §1].)

The main result of this paper (Theorem 0.1) is the construction of an
expanding endomorphism on a 2-dimensional, simply connected, compact
branched manifold (without boundary); applying Williams’ theory to this
example, we obtain (Corollary 0.2) an expanding attractor f: A — A such
that H (A, Z) = 0. (These are the first examples of this type.) We now state
the results precisely.

Theorem 0.1. There is a smooth immersion G : K — K, where K is a simply
connected compact 2-dimensional branched manifold satisfying

(a) |dG(X)| > |X| for each nonzero vector X tangent to K (relative to some
Riemann metric on K),

(b) G has a dense orbit, and

(c) for each point x € K, there is a neighborhood N of x such that G(N) is
contained in a a 2-cell which is smoothly embedded in K.

(Conditions (a), (b) and (c) imply Williams’ properties 1, 2 and 3* of [13,
§31)

Corollary 0.2. There exists a 2-dimensional expanding attractor f: A —> A
satisfying ﬁo(A) = Z and H\(A) = 0, where I{V,.( ) denotes the i-dimensional
integral Cech homology functor.

In [13], Williams proved that every expanding attractor A, with stable
foliation C', is locally homeomorphic to the product of a Cantor set and a
u-disc where ¥ = dim A; in [4], Robinson and Williams removed the assump-
tion that the stable foliation is C'. This motivated the conjecture [12,
Conjecture J], [13, Conjecture, p. 171] that when A is orientable, it is the total
space of a fiber bundle with base space a manifold and a Cantor set for fiber.
Williams [11] verified this conjecture when dim A = 1. We give a counterex-
ample to it when dim A = 2.

Corollary 0.3. There exists an (orientable) expanding attractor A with
dim A = 2 such that A is not the total space of a fiber bundle with a manifold
Jor base space and a Cantor set for fiber.

Associated to an expanding endomorphism g : K — K of a n-dimensional
branched manifold K satisfying properties (1), (2) and (3*) from [12, p. 949],
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Williams defined a space Z to be the inverse limit of the sequence

KeKe—Ke - --
g g 2

and 4 : 2 — = to be the coordinate shift
B(xgo X1, -+ ) = (8% 8X1» 8Xpp* * * ).

The pair (2, h) is called the n-solenoid presented by (K, g). In [12, p. 950,
Question], it is asked if

g« 1 m(K) - m(K)

determines (2, h) up to topological conjugacy; when dim K = 1, Williams
[11] proves it does. We show it does not in general.

Corollary 0.4. There exists a 2-dimensional branched manifold K together
with expanding endomorphisms f, g : K — K satisfying properties (1), (2) and
(3%) from [12, p. 949] such that

(i) f and g induce the same map on m,(K); but

(ii) the 2-solenoid presented by (K, f) is not topologically conjugate to the one
presented by (K, g).

We pose the following problem as a possible generalization of Theorem 0.1.

Question 0.5. Let M denote an n-dimensional compact connected
Riemannian manifold, and g : M — M a continuous map which is covered
by a linear bundle map g : T(M) — T(M) (monic on fibers). Given ¢ > 0
and B > 1, does there exist a cell complex structure (for its definition see [8,
p. 100]) C for M and a homotopy g, : M — M with g, = g, satisfying:

(a) d(g/(x), g(x)) <e for all x € M and ¢ €0, 1], where d( , ) is the
distance function determined by the Riemannian metric;

(b) the (n — 1)-dimensional skeleton of C, denoted by C"~, is a smooth
branched submanifold of M;

(c) g, is an expanding endomorphism when restricted to C"~'; in particu-
lar, |dg,(X)| > B|X| for all vectors X tangent to C"~!, and g, leaves C"™!
invariant;

(d) if condition (a) is dropped, then g; can be chosen to have an orbit dense
inCc" Y

(e) for any point x € C"~!, there is a neighborhood N of x in C"~! such
that g,(N) is contained in an (n — 1)-cell smoothly embedded in C"~'?

Remark 0.6, When M is a codimension-zero submanifold of R> and g is
either the constant map or the identity function, the answer to Question 0.5 is
affirmative. (In a preliminary version of this paper, we verified this when g is
the identity map, and it is easier to verify when g is constant.)

The following problem is related to Question 0.5.
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Question 0.7. If A : K — K is an expanding endomorphism of a compact
smooth branched manifold (without boundary), do the real Pontryagin
classes of the tangent bundle of K vanish?

Remark 0.8. When X is a manifold, the answer to Question 0.7 is yes; in
fact,

h* : H(K,R) > H'(K, R)
is expanding (for i > 0); in particular, 1 is not an eigenvalue of A*.

Remark 0.9. Questions 0.5 and 0.7 conflict. In particular, choose M in
Question 0.5 to have nonzero first real Pontryagin class (dimenson M > 4)
and g : M — M to be the identity map. If Question 0.5 has an affirmative
answer in this case, then the posited map g, : C"~' — C"~! answers Question
0.7 negatively (where & = g, and K = C"~) since the first real Pontryagin
class of C"~! must also be nonzero (note T7(C"~ ") ® §' = T(M)|C"™ ).

The proof of Theorem 0.1 bares a superficial resemblance to the construc-
tion of structurally stable diffeomorphisms by Smale [6], Shub and Sullivan
[5]- But the details are as different as the results. For example, the diffeomor-
phisms constructured in [5], [6] all have zero-dimensional hyperbolic sets;
whereas, any diffeomorphism constructed from Theorem 0.1 using Williams’
theory [13] has a 2-dimensional hyperbolic set.

We now outline the proof of Theorem 0.1. In §1 a cell structure B, is
constructed for R? which is invariant under the group T of all translations (of
R?) by vectors with integral entries. The 2-skeleton B, of B, is a branched
2-manifold smoothly embedded in R>. Its orbit space ¥ = B,|T is the 2-skele-
ton of a “natural” cell structure B,|T" for the 3-torus T3; J : B, > Y denotes
the canonical quotient map. (Note B, is simply connected.) In §2 we con-
struct an immersion / of Y into B,; this construction is motivated by the
following consequence of the Smale-Hirsch immersion theory; namely, 73
with a single point removed immerses in R>. Immersions I, : B, — (n)'B, are
constructed in §3 such that

|dL,(X)] > B|X|

for all vectors X tangent to B,, where 8 > 0 is a number independent of n
and X. Proposition 3.3 is the main result needed to construct I,; its proof is
quite long and is postponed until §6; this result is motivated by Hirsch’s
smoothing theory [2]. Consider the following diagram

l'Bl ~ aBI

W

B, «——Y
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where (n)™'B, = {n"'x|x € B,} and p,(x) = nx. The composite IJp,I, : B, —
B, is an expanding endomorphism for all n sufficiently large. It is easy to
construct a simply connected, compact, branched submanifold K of B,
containing /(Y); this is the branched manifold posited in Theorem 0.1 and
lJp,I,|K is an approximation to G in that it satisfies properties (a) and (c) of
Theorem 0.1. In §4 we modify this immersion to one with a dense orbit which
still satisfies conditions (a) and (c) of Theorem 0.1.

