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0. Introduction

Recall that a hyperbolic set for a diffeomorphism / of a smooth compact
manifold M is a compact subset Λ of M satisfying

(a)/ : Λ -^ Λ is a homeomorphism;
(b) the tangent bundle of M splits over Λ, T(M)\A = £, Θ ξs, as the

Whitney sum of continuous subbundles each of which is left invariant by df
(the differential of/);

(c) for some Riemannian metric | | on M, \df(X)\ > \X\ for each nonzero
i G ^ a n d \df(X)\ < \X\ for each nonzero X G ξs.

The hyperbolic set Λ is an attractor for / : M -> Λf provided there exists a
compact neighborhood U for Λ satisfying:

/(£/) is contained in the interior of U,
00

Π f"(U) = A,
/i = l

and each point of Λ is nonwandering.
A natural problem is to classify all hyperbolic attractors / : Λ —» Λ.
Towards solving this problem, R. F. Williams [10], [13], has shown that

every attractor / : Λ —»Λ, for which the dimension of the fiber in £, equals
the topological dimension of Λ, (these are called expanding attractors), is
obtained by a simple construction from an expanding endomorphism on a
compact smooth branched manifold (without boundary). (He makes the extra
assumption that the stable foliation is C1!) Conversely, every expanding
endomorphism on a compact smooth branched manifold which satisfies three
properties (cf. [13, 3.0]) yields an expanding attractor. Recall an expanding
endomorphism on a compact smooth manifold N is a smooth map h : N —> N
such that

\dh{X)\ > \X\
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for all nonzero vectors X G T(N) with respect to some Riemann metric | | on

Λ/.

More generally, a self-map h : K^> K of a compact smooth branched

manifold K is an expanding endomorphism if h is a smooth immersion, and

\dh(X)\ > \X\

for all nonzero vectors X tangent to K with respect to some Riemann metric

on K. (Smooth branched manifolds and smooth immersions of branched

manifolds are defined in [13, §1].)

The main result of this paper (Theorem 0.1) is the construction of an

expanding endomorphism on a 2-dimensional, simply connected, compact

branched manifold (without boundary); applying Williams' theory to this

example, we obtain (Corollary 0.2) an expanding attractor / : Λ —» Λ such

that HX(K9 Z) = 0. (These are the first examples of this type.) We now state

the results precisely.

Theorem 0.1. There is a smooth immersion G : K^> K, where K is a simply

connected compact 2-dimensional branched manifold satisfying

(a) \dG(X)\ > \X\ for each nonzero vector X tangent to K {relative to some

Riemann metric on AT),

(b) G has a dense orbit, and

(c) for each point x E K, there is a neighborhood N of x such that G(N) is

contained in a a 2-cell which is smoothly embedded in K.

(Conditions (a), (b) and (c) imply Williams' properties 1, 2 and 3 + of [13,

§3] )

Corollary 0.2. There exists a 2- dimensional expanding attractor f : Λ —> A

satisfying H0(A) = Z and #i(Λ) = 0, where //,( ) denotes the i-dimensional

integral Cech homology functor.

In [13], Williams proved that every expanding attractor Λ, with stable

foliation C1, is locally homeomorphic to the product of a Cantor set and a

w-disc where u = dim Λ; in [4], Robinson and Williams removed the assump-

tion that the stable foliation is C1. This motivated the conjecture [12,

Conjecture J], [13, Conjecture, p. 171] that when Λ is orientable, it is the total

space of a fiber bundle with base space a manifold and a Cantor set for fiber.

Williams [11] verified this conjecture when dim Λ = 1. We give a counterex-

ample to it when dim Λ = 2.

Corollary 03. There exists an {orientable) expanding attractor Λ with

dim Λ = 2 such that Λ is not the total space of a fiber bundle with a manifold

for base space and a Cantor set for fiber.

Associated to an expanding endomorphism g : K —» K of a Λ-dimensional

branched manifold K satisfying properties (1), (2) and (3 + ) from [12, p. 949],
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Williams defined a space Σ to be the inverse limit of the sequence

g g g

and h : Σ -> Σ to be the coordinate shift

h(x0, xx, ) = (gx0, gχl9 gx2, ).

The pair (Σ, h) is called the n-solenoid presented by (K, g). In [12, p. 950,
Question], it is asked if

determines (Σ, A) up to topological conjugacy; when dim K = 1, Williams
[11] proves it does. We show it does not in general.

Corollary 0.4. There exists a 2-dimensional branched manifold K together
with expanding endomorphisms f,g : K-> K satisfying properties (1), (2) and
(3+)from [12,/?. 949] such that

(i)/and g induce the same map on πx(K); but
(ii) the 2-solenoid presented by (K,f) is not topologically conjugate to the one

presented by (K, g).
We pose the following problem as a possible generalization of Theorem 0.1.
Question 0.5. Let M denote an n-dimensional compact connected

Riemannian manifold, and g : M —> M a continuous map which is covered
by a linear bundle map g : T(M) —» T(M) (monic on fibers). Given ε > 0
and β > 1, does there exist a cell complex structure (for its definition see [8,
p. 100]) C for M and a homotopy gt : M-> M with g0 = g, satisfying:

(a) d(gt(x), g(x)) < ε for all x e M and / e [0, 1], where d( , ) is the
distance function determined by the Riemannian metric;

(b) the (n — l)-dimensional skeleton of C, denoted by Cn~x, is a smooth
branched submanifold of M

(c) gλ is an expanding endomorphism when restricted to Cn~ι; in particu-
lar, lί/gjίJSOl > β\X\ for all vectors X tangent to Cn~\ and gλ leaves C 1 " 1

invariant;
(d) if condition (a) is dropped, then gx can be chosen to have an orbit dense

i n C " - 1 ;
(e) for any point x G Cn~ι, there is a neighborhood N of x in Cn~ι such

that gx(N) is contained in an (n - l)-cell smoothly embedded in C 1" 1?
Remark 0.6. When M is a codimension-zero submanifold of R3, and g is

either the constant map or the identity function, the answer to Question 0.5 is
affirmative. (In a preliminary version of this paper, we verified this when g is
the identity map, and it is easier to verify when g is constant.)