We note that (K, G) is shift equivalent to (Y, G’) where G’ is a self
immersion of Y.

Finally in §5, Corollaries 0.2, 0.3 and 0.4 are verified.

It is a great pleasure to thank Bob Williams for his constructive criticism of

an earlier version of this paper which was very useful in preparing the present
one.

1. Cell structures and thickenings

In this section two interelated sequences 4, and B,, n > 1, of regular cell
structures for R? are described. We also associate to each subcomplex C of 4,
a “thickened” subcomplex B(C, n) in B,,.

Use 4, to denote the partitioning of R® into unit cubes having integral
lattice points of R> for vertices. The intersections of the cubes generate the 2-,
1- and O-dimensional cells of 4,. The 0-dimensional cells of A4, are called
vertices and denoted by v, u, w € 4,. The 1-dimensional cells of 4, are called
edges and denoted by e € A4,. The 2-dimensional cells of 4, are faces and
denoted by f € A4,. The 3-dimensional cells are the cubes.

There are four types of 3-dimensional cells in B,: those associated to the
vertices, edges, faces and cubes of A,. These will be termed balls, tubes, solid
plates and volumes of B, respectively.

Ball of B,. To each vertex v € 4, we associate the ball b(v) of radius
(10)™! centered at v.

Tubes of B,. To each edge e € A, we associate a tube #(e) as follows. Let
D,, D, denote discs of radius (10)™" centered at (0, 0, 0) and (1, 0, 0) and lying
in the (x, y)-plane of R>. Pick a smooth function g : [0, 1] — R satisfying

(a) image(g) c[.001,.1],

(01 = 2, x €[0,.09],
(b) g(x) =" )
(1.1) (01— (x - 1))%, xe[I1],
(01 - X2}, 09, .17,
© s> X e
(01 = (x - 1’)? x€[.9, 91).
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The union of the graph of g with boundaries of D, and D, is illustrated below

FiG. 1.1.

Rotate this set about the x-axis in R> to obtain a branched surface of
rotation S which bounds a solid V. Note that V is the union of balls b, b, of
radius (10)"! centered at (0,0,0) and (1,0,0), and a solid tube T that
connects b, to b,. Let r : R* — R® be any rigid motion sending (0, 0, 0) — v,
and (1, 0, 0) - v,, where v, v, are the end points of the edge e; define #(e) to
be r(T).

Solid plates of B,. To any face f of 4, we associate a solid plate p(f) as
follows. Let B(df) denote the union of all balls and tubes in B, associated to
vertices and edges of 4, which lie in the boundary of of f. Let p denote the
union of all lines of length (10)™ which intersect f perpendicularly at their
center points. Set p’ = closure(p — B(df)). Note that the surface 9(B(df) U
p’) is differentiable except at the two “circles” 3(B(3f) N p’). These “corners”
can be rounded away by gradually shrinking the diameters of the lines wich
form p as their center points travel to the center of f. This process shrinks p’
to p(f) so that p(f) N B(3f) = p’ N B(3f), and 9(p(f) U B(3f)) becomes a
smooth surface.

Volumes of B,. Let X denote the union of all balls, tubes, and solid plates
in B,. Note that closure (R® — X) is a collection of disjoint closed 3-dimen-
sional cells in R?, with exactly one lying in the interior of each cube of 4,.
These are the volume cells of B,.

The lower dimensional cells of B, are generated by intersecting the 3-di-
mensional cells. In the rest of this paper we shall denote the 2-skeleton of B,
by B,.

There are various smooth surfaces (some with boundary) embedded as
subcomplexes of B,, which shall be referred to frequently in later chapters.
We introduce these surfaces with names and symbols now.

(i) For each vertex v of A4,, the boundary of b(v) is a

sphere s(v) of B,.

(ii) To each edge e of A, is associated a cylinder b(v) of B,
(1.2)  where c(e) is the closure of d(e) — (b(v,) U b(vy)); v, and v,

are the endpoints of e.

(iti) To each face f of A4, is associated two plates p *(f) and

p(f) of B, which are the connected components of the

closure of dp(f) — B(df). Note each plate is a 2-cell.



NEW ATTRACTORS IN HYPERBOLIC DYNAMICS 113

For the rest of this paper, we assume the choice of balls, tubes and solid
plates has been made so that B, is invariant under translation by all vectors
having integer valued coordinates. The following result is obvious.

Lemma 1.1. The set B, is a smooth branched submanifold of R®.

For any positive integer n, the cell structures 4,, B, are just the image of
A,, B, under multiplication by 1/7 mapping R®* - R>. Balls, tubes, solid
plates of B, and all the surfaces listed in (1.1) are sent to the objects with the
same names in B,. The notation set up for B, is also used for B,. For
example, p*(f), f € A,, denotes a plate in B, associated to the face of 4,
and B, denotes the 2-skeleton of B,.

For any closed subcomplex M of A,,, B(M, m) will denote the union of M
with all balls, tubes, and solid plates of B,, associated to vertices, edges, and
faces of A4,, which lie in M. Note that M is also a subcomplex of 4, for all
positive integers k, so B(M, mk) is defined and is a subcomplex of B,,,. The
next result is geometrically clear; its proof is left as an exercise.

Lemma 1.2. If M is a 3-dimensional manifold with boundary which is a
subcomplex of A,,, then B(M, m) is a smooth codimension-0 submanifold with
boundary of R®.

Let 7: R® > T3 denote the standard covering projection of R® onto the
3-dimensional torus. Set

(1.3) Y = #(B,),J = @|By;

Y is the 2-skeleton of a finite cell structure for T and is equipped with a
smooth branched manifold structure with respect to which J: B, > Y is a
smooth immersion. There are the following smooth surfaces (some have
boundary) smoothly embedded in Y:

(1'4) § = J(S(O))’ G = J(c(ei))’ Pi: = J(P:(f;‘))’ (i =12 3)°

Here 0 denotes the vertex (0, 0, 0) of 4,; e,, e, and e, are the edges starting at
0 and ending at (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively; f; is the face of 4,
perpendicular to ¢; and containing the other two edges in {e,, e,, e;}. So s, ¢;
and p;* are just the diffeomorphic images (under J) of the spheres, cylinders
and plates of B,; we will call them the sphere, cylinders and plates of Y.

2. An immersion
This section is devoted to proving the following result.
Theorem 2.1. There exists an immersion I : Y — B,.
This result is motivated by the fact that T with a point deleted immerses
in R3, which follows from Smale-Hirsch immersion theory.
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It is easy to define /| Y, where
(2.1) Yi=5Uc UcU cs,
(note that Y, is a branched submanifold of Y). To do this, map s diffeomor-
phically to s((0, 0, 0)) by letting I|s be the inverse of J|s((0, 0, 0)), and map
each ¢,( = 1, 2, 3) diffeomorphically to certain “cylinders” C; which we now
construct. (See Fig. 2.1. below.)

FiG. 2.1

Let a, be the polygonal arc (in 4,) which is the boundary of the square S,
with vertices (-1, 0, 0), (1, 0, 0), (1, 2, 0) and (-1, 2, 0); likewise, a, and a; are
the boundaries of the squares S, and &; with vertices (0, =1, 0), (0, =1, 2)
and (0, 0, =1), (2, 0, 1), respectively. We define C;(i = 1, 2, 3) to be the
closure of the boundary of B(q;, 1) — b((0, 0, 0)).

We require that /|c, should have no unnecessary twists; i.e., I(J(f3) N ¢})
should be a subset of P, (the (x, y)-plane in R and I(J(f,) N c,) should be
disjoint from P, ; more precisely, the following should be true

(2.2) I(pss Nne¢)) € B(P,, 1), I(py Ne,) N B(P, 1) = ¢.
Similarly, /|c, and I|c,; should have no unnecessary twists; i.e.,
(23) I(pZ: ncS) C B(sz7 1)’ I(plt ncZ) C B(Pyz’ 1)’

I(pi Nes) N B(p,, 1) =90, I(ps Ne,) N B(P,, 1) =4,

where P, and P,, denote the (x, z) and (y, z) planes, respectively.

It remains to define I|p;*, i = 1, 2, 3; we do this only for i = 2 since the
other cases are analogous. Let y* denote the boundaries of p,°. Then both y*
and y~ are simple closed arcs as are I(y*) and I(y"). Note y* U y ' C Y;.)
See the picture below illustrating I(y"); the part of I(y*) contained in C,
would be “above” I(y"), and the part of I(y*) in C, would be “inside” of

I(y").
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To extend the definition of I to p7, it suffices to find a smooth disc in B,
which spans I(y~). (This disc should not intersect the image under I of a short
collar of y~ in Y, in order to prevent I from folding along y~.) Examining
Fig. 2.2, it is clear that y~ spans such a disc inside the surface T where T is
the boundary of B(S; U as;, 1). Note T has genus 1; below we given a
simplified (but topologically correct) drawing of T in which the “bump”
(hatched top lobe in Fig. 2.2) coming from the part of T in B(S,;, 1) has been
flattened, and the spanning disc is indicated by hatching. (Inside the part of T
intersecting B(aj;, 1), the disc lies on the “top” as pictured in Fig. 2.3.)

C )

Fi1G.2.3

To extend / to p;’, one constructs an appropriate disc in B, spanning
I(y™); this is slightly harder to visualize and is left as an exercise. (Hint: aj is
the boundary of the “pan” & pictured below, and I(y*) is spanned by a disc
in the boundary of B(S U a, 1).)
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F16.2.4

3. The main argument
Section 3 is devoted to proving the followng result (modulo the results of
§6).
Theorem 3.1. There exists a number B > 0 and immersions I, : B, — B,,
(where a = 10 and n > 1) such that

|dL(X)| > B|X]|

Jor all vectors X tangent to B, and all integers n > 1.

We start by constructing a cell structure @ for R? which is the rectilinear
version of B, and is obtained from A4, in much the same way as B,. To be
more explicit, the cell structure C is generated by requiring that certain
rectilinear subsets b'(v), ¢'(e) and p’(f) (defined below) be 3-cells of C.

For each vertex v in 4,, '(v) denotes the cube in R® centered at v, having
edges of length 2(10)~! parallel to the coordinate axes. For each edge e in 4,,
consider the square S perpendicular to e and centered at the midpoint of e
with edges parallel to coordinate axes having length 2(10)2; #'(e) is the solid
parallelepiped generated by parallel translating S along e’—the subarc of e
having the same midpoint (as e) and having total length equal to 1 — 2(10)7".
For each face f of A,, p'(f) denotes the union of all line segments which
intersect f perpendicularly in their midpoints, having length 2(10) and are
not contained in the interior of any of the b'(v), #'(¢) defined above. (There
are also the analogues of the volumes of B,; we do not discuss these since
they are not used.) The picture below illustrates these definitions.
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t'
b',) | € b'(v,)
Ul el Uz / |
i / ,
/ '
€, f e, t'(e,) p'(f) 1'(e;)
Voo W
b
v, e; vy b'(vs) b'(vs)
t'(e3)

F1G. 3.1

Note b'(v), '(e) and p’(f) are subcomplexes of 4, where a = 10%,

Next, we construct codimension—0 branched submanifolds C, of B,,; C, is
the union of the smooth 2-submanifolds §(v, n), §(e, n) and §(f, n) defined
below, where v, e and f are vertices, edges and faces of 4,. For each vertex v
of A,, §(v, n) is the boundary of the closed 3-manifold B(b'(v), na) (cf.
Lemma 1.2). If e is an edge of 4,, §(e, n) is the boundary of the manifold

(3.1) B(7(e) U b'(vy) U b'(v,), na),

where v, and v, are the vertices of e. Likewise, if fis a face of 4,, then §(, n)
is the boundary of the manifold

4 4
(32) B(P/(f) U ( Ul t,(ei)) S ( LJI b’(vi))’ ”a)a
where the ¢; and v; (i = 1, - - - , 4) are the edges and vertices of f.

Now an immersion ¢ : B, - C; is needed satisfying certain properties
which we proceed to formulate. Define smooth submanifolds s(e) and s(f) of
B, (the analogues of §(e, n) and S(f, n)) by
(33) s(e) = 9B(e, 1), s(f) =3B(f, 1),
where e and f are edges and faces, respectively, of 4,. (If M is a manifold,
then OM denotes its boundary. Clearly, B(e, 1) and B(f, 1) are smooth
3-manifolds with boundary.) The first property is that
(34 o(s(v)) C 3(v, 1), @(s(e)) C 3(e, 1), @(s(f)) C 5(f, 1)
for each vertex v, edge e and face f of 4,.