The following problem is related to Question 0.5.
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Question 0.7. If h : K —» K is an expanding endomorphism of a compact
smooth branched manifold (without boundary), do the real Pontryagin
classes of the tangent bundle of K vanish?

Remark 0.8. When A' is a manifold, the answer to Question 0.7 is yes; in
fact,

λ* : H'iK, R) -> H'(K, R)

is expanding (for i > 0); in particular, 1 is not an eigenvalue of h*.
Remark 0.9. Questions 0.5 and 0.7 conflict. In particular, choose M in

Question 0.5 to have nonzero first real Pontryagin class (dimenson M > 4)
and g : M -+ M to be the identity map. If Question 0.5 has an affirmative
answer in this case, then the posited map gx : Cn~ι -> Cn~ι answers Question
0.7 negatively (where h = g, and K = C 1 " 1 ) since the first real Pontryagin
class of C~ι must also be nonzero (note T(Cn~ι) Θ θι = T(M)\Cn~ι).

The proof of Theorem 0.1 bares a superficial resemblance to the construc-
tion of structurally stable diffeomorphisms by Smale [6], Shub and Sullivan
[5]. But the details are as different as the results. For example, the diffeomor-
phisms constructured in [5], [6] all have zero-dimensional hyperbolic sets;
whereas, any diffeomorphism constructed from Theorem 0.1 using Williams'
theory [13] has a 2-dimensional hyperbolic set.

We now outline the proof of Theorem 0.1. In §1 a cell structure Bx is
constructed for R3 which is invariant under the group Γ of all translations (of
R3) by vectors with integral entries. The 2-skeleton Bx of I*! is a branched
2-manifold smoothly embedded in R3. Its orbit space Y = BX\Y is the 2-skele-
ton of a "natural" cell structure BJΓ for the 3-torus Γ3; / : Bx -+ Y denotes
the canonical quotient map. (Note Bx is simply connected.) In §2 we con-
struct an immersion I of Y into Bx; this construction is motivated by the
following consequence of the Smale-Hirsch immersion theory; namely, T3

with a single point removed immerses in R3. Immersions In : Bx^> (n)~ιBx are
constructed in §3 such that

\dIn(X)\ > β\X\

for all vectors X tangent to Bx, where β > 0 is a number independent of n
and X. Proposition 3.3 is the main result needed to construct /„; its proof is
quite long and is postponed until §6; this result is motivated by Hirsch's
smoothing theory [2]. Consider the following diagram
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where (n)~ιBι = {n~ιx\x e Bx] and pn(x) = nx. The composite Upnln : Bx -*
B j is an expanding endomorphism for all n sufficiently large. It is easy to
construct a simply connected, compact, branched submanifold K of Bx

containing I(Y); this is the branched manifold posited in Theorem 0.1 and
UρnIn\K is an approximation to G in that it satisfies properties (a) and (c) of
Theorem 0.1. In §4 we modify this immersion to one with a dense orbit which
still satisfies conditions (a) and (c) of Theorem 0.1.

We note that (K, G) is shift equivalent to (Y, G') where G' is a self
immersion of Y.

Finally in §5, Corollaries 0.2, 0.3 and 0.4 are verified.
It is a great pleasure to thank Bob Williams for his constructive criticism of

an earlier version of this paper which was very useful in preparing the present
one.

1. Cell structures and thickenings

In this section two interelated sequences An and Bπ, n > 1, of regular cell
structures for R3 are described. We also associate to each subcomplex C of An

a "thickened" subcomplex B(C, ή) in Bπ.
Use Λλ to denote the partitioning of R3 into unit cubes having integral

lattice points of R3 for vertices. The intersections of the cubes generate the 2-,
1- and 0-dimensional cells of Ax. The 0-dimensional cells of Ax are called
vertices and denoted by v, u, w E Av The 1-dimensional cells of Ax are called
edges and denoted by e e Av The 2-dimensional cells of Ax are faces and
denoted by/ G A2. The 3-dimensional cells are the cubes.

There are four types of 3-dimensional cells in Bx: those associated to the
vertices, edges, faces and cubes of Ax. These will be termed balls, tubes, solid
plates and volumes of Bx, respectively.

Ball of Bj. To each vertex v E: Ax we associate the ball b(v) of radius
(10)"1 centered at v.

Tubes of Bj. To each edge e E Ax we associate a tube t(e) as follows. Let
Dx, D2 denote discs of radius (10)"1 centered at (0, 0, 0) and (1, 0, 0) and lying
in the (JC, >>)-plane of R3. Pick a smooth function g : [0, 1] -> R satisfying

(a) image(g) c[.001, .1],

(1.1) [(.01 - ( * - I)2)5, *e[ .91, l ] ,

[(.01 -x2)K xe(.09,.l],
(C) g(x)>\

(.01 - (x - I)2)'2 *G[.9,.91).
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The union of the graph of g with boundaries of Dx and D2 is illustrated below

FIG. 1.1.
Rotate this set about the x-axis in R3 to obtain a branched surface of

rotation S which bounds a solid V. Note that V is the union of balls bvb2 of
radius (lO)"1 centered at (0, 0, 0) and (1, 0, 0), and a solid tube T that
connects bx to b2. Let r : R3 -» R3 be any rigid motion sending (0, 0, 0) —» vx

and (1, 0, 0) -» t>2, where vϊ9 υ2 are the end points of the edge e; define t(e) to
ber(Γ).

Solid plates of Bx. To any face / of Ax we associate a solid plate p(f) as
follows. Let B(df) denote the union of all balls and tubes in Bx associated to
vertices and edges of A x which lie in the boundary 3/ of /. Let p denote the
union of all lines of length (10)^* which intersect / perpendicularly at their
center points. Set pf = closure^ - B(df)). Note that the surface d(B(df) U
p') is differentiable except at the two "circles" 9(^(9/) Π />')• These "corners"
can be rounded away by gradually shrinking the diameters of the lines wich
form p as their center points travel to the center of /. This process shrinks pf

to p(f) so that p(f) n B(df) = p' n B(df), and d(p(f) U B(df)) becomes a
smooth surface.

Volumes of B^ Let X denote the union of all balls, tubes, and solid plates
in Bj. Note that closure (R3 - X) is a collection of disjoint closed 3-dimen-
sional cells in R3, with exactly one lying in the interior of each cube of Av

These are the volume cells of Bv

The lower dimensional cells of Bλ are generated by intersecting the 3-di-
mensional cells. In the rest of this paper we shall denote the 2-skeleton of Bj
by*!.

There are various smooth surfaces (some with boundary) embedded as
subcomplexes of Bv which shall be referred to frequently in later chapters.
We introduce these surfaces with names and symbols now.

(i) For each vertex v of Al9 the boundary of b(v) is a
sphere s(v) of Bv

(ii) To each edge e of Ax is associated a cylinder b(v) of Bx

(1.2) where c(e) is the closure of dt(e) — (b^) U biv^); vx and v2

are the endpoints of e.

(iii) To each face / of Ax is associated two plates p*(f) and
p~(f) of Bx which are the connected components of the
closure of dp(f) - B(df). Note each plate is a 2-cell.
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For the rest of this paper, we assume the choice of balls, tubes and solid

plates has been made so that Bx is invariant under translation by all vectors

having integer valued coordinates. The following result is obvious.

Lemma 1.1. The set Bx is a smooth branched submanifold ofR3.

For any positive integer n, the cell structures An, Bn are just the image of

Av Bx under multiplication by \/n mapping R 3 -»R 3 . Balls, tubes, solid

plates of Bx and all the surfaces listed in (1.1) are sent to the objects with the

same names in Bn. The notation set up for B! is also used for BΛ. For

example, p+(f), f E: An, denotes a plate in Bπ associated to the face of An,

and Bn denotes the 2-skeleton of Bn.

For any closed subcomplex M of Am, B(M, m) will denote the union of M

with all balls, tubes, and solid plates of B m associated to vertices, edges, and

faces of Am which lie in M. Note that M is also a subcomplex of A^ for all

positive integers k, so B(M, mk) is defined and is a subcomplex of B,^. The

next result is geometrically clear; its proof is left as an exercise.

Lemma 1.2. If M is a 3-dimensional manifold with boundary which is a

subcomplex of Am, then B(M, m) is a smooth codimension-0 submanifold with

boundary of R3.

Let π: R3 —» T3 denote the standard covering projection of R3 onto the

3-dimensional torus. Set

(1.3) Y=τr(Bx),J = π\Bx;

Y is the 2-skeleton of a finite cell structure for Γ 3 and is equipped with a

smooth branched manifold structure with respect to which J : Bx -» Y is a

smooth immersion. There are the following smooth surfaces (some have

boundary) smoothly embedded in Y:

(1.4) s = J(s(0)), c, = J(c(e,)), PΓ = /(/»*(/,)), 0 = 1,2,3).

Here 0 denotes the vertex (0, 0, 0) of A x; ex, e2 and e3 are the edges starting at

0 and ending at (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively; ft is the face of Ax

perpendicular to et and containing the other two edges in {ex, e2, e3). So s, ct

and pr are just the diffeomorphic images (under / ) of the spheres, cylinders

and plates of Bx; we will call them the sphere, cylinders and plates of Y.

2. An immersion

This section is devoted to proving the following result.

Theorem 2.1. There exists an immersion I : Y ^> Bx.

This result is motivated by the fact that T3 with a point deleted immerses

in R3, which follows from Smale-Hirsch immersion theory.
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It is easy to define /| Yλ where

= s\j cx\j c2U c
3,

(2.1)

(note that Yλ is a branched submanifold of Y). To do this, map s diffeomor-
phically to ^((0, 0, 0)) by letting I\s be the inverse of J\s((0, 0, 0)), and map
each c,(/ = 1, 2, 3) diffeomorphically to certain "cylinders" C, which we now
construct. (See Fig. 2.1. below.)

FIG. 2.1
Let aλ be the polygonal arc (in Aλ) which is the boundary of the square §>x

with vertices (-1, 0, 0), (1, 0, 0), (1, 2, 0) and (-1, 2, 0); likewise, α2 and α3 are
the boundaries of the squares S2

 a n d §3 with vertices (0, ± 1 , 0), (0, ± 1 , 2)
and (0, 0, ± 1), (2, 0, ± 1), respectively. We define Cs(i = 1, 2, 3) to be the
closure of the boundary of B(a{, 1) - Z>((0, 0, 0)).