For each edge e of A4,, let ”(e) denote the union of all closed cubes of A4
which intersect #'(e) but are not contained in b'(vy) or b’(v;) where v, and v,
are the vertices of e. And define a smooth 2-manifold s*(e) by the formula

(3.5) s*(e) = 3B(2"(e) U b'(vg) U b'(vy), 10%).
The second property is that
(3-6) @(s(v) N s(e)) C (v, 1) N 5*(e)
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for each pair e, v where e is an edge of 4, and v is a vertex of e. The picture
below illustrates this property.

v e
.——_———_
P
J ’ ()
$() N s(e) S@, 1) N se, 1)
F1G.3.2

The shaded region is §(v, 1) N s*(e) and has been geometrically simplified in
this drawing. (Note §(v, 1) N s*(e) C §(v, 1) N §(e,1).)

For each face f of 4;, let p”(f) denote the union of all closed cubes in A4 g
which intersect p’(f) but are not contained in

4 4
) (U #@)u(U )
i=1 i=1

where v; and ¢; (i = 1, - - - , 4) are the vertices and edges of f. For each edge
e of f, define a smooth 2-manifold s*(f, e) by the formula

4
(3.8) s*(fie) = aB(p”(f) U t(e)u ( U t"(e,.)) U ( Ul b’(v,-)), 104),
ik i=
where e = ¢, The third property is that

(39) p(s(e) N s(f)) c S(e, 1) N s*(f )
for each such pair f, e. The picture below illustrates this property.

Se, 1)

Fi1G. 3.3



NEW ATTRACTORS IN HYPERBOLIC DYNAMICS 119

The shaded region in s(e) is s(e) N s(f). The vertically shaded region in
$(e, 1) represents $(e, 1) N s*(f, e); the union of this region and the diago-
nally shaded region is $(e, 1) N S(f, 1). Note §(e, 1) is geometrically distorted
in Fig. 3.3 to facilitate drawing it.)

Let T denote the group of all translations of R® by vectors with integral
entries.

Lemma 3.2. There exists a I'-equivariant immersion ¢ : B, — C, satisfying
properties (3.4), (3.6) and (3.9).

This result is geometrically clear but messy to prove; it is left as an exercise.

The immersions I, (of Theorem 3.1) are composites of ¢ with certain other
maps posited below.

Proposition 3.3. There exists a number v > 0 and diffeomorphisms

Yo : (0, 1) > §(v, n),
Y. - S(e, 1) > §(e, n),

Y 2 S(f, n) = 3(f, n)
such that
| n(X)| > 7| X|

for all vectors X tangent to s(o, 1) (where 6 = v, e or f) and all integers n > 1.
Furthermore, if v is a vertex of e, then ,, and \,, agree when restricted to
$(v, 1) N s*(e). Also, if e is an edge of f, then {, ,, and {;,, agree when restricted
to S(e, 1) N s*(f, e).

This result is proven in §6. We now define the immersions I, by the
following formula

tI’n,v(p(x) 1f x € §(v’ 1)’
(3.10 L(x) = { ¥,.9(x) if x € §(e, 1),
Y p(x) if x € (£, 1);

these immersions are well defined by properties (3.6), (3.9) of ¢ and the last
two sentences of Proposition 3.3. Since ¢ is I'-invariant, |dp(X)| is bounded
away from zero as X varies over all vectors of length one tangent to B,; this
together with Proposition 3.3 shows dI, satisfies the metric property posited in
Theorem 3.1. Because §(v, n), §(e, n) and §(f, n) are all submanifolds of B,,,
I, : B, — B,,; this completes the proof of Theorem 3.1 modulo proving
Proposition 3.3 which is done in §6.

4. Proof of Theorem 0.1
In this section we prove Theorem 0.1; as a first approximation, we have the
following result. Let I be the cube in R® centered at (0, 0, 0) with sides
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parallel to the coordinate axes and having length 4. Regarding K as a
subcomplex of 4,, let H* denote its 2-skeleton and K = B(%?, 1) N B,.

Proposition 4.1. Given any number a > 0, there exists an immersion g : K
— K satisfying property (c) of Theorem 0.1 and such that

|dg(X)| > a|X]|

Jor all vectors X tangent to K.
Proof. Consider the composites of the maps in the following diagram

I|K
K—— B,

(41) 1] |

Y(T Bl

where p,(x) = nx for x € B,. (Examining the construction of 7 : Y — B, (cf.
Theorem 2.1), it is clear that its image is contained in K.) When n is large
enough, these self maps of K are sufficiently expanding (because of Theorem
3.1) to satisfy the metric condition of Proposition 4.1. Also by their construc-
tion, the immersions I, are flattening; i.e., each x € B, has a neighborhood
which is mapped by I, into a smooth 2-cell. Hence all of the above com-
posites satisfy property (c) of Theorem 0.1, so that g can be chosen to be one
of them.

To complete the proof of Theorem 0.1, we begin with an expanding
immersion g : K — K provided by Proposition 4.1, and modify it so it has a
dense orbit (retaining properties (a) and (c) of Theorem 0.1). This modifi-
cation procedure depends on Lemma 4.2; we first state this result, then
complete the proof of Theorem 0.1 and finally verify Lemma 4.2.

Lemma 4.2. There exists an immersion N : K — K such that AN(S) = K
when S is any of the following subset of K : s(v), c(e) or p=(f) where v, e and f
denote an arbitrary vertex, edge or face, respectively, of K.

We now complete the proof of Theorem 0.1. Let G be the composite of the
maps A and g posited in Lemma 4.2 and Proposition 4.1, respectively, with a
chosen sufficiently large so that G = Ag satisfies property (a) of Theorem 0.1.
(Since g satisfies property (c) of Theorem 0.1, G must also.) It remains to
show G has a dense orbit; as is well-known, it suffices to show, for each open
set U in K, there exists an integer n such that G*(U) = K. If gG"~(U)
contains a set of the form s(v), c(e) or p*(f), then G*(U) = K by Lemma
4.2. An elementary, but slightly complicated, covering space (curve lifting)
type argument shows gG"~! must contain a set of this type when n is
sufficiently large. (The details of this argument are left as an exercise.) This
completes the verification of Theorem 0.1.