We require that I\cι should have no unnecessary twists; i.e., /(/(/3) Π cλ)
should be a subset of P^ (the (x, >>)-plane in R3) and /(ΛΛ) Π cγ) should be
disjoint from P^; more precisely, the following should be true

(2.2) i(Pf nc.) c BiP^, l), /(/,* nc.) n fi(^, 1) = ψ.

Similarly, 7|c2 and 7|c3 should have no unnecessary twists; i.e.,

(2.3) i(p± nc 3 ) c 5(PXZ, l), /(/>f nc 2 ) c ^(i^ z , l),

I(PX π c3) n Λ(p«, l) = ψ, /(^f n c2) n 5(i^ z, l) = Φ,

where P^ and Pyz denote the (JC, z) and (y, z) planes, respectively.
It remains to define lip*, i = 1, 2, 3; we do this only for i = 2 since the

other cases are analogous. Let γ ± denote the boundaries of/72

± Then both γ +

and γ" are simple closed arcs as are /(γ+) and 7(γ~). (Note γ + U γ~C Yx.)
See the picture below illustrating /(γ~~); the part of /(γ+) contained in C3

would be "above" 7(γ"), and the part of /(γ+) in C{ would be "inside" of
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FIG. 2.2

To extend the definition of / to/Γ, it suffices to find a smooth disc in Bλ

which spans /(γ~) (This disc should not intersect the image under / of a short
collar of γ~ in Yv in order to prevent / from folding along γ~.) Examining
Fig. 2.2, it is clear that γ" spans such a disc inside the surface T where T is
the boundary of B(^ι u α3, 1). Note T has genus 1; below we given a
simplified (but topologically correct) drawing of T in which the "bump"
(hatched top lobe in Fig. 2.2) coming from the part of T in B(Sλ, 1) has been
flattened, and the spanning disc is indicated by hatching. (Inside the part of T
intersecting B(a3> 1), the disc lies on the "top" as pictured in Fig. 2.3.)

FIG. 2.3

To extend / to /?2

+> o n e constructs an appropriate disc in Bx spanning
7(γ+); this is slightly harder to visualize and is left as an exercise. (Hint: α3 is
the boundary of the "pan" S pictured below, and /(γ+) is spanned by a disc
in the boundary of B{% u aλ, 1).)
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FIG. 2.4

3. The main argument

Section 3 is devoted to proving the followng result (modulo the results of
§6).

Theorem 3.1. There exists a number β > 0 and immersions In : Bx —> B^

(where a = 104 and n > 1) such that

\dIn{X)\ > β\X\

for all vectors X tangent to Bx and all integers n > 1.

We start by constructing a cell structure β for R3 which is the rectilinear
version of Bx and is obtained from Ax in much the same way as Bx. To be
more explicit, the cell structure β is generated by requiring that certain
rectilinear subsets b'(v), t\e) and p\f) (defined below) be 3-cells of β.

For each vertex v in Al9 b\υ) denotes the cube in R3 centered at v, having
edges of length lOO)"1 parallel to the coordinate axes. For each edge einAx,
consider the square S perpendicular to e and centered at the midpoint of e
with edges parallel to coordinate axes having length 2(10)~2; t\e) is the solid
parallelepiped generated by parallel translating S along e'-the subarc of e
having the same midpoint (as e) and having total length equal to 1 — 2(10)"1.
For each face / of Al9 p\f) denotes the union of all line segments which
intersect / perpendicularly in their midpoints, having length 2(10)~3 and are
not contained in the interior of any of the b'(υ)9 t\e) defined above. (There
are also the analogues of the volumes of Bx; we do not discuss these since
they are not used.) The picture below illustrates these definitions.
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b'(v2)

t'(e2)

b'(υ3)

FIG. 3.1

Note b\υ\ t\e) andp\f) are subcomplexes of Aa where α = 104.

Next, we construct codimension-0 branched submanifolds Cn of B^; Cn is

the union of the smooth 2-submanifolds s(v, ή), s(e, ή) and i(/, ή) defined

below, where t>, e and/ are vertices, edges and faces of Av For each vertex v

of Al9 s(υ,ri) is the boundary of the closed 3-manifold B(b\υ), na) (cf.

Lemma 1.2). If e is an edge of Av s(e, n) is the boundary of the manifold

(3.1) B{t'{e) U *'(%) u b'(υx\ nα),

where v0 and υx are the vertices of e. Likewise, if / is a face ofΆ l 9 then s(f, ή)

is the boundary of the manifold

(3.2) βlp'(f) U ί U ?(*)] U ί U b'(vλ na\

where the et and vt (i = 1, , 4) are the edges and vertices of/.

Now an immersion φ : Bλ —» Cx is needed satisfying certain properties

which we proceed to formulate. Define smooth submanifolds s(e) and s(f) of

Bx (the analogues of $(e, ή) and f(/, n)) by

(3.3) s(e) = dB(e, 1), J(/) = dB(f, 1),

where ^ and/ are edges and faces, respectively, of Av (If M is a manifold,

then 3M denotes its boundary. Clearly, 2?(e, 1) and B(f, 1) are smooth

3-manifolds with boundary.) The first property is that

(3.4) ψ(s(υ)) c i(ϋ, 1), ψ(s(e)) c f(e, 1), φ(^(/)) C i(/, 1)

for each vertex υ, edge e and face/ of Av

For each edge e of Av let /"(e) denote the union of all closed cubes of Aιoo

which intersect t\e) but are not contained in b'(v0) or b'(vλ) where υ0 and ϋj

are the vertices of e. And define a smooth 2-manifold .s*(e) by the formula

(3.5) s*(e) = dB(t"(e) U 6'(t;0) U ^(©O, 104).

The second property is that

(3.6) φ(s(v) n s(e)) c ί(ϋ, l) n ^*(e)
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for each pair e, v where e is an edge of Ax and v is a vertex of e. The picture

below illustrates this property.

o
1 n <*) s(μ, 1) n •

FIG. 3.2

The shaded region is s(v, 1) π s*(e) and has been geometrically simplified in

this drawing. (Note£(t>, 1) π s*(e) C s(v9 1) Π s(e,\).)

For each face/of Λv let p'\f) denote the union of all closed cubes inΛ1 0 0 0

which intersect p\f) but are not contained in

( 4 \ / 4

U b'(v,) u
i-l /

where u, and ^ (/ = 1, , 4) are the vertices and edges of/. For each edge

e of/, define a smooth 2-manifold .?*(/, e) by the formula
/ / , , , \ / , 4 , ,

(3.8) s*(f, e) = 95 />"(/) u /'(e) U U '"(*,) u U *'(
\ V ι>y / \ /-I

where e = e,. The third property is that

(3.9) φ(s(e) Π s(f)) C f(β, 1) Π **(/, e)

for each such pair/, e. The picture below illustrates this property.

e

l(ή,

s(e)

FIG. 3.3
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The shaded region in s(e) is s(e) Π s(f). The vertically shaded region in
s(e, 1) represents s(e, 1) n s*(f, e); the union of this region and the diago-
nally shaded region is s(e, 1) π s(f, 1). (Note s(e, 1) is geometrically distorted
in Fig. 3.3 to facilitate drawing it.)

Let Γ denote the group of all translations of R3 by vectors with integral
entries.

Lemma 3.2. There exists a T-equivariant immersion ψ : Bx^> Cx satisfying
properties (3.4), (3.6) and (3.9).

This result is geometrically clear but messy to prove; it is left as an exercise.
The immersions /„ (of Theorem 3.1) are composites of φ with certain other

maps posited below.
Proposition 33. There exists a number γ > 0 and diffeomorphisms

\pyn : s(f, ή) —> s(f, ή)

such that
\dψan(X)\ > y\X\

for all vectors X tangent to s(σ, 1) (where σ = v, e or f) and all integers n > 1.
Furthermore, if v is a vertex of e, then ψvn and ψen agree when restricted to
s(v, 1) Π s*(e). Also, if e is an edge off, then ψeπ and ψ/n agree when restricted
to s(e, 1) Π s*(f, e).

This result is proven in §6. We now define the immersions In by the
following formula

1ψΛ ϋφ(x) if x E s(v, 1),

ψn,M
x) i f * e i ( e , l ) ,

ΦnjψM i f * G i ( / , 1);

these immersions are well defined by properties (3.6), (3.9) of φ and the last
two sentences of Proposition 3.3. Since φ is Γ-invariant, |t/<p(Λ")| is bounded
away from zero as X varies over all vectors of length one tangent to Bx\ this
together with Proposition 3.3 shows dln satisfies the metric property posited in
Theorem 3.1. Because s(v, n), s(e, ή) and s(f, ή) are all submanifolds of B^,
In : Bx-+ Bna; this completes the proof of Theorem 3.1 modulo proving
Proposition 3.3 which is done in §6.

4. Proof of Theorem 0.1

In this section we prove Theorem 0.1; as a first approximation, we have the
following result. Let % be the cube in R3 centered at (0, 0, 0) with sides
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parallel to the coordinate axes and having length 4. Regarding % as a
subcomplex of Al9 let 5C2 denote its 2-skeleton and K = Λ(9{?, 1) Π Bλ.

Proposition 4.1. Given any number a > 0, /λere exists an immersion g : K
-> K satisfying property (c) 0/ Theorem 0.1 and such that

\dg{X)\ > a\X\

for all vectors X tangent to K.

Proof. Consider the composites of the maps in the following diagram

( 4 D

where pn(x) = nx for x e Bn. (Examining the construction of / : 7 —» Bι (cf.
Theorem 2.1), it is clear that its image is contained in K.) When n is large
enough, these self maps of K are sufficiently expanding (because of Theorem
3.1) to satisfy the metric condition of Proposition 4.1. Also by their construc-
tion, the immersions /„ are flattening; i.e., each x E Bx has a neighborhood
which is mapped by In into a smooth 2-cell. Hence all of the above com-
posites satisfy property (c) of Theorem 0.1, so that g can be chosen to be one
of them.

To complete the proof of Theorem 0.1, we begin with an expanding
immersion g : K^> K provided by Proposition 4.1, and modify it so it has a
dense orbit (retaining properties (a) and (c) of Theorem 0.1). This modifi-
cation procedure depends on Lemma 4.2; we first state this result, then
complete the proof of Theorem 0.1 and finally verify Lemma 4.2.

Lemma 4.2. There exists an immersion λ : K^>K such that λ(S) = K
when S is any of the following subset of K : s(v), c{e) orp±(f) where v, e andf
denote an arbitrary vertex, edge or face, respectively, of %.