NEW ATTRACTORS IN HYPERBOLIC DYNAMICS 121

It remains to prove Lemma 4.2. Define smooth 2-cells D(v, ¢) by the
identity
4.2) D(v, e) = s(v) N t(e),
where e is an arbitrary edge of 4,, and v is a vertex of e. (See §1 for the

definition of #(e).) Our proof depends on constructing an immersion 5 : K —
K such that

(4.3) 7(D(v, ¢)) = K

for each pair v, e where v is in the interior of K. Given such an immersion,
let A be the composite of the maps of the following diagram

JIK
K — Y

(4.4) N /

K

i.e.,, A(x) = nlJ(x) for x € K. Referring back to the construction of I in §2, it
is clear that this composite has the property posited in Lemma 4.2.

We define n to be the composite of immersions 7,, (constructed below)
having the properties

@D e (D(v, €)) = K,

(4.5) (i) m,.(x)=x forx € K— D(v,e),

where v is an arbitrary vertex of 4, in the interior of K, and e is any edge
incident to v. Since {D(v, e)} is a disjoint collection, 7 satisfies (4.3). (Also,
the order of composition is immaterial; i.e., (4.3) is satisfied regardless of it.)

To construct 7, ,, consider all surfaces S in B, of the followng types (1, 2, 3
and 4) starting with those of type 1 defined as follows

(4.6) S = (s(v) = (D(v, &) U D(v, &,))) U c'(€)) U c'(ey),

where ¢’(e;) denotes the “half” of c(e;) adjoining s(v). (Here v is a vertex of
both e, e, and e, # e,.) More precisely, the plane perpendicular to ¢, at its
midpoint bisects c(e;) into two halves; ¢’(¢;) is the half adjoining s(v). The
surfaces of type 2 are those of the form

(47) S =(3B(f, 1) — (D(v}, ) U D(vy, €))) U c'(e;) U ¢c'(ey),

where f is a face of 4,, v, and v, are vertices of £, ¢, (i = 1, 2) is incident to v;
but not an edge of f, and e; # e,. Those of type 3 have the form

(4.8) S = c'(e),
where c¢’(e) is a half cylinder in B,. Finally, S is of type 4 if
(4.9 S = (s(v) — D(v, €)) U c’(e),

where v is a vertex of e. We illustrate these surfaces below.
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Type 1 €,
PR §
e, )
¢ Y
f
Type 2 v,
Type 3 o e
Type 4 B__E__..

Fi1G. 4.1

Note that the surfaces of types 1, 2 and 3 are all diffeomorphic to S' X R,
and those to type 4 to D% where D? is the unit disc in R? and S! is its
boundary-the circle.

Let v be a vertex of 4, in the interior of K, and e an edge incident to v. We
claim that there is a finite sequence of surfaces S; (Where 1 < j < k) in K of
types 1, 2, 3 or 4 satisfying

(i) S, is of type 4 and the others are not,
(ii)) S, = ¢'(e) adjoining s(v),

4 (iii) S; N S, is diffeomorphic to S ' (when 1 < j < k),
(4.10) (iv) S; U S, is a smooth surface and
k
v) U1 S, =K.
j-

We use this claim (before verifying it) to construct 7, . Pick a filtration of
D(v, e)
(4.11) D(O,9)=DIDD23D3D"‘3D,¢
such that each D; is diffeomorphic to D? and D; ., is contained in the interior

of D; (for 1 < j < k), and let S/ be the closure of D; — D;, ;. Using (4.10), it
is easy to construct an immersion 7, , : D(v, €) - K such that
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@12) (i m(x)=x forx € 3D(v,e),
) (i) =, maps S; diffeomorphically onto S(1 <j<k).

Then define 7, , by the formula

n(',,e(x) if x € D(v, e),
(4.13) To,e(X) = .
if x € K — D(v, e).
Finally, we construct surfaces S; satisfying (4.10). Let T, T,,,- - - , T, be a
list of all the surfaces of types 1 and 2 in K; clearly

(4.14) U 1=k

j=1
To each surface T}, associate two edges ¢;, ej*' and two vertices 07, vj+ defined
as follows; if 7} is a surface of type 1, then vy = v;* = v in formula (4.6) while
(making an arbitrary choice) ¢ = e, and ¢ = e, in (4.6); if T} is a surface of
type 2, then ¢ = e, vy = v, ¢* = ¢, and v;* = v, in formula (4.7). Select
“immersed” polygonal paths connecting e to e; and ej+ toe, (for1 <<
l); ie., sequences of edges e(j, 1), e(J, 2), - - - , e(J, k;) and vertices v(J, 0),
0(J, 1), - - -, v(J, k;) (where 0 < j <) satisfying
@) 00,00=0, 0v(,0=0v" (1<j<I),
(i) o k) =05, (0<j<I),
(iii) o(j, i — 1) and o(J, i) are the vertices of e(J, i),
(iv) e, 1)=¢e e(j,1)=¢" (0<j<I),
) e(k)=ey (0<j<D),
(i) e(,i)#e(,i+1) (1<i<k).
Leto(N)=1+ko+k + - +k_, (for 1 <j<I/),o0)=1and k =
a(/) + 1; define the surfaces S; by the following formulas
(i) S, = c’(e) the surface of type 3 adjoining s(v);
(iii) S, = (s(v') — D(v', &")) U c'(&") the
surface of type 4 where v’ and v;* are
(4.16) the vertices of ¢;*; and
(iv)  S,)+p (Where1 < p <k, 0<j<I)is
the surface of type 1 determined by replacing
v, e, and e, in formula (4.6) by v(j, p),

(4.15)

e(j,p) and e(j, p + 1), respectively.
Clearly, these surfaces satisfy (4.10).
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5. Proof of the corollaries
In this section, Corollaries 0.2, 0.3 and 0.4 are deduced from Theorem 0.1.
Proof of Corollary 0.2. Let G : K — K be the immersion posited in Theo-
rem 0.1; by [13, §3], it is a presentation for a 2-solenoid 4 : £ — 3 where = is
the inverse limit of

(5.1) kExkEkE .

Applying H( ) to (5.1), we observe IZ(Z) is the inverse limit (cf. [1, Theorem
3.1, p. 261)) of

(52) H(K) & H(K) & H(K)E - - -
hence Hy(Z) = Z and H,(Z) = 0 since K is simply connected. By [13, Theo-
rem B], 2 : 2 — = is conjugate to an expanding attractor.