We now complete the proof of Theorem 0.1. Let G be the composite of the
maps λ and g posited in Lemma 4.2 and Proposition 4.1, respectively, with a
chosen sufficiently large so that G = λg satisfies property (a) of Theorem 0.1.
(Since g satisfies property (c) of Theorem 0.1, G must also.) It remains to
show G has a dense orbit; as is well-known, it suffices to show, for each open
set U in K, there exists an integer n such that Gn(U) = AT. If gGn~\U)
contains a set of the form s(v), c(e) or p±(f)9 then Gn(U) = K by Lemma
4.2. An elementary, but slightly complicated, covering space (curve lifting)
type argument shows gGn~ι must contain a set of this type when n is
sufficiently large. (The details of this argument are left as an exercise.) This
completes the verification of Theorem 0.1.
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It remains to prove Lemma 4.2. Define smooth 2-cells D(v, e) by the

identity

(4.2) D(v, e) = s{v) Π t(e\

where e is an arbitrary edge of Av and v is a vertex of e. (See §1 for the

definition of t(e).) Our proof depends on constructing an immersion η : K —»

K such that

(4.3) η(D(v, e)) = K

for each pair v, e where v is in the interior of %. Given such an immersion,

let λ be the composite of the maps of the following diagram

j\κ
K Y

i.e., λ(x) = ηΙJ(x) for x G K. Referring back to the construction of / in §2, it

is clear that this composite has the property posited in Lemma 4.2.

We define η to be the composite of immersions ηve (constructed below)

having the properties

} (0 ^(D(v9 e)) = K,

(ii) ηVte(x) = x ϊoτx(ΞK- D(v, e),

where v is an arbitrary vertex of Aλ in the interior of %, and e is any edge

incident to v. Since {D(υ9 e)} is a disjoint collection, η satisfies (4.3). (Also,

the order of composition is immaterial; i.e., (4.3) is satisfied regardless of it.)

To construct ηve, consider all surfaces S in B x of the followng types (1, 2, 3

and 4) starting with those of type 1 defined as follows

(4.6) S - (s(v) - (D(v, ex) U D(v, e2))) U c'(ex) U c'(e2),

where c\eλ) denotes the "half" of c(et) adjoining s(v). (Here v is a vertex of

both el9 e2 and eι φ e2.) More precisely, the plane perpendicular to et at its

midpoint bisects c(et) into two halves; c'(e,) is the half adjoining s(υ). The

surfaces of type 2 are those of the form

(4.7) S = (dB(f, 1) - (D(vl9 eλ) U D(v2, e2))) u c\ex) U C{e2\

where/is a face of Al9 υλ and v2 are vertices of/, et (i — 1, 2) is incident to υ,

but not an edge of/, and ex φ e2. Those of type 3 have the form

(4.8) S = c\e),

where c'(e) is a half cylinder in Bv Finally, S is of type 4 if

(4.9) S = (s(v) - D(v, e)) U c\e\

where Ό is a vertex of e. We illustrate these surfaces below.
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Type 1

Type 2

Type 3

Type 4

FIG. 4.1

Note that the surfaces of types 1, 2 and 3 are all diffeomorphic to Sι X R,

and those to type 4 to D2, where D 2 is the unit disc in R2, and Sι is its

boundary-the circle.

Let v be a vertex of A λ in the interior of 5C, and e an edge incident to v. We

claim that there is a finite sequence of surfaces Sj (where 1 < j < k) in AΌf

types 1, 2, 3 or 4 satisfying

(i) Sk is of type 4 and the others are not,

(ii) Sι = c'(e) adjoining s(v),

Sj n SJ+ι is diffeomorphic to Sι (when 1 < j < k),

Sj u SJ+ι is a smooth surface and

U s,-κ.

(4.10)
(iii)

(iv)

(v)

We use this claim (before verifying it) to construct ηoe. Pick a filtration of

D(v, e)

(4.11) D(v, e) = £>, D D2 D D3 D D Dk

such that each £>, is diffeomorphic to D2, and DJ+ x is contained in the interior

of Dj (for 1 < j < k), and let SJ be the closure of D, - DJ+V Using (4.10), it

is easy to construct an immersionη'oe : D(v, e)—*Ksuch that
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(4.12)
(ii) η^e maps SJ diffeomoφhically onto 5,(1 < j < A:).

Then define ηΌe by the formula

Finally, we construct surfaces S, satisfying (4.10). Let Tl9 T2, , Γ7 be a
list of all the surfaces of types 1 and 2 in A; clearly

/

(4.14) U Tj-K.

To each surface 2}, associate two edges ef, e* and two vertices ΌJ9 υ* defined
as follows; if 7} is a surface of type 1, then vj~= Vj+ = v in formula (4.6) while
(making an arbitrary choice) ef— ex and e/ = e2 in (4.6); if T} is a surface of
type 2, then ej= ev Vj~= vv e+ = e2 and v+ = v2 in formula (4.7). Select
"immersed" polygonal paths connecting e to e\ and ey

+ to ef+ι (for 1 < 7 <
/); i.e., sequences of edges e(j, 1), e(j9 2), , e(y, Â ) and vertices v(J9 0),
ϋ(y'j 1)> # ' ' 9 VU> kj) (where 0 < j < /) satisfying

(i) t>(0, 0) = v, υ(j, 0) = Όj+ (Kj< /),

(ii) v(j,kj) = vf+l (0<j<l),

(iii) u(y, 1 - 1) and v(J> 0 are the vertices of e(j, 1),

(iv) e ( 0 , l ) - β , φ , l) = e/ ( 0 < 7 < / ) ,

(v) e(j,k,)-ej-+ι ( 0 < 7 < / ) ,

(vi) φ , / ) ^ e α , / + l ) (1 <i<kj).

Let σ(y) = 1 + k0 + ̂  + + kj_λ (for 1 < j < /), σ(0) = 1 and k =
σ(/) + 1 define the surfaces St by the following formulas

(i) 5 σ O ) = 7}forl < 7 < / ;

(ii) Sι = c'{e) the surface of type 3 adjoining s(v);

(iii) Sk = (j(u') - D(υ\ en) U c'(e/

+) the

surface of type 4 where 1/ and υ/1" are

(4.16) the vertices of e* and

(iv) SσU)+p (where 1 < p < kp 0 < j < I) is

the surface of type 1 determined by replacing

v, ex and e2 in formula (4.6) by v(j9 p),

e(j,p) and e(j,p + 1), respectively.

Clearly, these surfaces satisfy (4.10).
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5. Proof of the corollaries

In this section, Corollaries 0.2, 0.3 and 0.4 are deduced from Theorem 0.1.

Proof of Corollary 0.2. Let G : K —» K be the immersion posited in Theo-

rem 0.1; by [13, §3], it is a presentation for a 2-solenoid h : Σ -> Σ where Σ is

the inverse limit of

(5.1) κtκtκ£- .

Applying H( ) to (5.1), we observe i/,(Σ) is the inverse limit (cf. [1, Theorem

3.1, p. 261]) of

(5.2) H,(K) ^ H,(K) & H,(K) &

hence H0(Σ) = Z and Hχ(Σ) = 0 since K is simply connected. By [13, Theo-

rem B], h : Σ -> Σ is conjugate to an expanding attractor.

Proof of Corollary 03. As in the above argument, let (Σ, A) be the

2-solenoid presented by (K, G). Then Σ is homeomorphic to an (orientable)

expanding attractor Λ [13, Theorem B]. In fact, there is a nested sequence of

compact manifolds K{ (where Kt D Ki+ι) such that Π Kt = Λ, and each Kt is

homotopically equivalent to K. Note the following three properties.

(a) each K{ is simply connected,

(5.3) (b) H\K)Φ%

(c) Λ is connected.

(Property (b) follows from [9].)

We proceed via proof by contradiction assuming a fiber bundle

(5.4) F-^A^B

where F is a Cantor set, and B is a 2-dimensional manifold. B cannot be the

2-sphere since this would necessitate Λ = B X F contradicting (5.3)(c). (Re-

call the structure group for (5.4) is totally disconnected.) A similar argument

shows B is not the projective plane; hence B must be aspherical. Since B is an

ANR, p extends to a map p' : Kt-^ B for some index i; but, by (5.3)(a), p\

and hence p, is homotopic to a constant map. By the covering homotopy

theorem for (5.4) and property (5.3)(c), the identity map of Λ is homotopic to

a constant map; in particular, i/2(Λ) = 0 contradicting (5.3)(b).

Proof of Corollary 0.4. Choose {K, f) and (K, g) to be (K, G) and (K, G2),

respectively, where (K, G) is the immersion posited in Theorem 0.1. Let (Σ, h)

be the 2-solenoid presented by (K, /) . Then (K, g) is a presentation for

(Σ, h2). Note that property (i) of Corollary 0.4 is true because K is simply

connected. By [9], H2(Σ, R) is a finite dimensional R-vector space, and the
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maximum eigenvalue of

(5.5) Λ* : 7/2(Σ, R) -> # 2 ( Σ , R)

is a real number larger than 1. Hence this linear transformation and

(5.6) ( A 2 ) * : i / 2 ( Σ , R ) ^ J / 2 ( Σ , R )

are not conjugate. Consequently (Σ, h) and (Σ, h2) are not topologically

conjugate; i.e., property (ii) of Corollary 0.4 is also satisfied.

6. Proof of Proposition 33.

We first outline the proof of Proposition 3.3. Let σ be either a vertex v9

edge e or face / of Av and associate to it a subcomplex Eσ of Aa (where

a = 104) defined by the following formulas

(i) EΌ = b'(v),

(ii) Ee = t'{e) u b'(v0) U b'(υλ) where v0

and t>! are the vertices of e,
(6.1)

(iii) E} = /»'(/) U ί U f(e,)\ U ί U 6'(«,

where e, , t;f are the edges and vertices of/.

(See §3 for the definitions of b\ ), ί'( ) and p\ ).) If n is a positive integer,

and S is a subset of R3, then nS denotes the image of S under multiplication

by n\ i.e.,

(6.2) nS= {nx\x G5).

Throughout this section, we use E to denote any set of the form nEσ; each E

is a compact 3-manifold with boundary and a subcomplex of Aa. For any

positive integer m, B(E, ma) is the subcomplex of B,^ defined in §1. We will

construct smooth flows φw( , t) defined in the closure of B(E, ma) — E which

will be transverse to both dB(E9 ma) and 92s, and flow each point in

dB(E, ma) to a unique point of dE defining a homeomorphism

(6.3) gm : dB(E,ma)-*dE.