Proof of Corollary 03. As in the above argument, let (Z, ) be the
2-solenoid presented by (X, G). Then X is homeomorphic to an (orientable)
expanding attractor A [13, Theorem B]. In fact, there is a nested sequence of
compact manifolds K; (where K; O K, ;) such that N K; = A, and each X is
homotopically equivalent to K. Note the following three properties.

(a) each K is simply connected,

(5.3) (b) H*A) #0,
(c) A is connected.

(Property (b) follows from [9].)
We proceed via proof by contradiction assuming a fiber bundle

(5.4) F>ALB

where F is a Cantor set, and B is a 2-dimensional manifold. B cannot be the
2-sphere since this would necessitate A = B X F contradicting (5.3)(c). (Re-
call the structure group for (5.4) is totally disconnected.) A similar argument
shows B is not the projective plane; hence B must be aspherical. Since B is an
ANR, p extends to a map p’ : K; — B for some index /; but, by (5.3)(a), p’,
and hence p, is homotopic to a constant map. By the covering homotopy
theorem for (5.4) and property (5.3)(c), the identity map of A is homotopic to
a constant map; in particular, H%(A) = 0 contradicting (5.3)(b).

Proof of Corollary 0.4. Choose (K, f) and (K, g) to be (K, G) and (K, G?),
respectively, where (K, G) is the immersion posited in Theorem 0.1. Let (2, h)
be the 2-solenoid presented by (K, f). Then (K, g) is a presentation for
(=, h*). Note that property (i) of Corollary 0.4 is true because K is simply
connected. By [9], HXZ, R) is a finite dimensional R-vector space, and the
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maximum eigenvalue of

(5.5) h* : HXZ,R) > H(Z, R)
is a real number larger than 1. Hence this linear transformation and
(5.6) (h*)* : H¥(Z,R) > H}(Z,R)

are not conjugate. Consequently (=, ) and (=, %) are not topologically
conjugate; i.e., property (ii) of Corollary 0.4 is also satisfied.

6. Proof of Proposition 3.3.

We first outline the proof of Proposition 3.3. Let o be either a vertex v,
edge e or face f of 4,, and associate to it a subcomplex E, of 4, (where
a = 10%) defined by the following formulas

(i E,=b(v),
(i) E, = t'(e) U b'(vy) U b'(v,) where v,
and v, are the vertices of e,

(i) E;=p(f)u ( U t’(ei)) Y ( U b’(ui))

i=1 i=1

(6.1)

where ¢;, v; are the edges and vertices of f.

(See §3 for the definitions of 4’( ), #'( ) and p’( ).) If n is a positive integer,
and S is a subset of R, then nS denotes the image of S under multiplication
by n; i.e.,

(6.2) nS = {nx|x € S}.

Throughout this section, we use E to denote any set of the form nE,; each E
is a compact 3-manifold with boundary and a subcomplex of 4,. For any
positive integer m, B(E, ma) is the subcomplex of B, defined in §1. We will
construct smooth flows ¢,,( , ¢) defined in the closure of B(E, ma) — E which
will be transverse to both dB(E, ma) and dE, and flow each point in
dB(E, ma) to a unique point of dE defining a homeomorphism

(6.3) &, : OB(E, ma) — JE.

Any two of these flows ¢.(, #), ¢,(, ) will be equal in a sufficiently small
neighborhood of 9F; thus all of the composites

(6.4) g.'gx : 0B(E, ka) — dB(E, ma)

are diffeomorphisms. When E is E,, E, and E, respectively, and k =1,
n = m, these composites (6.4) are the diffeomorphisms posited in Proposition
3.3.
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We now begin to fill in the details by defining a slightly different cell
structure on dE than the one induced from A4,: namely, we amalgamate some
faces. To explicitly describe this cell structure, consider the figure below
showing 5 faces f; of 4, all sharing the vertex (0, 0, 0) with f,, f,, f; in the
(x, y)-plane, f, in the (x, z)-plane and f; in the (y, z)-plane;

z

F1G. 6.1

amalgamate f,, f, and f; into a single 2-cell ffUu L, U f5. If fi(i=1,---,5)
are five faces of 4, in dE which can be mapped by a rigid motion of R? to f,
(i=1,...,5), respectively, then amalgamate fj, f; and f; into a single 2-cell
which we call a special 2-cell in 0E. The other faces of 4, in dE (not of type
1> J3, J3) represent the remaining 2-cells in dE. The O-cells are just the vertices
of A, in OE, and the 1-cells are those edges of 4, in 0E which do not meet the
interior of a special 2-cell.

Next we define a finite valued vector field F( ), whose domain is the set of
all cells in 9E, which will approximate (d/df)@,(x, 0). If ¢ is a 2-cell in 9OE,
F(o0) is the unit vector perpendicular to ¢ and pointing into E. If 7 is a 0 or
1-cell in 3E, and {¢;} is the set of all 2-cells (in dE) containing v, then F(7) is
the unit vector in the same direction as 2 F(a,).

Let &, denote the closure of B(E, ma) — E and define a smooth vector
field ¥,(x) (for x € &,) by

(6.5) Vi(x) = Z,0(x) F(v) + Z.n,(x)F(e) + Z,n,(x) F(x),

where v, e and o vary over all O-cells v, 1-cells e and 2-cells o in 9E; 0, 1, and
7, are smooth R-valued functions associated to v, e and g, respectively, which
will be described after a short digression. We will eventually integrate V', to
construct the flow ¢,.

Let d’(x, y) denote the cubical metric on R>; namely, for x,y € R3,

(6.6) d(x,y) = m‘ax|x,. - i
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where x = (X, Xp, x3) and y = (¥}, ¥, y5)- If S is a subset of R, and ¢ > 0,
then S(e) is defined by

(6.7) S(e) = {x e R|d'(x, S) <e}.

In particular, we are interested in E(¢) when ¢ < 27'a.

We next associate to the cells v, e, o of dE thickenings v/, ¢/, o’ in &,. To
each 0-cell v in JE, associate the 1-cell v’ (in &,) defined by

(6.8) v'={v—rF(v)|0<r<a}.
If e is a 1-cell in dE with vertices v, and v,, define e’ to be the 2-cell in the
plane containing e U {x + F(e)|x € e} such that

(i) euU vyU v] C e,
(i) 9’ — (e U vy U v}) C IB(E, a).

If o is a 2-cell in OE with {¢;} denoting the set of all edges contained in da,
define o’ to be the 3-cell (in &,) such that

(i) ( L’J e,f) C d¢’, and

(6.9)

(6.10) ) a0 (( U e{) U o) C 3B(E, a).

If D is a subcomplex of 0F, define D’ by
(6.10.1) D= 7,

where 7 varies over all the cells in D. The following statement is easily
verified.

Remark 6.1. There is a homeomorphism h : &, —0E X [0, 1] satisfying
h(D") = D X [0, 1} for each subcomplex D of JE.

Fix numbers ¢ (i = 1, 2, 3) such that a > ¢, > ¢, > ¢; > 0 (for instance,
¢, = 1077%). We choose the functions 7,, , and 1, in formula (6.5) to satisfy
the following properties

>i) 1 > n.(x) > 0 for each cell 7 in JE,
. 1 ifd(x,v) <27,
(i) no)= ! Tdov)<2
0 ifd(x,0v) >e¢,

(iii)  m(x) + n,(x) + ny(x) = 1if d(x, €’) < 27,
where u and v are the vertices of e,

(iv) m.(x) =0if d(x, €) > &, and n,(x) = 0 if
d(x, d') > &,

(v)  Z,1m,(x) = 1forall x € &, where 7 varies
over all cells in 0E.

(6.11)
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Let £ be a second set of the form nE, (cf. (6.1) and (6.2)) with {7} its
associated partition of unity, we additionally require the following con-
gruences: if T is a translation of R?, o a cell in dE, and U a neighborhood of o
in R? such that To is a cell in 9€ and (TU) N E = T(U N E), then

(6.12) M6(x) = np(T(x))
for all x € R>. (Families of functions satisfying properties (6.11) and (6.12)
exist.)

By integrating V,(x) (cf. (6. 5)) inside &,, we construct the flow ¢,(x, #). To
define the flows @,(@, ?), set E = mE, and let Vi(x) be the vector field
defined on the closure &31 of B(E a) — E by formula (6.5). Then define a
vector field W,,(x) on &, by

(6.13) W, (x) = V{(mx).

(Note mb&,, = E:Sl.) Choose a, > 0 sufficiently small (independent of E) so
that E(a;) C B(E, a) for all sets E of the type nE_; cf. (6.1) and (6.2).
Consequently, E(m~'a,) C B(E, ma) for every positive integer m. For each

pair E and m, select a smooth Urysohn function y,, on R® (i.e., ¥, R%) C
[0, 1]) satisfying

. 3 _ -1
B dnlo) = {1 x €R - Elm7)
(6.14) 0 ifx € E((2m) al),
(ii) ai <ma,fori=1,2,3,

where a, > 0 is a real number independent of E and m. If E is a second set
of type nE, (cf. (6.1) and (6.2)), and ¢, is its associated Urysohn function,
then we require the following additional property: for each translation T of
R’, cell o in 9E and neighborhood U of ¢ in R? such that To is a cell in 3£
and (TU) = n E = T(U n E),

(6.14.1) Y, (T(x)) = y,,(x) for all x € o™,

(Here o™ = (m)™'(mo) where (mo) is defined by formula (6.10.1) using
E=mEin place of E.) We proceed to construct these Urysohn functions.
Let ¢, denote the cube centered at (0, 0, 0) whose sides have length a and are
parallel to the coordinate axes, and ¢ : R* > R be a fixed smooth Urysohn
function such that

1 ifd'(x,¢c) > ay,

(6.14.2) ¥(x) = {0 if d'(x, ¢g) < ) 'a.
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For each cube ¢ in 4,, define the composite i, = T where T is the unique
translation such that 7(c) = ¢,; define ¢, by the following formula

(6.14.3) ¥i(x) = 74c(x);

i.e., the product over all cubes ¢ of 4, which are inside E. For each positive
integer m, define ¢, by

(6.14.4) Ym(X) = ¢(mx),

where ¢ is the Urysohn function defined by (6.14.3) for E = mE.
Now define a vector field V,,(x) on &,, by

(6.15) V(%) = () W, (%) + (1 = 4, (x)) V1(x);

the flow ¢,,(x, t) is defined by integrating V,,(x).

Next we state several lemmas about the flows ¢, (x, #), deduce Proposition
3.3 from them, and finally complete the paper by proving these lemmas.

Lemma 6.2. For each x € 0B(E, ma), V,(x) is transverse to dB(E, ma)
and points into B(E, ma). For each x € 9E(e) N &,, (where € > 0), V,(x) is
transverse to dE(e) and points into E(g).

If D is a subcomplex of dE, define D™ by

(6.16) D™ = J

where 7 varies over all cells of dE contained in D; cf. the sentence following
(6.14.1).

Lemma 63. Let D be any subcomplex of OE, and m a positive integer, then,
for each x € D™, there exists a number t,(x) > 0 (depending continuously on
x) such that

() @,.(x, £) € D™ for 0 < t < t,(x),

(i) @, (X)) € OE.

Let E, E be two sets of the form nE, (cf. (6.1) and (6.2)), and ¢,,, @, the
associated flows on &,,, (‘;m, respectively. Suppose D is a subcomplex of JE,
U a neighborhood of D in R?, and T : R® — R? a translation.

Lemma 64. If T(U) N E = T(U N E), and T(D) is a subcomplex of JE,
then

T,(x, 1) = ¢,(Tx, 1)

for all x € D™ and all t such that 0 < t < t,(x). (Recall t,(x) is described in
Lemma 6.3 and D™ in (6.16).)

Because of Lemma 6.3, we can define the homeomorphisms (6.3) by the
formula

(6.17) gn(x) = @,.(x, 1,,(x)) forall x € d0B(E, ma).
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Let o be a 2-cell in dE. Then 6™ (cf. (6.14.1)) is a smooth 3-cell with corners,
and 3&,, N 6™ is a smooth 2-cell with corners which we denote by ¢,,. By
Lemma 6.3, the composite g;'g, restricted to ¢, is 2 homeomorphism of g, to
a,,, which we denote by g, .. But the composition

(6.18) g.'g, : 9B(E, a) » dB(E, na)

is always a diffeomorphism because the flows ¢,(x, f) and ¢,(x, ¢) agree for x
sufficiently close to dE and ¢ > 0 by (6.14) and (6.15). Hence each g, ,, is a
diffeomorphism.

Lemma 6.5. There exists a number a; > 0 such that, for all E of type nE,
(¢f. Lemmas 6.1 and 6.2), any positive integer m and each 2-cell o in OE,

g, m(X)| > 5| X|

Jor all vectors X tangent to o,.

We now use these lemmas to complete the proof of Proposition 3.3. We
choose the diffeomorphisms , ,, ., and y;, (posited in Proposition 3.3) to
be the composites g;'g, (of (6.18)) where E is E,, E, and E,, respectively. The
inequality in Proposition 3.3 is implied by Lemma 6.5, and the last two
sentences of the Proposition are satisfied because of Lemmas 6.3 and 6.4.

Our last task is to prove these lemmas.

Proof of Lemma 6.2. For m = 1, the transversality statements follow
directly from (6.5), (6.11) and the definition of F( ); for m > 1, they are a
consequence of the case m = 1 by using (6.13) and (6.14)(i).

Proof of Lemma 6.3. For each O-cell v of dE and x € v’, V|(x) is parallel
to the line segment v’; for each 1-cell e of 9E and x € ¢, V,(x) is parallel to
the plane containing e’. Because of (6.13) and (6.15), these properties persist
when V(x) is replaced by V,,(x) for any positive integer m. Consequently, for
each fixed point x € &, the R-valued function d’(¢,,(x, t), E) is differentia-
ble (in ¢) provided ¢,,(x, ?) is in the interior of &,,. By the compactness of &,
together with Lemma 6.2, the derivatives of these functions are all strictly
negative and bounded away from zero. Hence for each x € &, there exists a
smallest number 7,,(x) > 0 such that d'(¢,(x, ¢,(x)), E) = 0. In particular,
O(x, 1,,(x)) € OE, and @, (x, ¥) € &,, for 0 < t < 1,,(x). It is easily seen that
t,(x) depends continuously on x. By the second sentence of this proof and
Lemma 6.2, for each cell 7 in 0E and x € 7™, @, (x,f) € 7™ for 0 < ¢ <
t,,(x); this implies property (i) of Lemma 6.3.

Proof of Lemma 6.4. Denote the vector fields (cf. (6.15)) determining ¢,
and ¢,, by V,, and V,, respectively. Because of (6.5), (6.12), (6.13), (6.14.1)
and (6.15), we have that ¥, (x) = V. (T(x)) for all x € D™, By the unique-
ness of solutions to ordinary differential equations, this implies the validity of
Lemma 6.4.
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Proof of Lemma 6.5. We factor g, ,, as the composite of three maps
8 = &0, : 0, >0,
(6.19) L
Kym : Op = Oy

where o,f = ¢™ N dE(m™'a,); cf. the sentence after (6.13) for the definition
of a,. Both 4, ,, and k,,, are induced by the flow ¢,,. To be precise, for each
X € o,, there exists a unique number ¢, (x) such that

(i) 0<t;(x)<t,(x),
(i)  @u(x tn(x)) € o,
The function £} (x) is continuous (in x); this is seen by the same argument

used to prove Lemma 6.3. In fact, the functions #,(x) and ¢, (x) are smooth

for x € a,,; in particular, g, is a diffeomorphism. The map (diffeomorphism)
k, . is the inverse of the diffeomorphism

(6.20)

(6.21) x = @, (x, t}(x)) for x € a,,.

Define a smooth R-valued function #,(x) (for y € ¢,}) by the following
formula

(6:22) 1a(¥) = tu(Kom(9)) = tm (Kom())
and the map (diffeomorphism) 4, ,, to be the inverse of the diffeomorphism
(6.23) Y = @1, tm()) fory € o).

With these preliminaries, Lemma 6.5 is an immediate consequence of the
following assertion whose verification will complete this article.

Assertion 6.6. There exist numbers y; > 0 (where i = 1, 2, 3) such that, for
all E of type nE, (cf. (6.1) and (6.2)), any positive integer m and each 2-cell o in
dE,

() |dg,(XD| > vil Xy,
(ll) ]dho,m(XZ)I > Y2|X2|a

Qi) |k, (X5 > ¥5lX3),
where X,, X, and X, are arbitrary vectors tangent to 6, o and a,}, respectively.

We first observe that inequality (i) follows from Lemma 6.4 with m = 1,
since there are only finitely many equivalence classes of 2-cells ¢ if we
proclaim as equivalent 2-cells ¢ and 6 in E and 3E, respectively, provided
there exist a neighborhood U of o (in R®) and a translation T such that
T(o) = 6and T(U N E) = T(U) N E.

To verify inequality (iii), let £ = mE, and let p : R> > R® denote multi-
plication by m. X, is tangent to o, at some point x € o,; and let 7 be a 2-cell
in 9E such that r C mo and mx € 1;'; cf. (6.19). Consider the following
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commutative diagram

k‘l’,l
v — 7
(6.24) o o
of OomMrf—m’r, Co,

o,m

(cf. (6.13), (6.14), (6.15) and (6.21)). Since |dp(X)| = m|X| for all vectors X
tangent to R>, diagram (6.24) shows that it suffices to demonstrate inequality
(iii) when m = 1. But this follows now from Lemma 6.4 in the same way that
inequality (i) did; i.e., there are only finitely many maps k. ; up to translation.

To verify inequality (ii), we need an extra ingredient not needed above;
namely, we use a basic result from the elementary qualitative theory of
ordinary differential equations which gives a Lipschitz constant for the
solutions in terms of the Lipschitz constant for the equation. Because of (6.5),
(6.13), (6.14) and (6.15), there exists a number 8, (independent of E, m and o)
such that for each x € o™

(6.25) the angle between V,,(x) and the plane through x parallel to
) ois > B,

Also, there exists a number S, (independent of E, and m and o) such that (for
x € ¢™)

(6.26) By > |Vu(x) > (B
Arguing as in the verification of inequality (i) by using formulas (6.5) and
(6.12), there exists a constant 3; (independent of E and o) such that

(6.27) -

1

< B; fori=1,2,3;

and arguing as in the verification of inequality (ii) using formulas (6.13) and
(6.27), we obtain that

i1/ 4
(6.28) l—'" <mB; fori=1,23.

dx

Combining (6.27), (6.28), (6.14) and (6.15), there exists a constant B, (inde-
pendent of E, m and o) such that, for x € o™,

v,
e )

(6.29) <mB; fori=1,2,3.

Inequality (iii) now follows from (6.25), (6.26), (6.29) and the theorem about
ordinary differential equations referred to above. (See [3, p. 169] for the exact
statement of this result.) This theorem is applied to ¢,,; to be precise, it is
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applied to the normalized vector field (V,,(x) - F(6))"'V,,(x) which has the
same integral curves as ¢,,; cf. the paragraph preceding (6.5) for the definition
of F(o).

Added in Proof. We have recently answered Question 0.5; see F. T. Farrell
and L. E. Jones, Expanding immersions on bounded manifolds, to appear in
Amer. J. Math. This paper also contains a negative answer to Question 0.7;
see Remark 0.9.
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