Any two of these flows <pk(, t), φm( , 0 will be equal in a sufficiently small

neighborhood of dE; thus all of the composites

(6.4) g-ιgk : dB(E, ka) -» dB(E, ma)

are diffeomorphisms. When E is EΌ, Ee and Ef, respectively, and k = 1,

n = m, these composites (6.4) are the diffeomorphisms posited in Proposition

3.3.
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We now begin to fill in the details by defining a slightly different cell
structure on dE than the one induced from Aa: namely, we amalgamate some
faces. To explicitly describe this cell structure, consider the figure below
showing 5 faces ft of Aa all sharing the vertex (0, 0, 0) with fλ, /2, /3 in the
(x, y)-plane,f4 in the (x, z)-plane and/5 in the (y, z)-plane;

FIG. 6.1

amalgamate fvf2 and/3 into a single 2-cell/j U /2 U /3. If f{(i = 1, , 5)
are five faces of Aα in dE which can be mapped by a rigid motion of R3 to ft

(i = 1, . . . , 5), respectively, then amalgamate /{, fr

2 and/3 into a single 2-cell
which we call a special 2-cell in dE. The other faces of Aa in dE (not of type
f[, j'2, /3) represent the remaining 2-cells in dE. The 0-cells are just the vertices
of Aa in dE, and the 1-cells are those edges of Aa in dE which do not meet the
interior of a special 2-cell.

Next we define a finite valued vector field F( ), whose domain is the set of
all cells in dE, which will approximate (d/dt)φx(x, 0). If σ is a 2-cell in dE,
F(σ) is the unit vector perpendicular to σ and pointing into E. If τ is a 0 or
1-cell in dE, and {σ,} is the set of all 2-cells (in dE) containing v, then F(τ) is
the unit vector in the same direction as S/^α,-).

Let &m denote the closure of B(E, ma) — E and define a smooth vector
field K,(JC) (for x e S,)by

(6.5) Vγ(x) = Σvη(x)F(v) + Σeηe(x)F(e) + Σσηo(x)F(x),

where v, e and σ vary over all 0-cells v, 1-cells e and 2-cells σ in dE; ηv, ηe and
ησ are smooth R-valued functions associated to v, e and σ, respectively, which
will be described after a short digression. We will eventually integrate Vx to
construct the flow φv

Let d\x,y) denote the cubical metric on R3; namely, for x,y E R3,

(6.6) d'{x,y) max|x( -
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where x = (xv x2, x3) and >> = (yvy2> J^)- If 5 is a subset of R3, and ε > 0,

then S(ε) is defined by

(6.7) S(ε) = { x 6 R 3 | φ , S ) < ε } .

In particular, we are interested in E(ε) when ε < 2~ιa.

We next associate to the cells v, e, σ of 92s thickenings v', e', σ' in &x. To

each 0-cell v in dE, associate the 1-cell v' (in Sj) defined by

(6.8) υ' = {v - rF(v)\0 <r <a}.

If e is a 1-cell in dE with vertices v0 and vl9 define e' to be the 2-cell in the

plane containing e U {x + F(e)\x G e] such that

(0 * u ι?ό u t>ί c aer,

(ii) de' -(euv'o\j v\) C dB(E, a).

If σ is a 2-cell in dE with {e,.} denoting the set of all edges contained in θσ,

define σ' to be the 3-cell (in &x) such that

0) ( U */) C 3σ', and

( 6 1 0 ) ' // \ \

(ii) do' - I ί U eή U σ) C Θ5(£, α).

If D is a subcomplex of dE, define D' by

(6.10.1) / ) '= U T',
T

where r varies over all the cells in D. The following statement is easily

verified.

Remark 6.1. There is a homeomorphism h : &λ —» dE X [0, 1] satisfying

h(D') = Z) X [0, l]/or eαcA subcomplex D ofdE.

Fix numbers ε, (i = 1, 2, 3) such that α » ε! » ε2 » ε3 > 0 (for instance,

ε, = 10~'~4). We choose the functions ηΌ, ηe and ηa in formula (6.5) to satisfy

the following properties
(i) 1 > ητ(x) > 0 for each cell r in 9£,

r Λ , v ί 1 iίd(x,v') < 2-χελ,(U) ^ " l
j n

 ( i i i ) ^ ( x ) + 1 ϊ« ( x ) + η > ( x ) l tf rf(x' e ) < 2

^ ' ' where u and u are the vertices of e,

(iv) ηe(x) = 0 if d(x, e') > ε2, and ηa(x) = 0 if

</(*, σ') > ε3,

(v) Στ ητ(x) = 1 for all x ε δ, where T varies

over all cells in 9£.
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Let E be a second set of the form nEσ (cf. (6.1) and (6.2)) with {r^} its

associated partition of unity, we additionally require the following con-

gruences: if T is a translation of R3, σ a cell in dE, and U a neighborhood of σ

in R3 such that To is a cell in dE and (TU) Π E = T(U Π E), then

(6.12) ησ(x) = η'Tσ(T(x))

for all Λ: E R3. (Families of functions satisfying properties (6.11) and (6.12)

exist.)

By integrating Vx(x) (cf. (6.5)) inside &l9 we construct the flow φx(x, t). To

define the flows φm(λ, t), set E = mE, and let V[(x) be the vector field

defined on the closure &x of B(E, a) — E by formula (6.5). Then define a

vector field Wm(x) on S m by

(6.13) FKm(χ) = V'x(mx).

(Note mδ m = Sj.) Choose cq > 0 sufficiently small (independent of E) so

that E(ax) c £ ( £ , α) for all sets E of the type nEσ; cf. (6.1) and (6.2).

Consequently, E(m~xax) c ^ ί ^ , wα) for every positive integer m. For each

pair £• and m, select a smooth Urysohn function ψm on R3 (i.e., ψw(R3) C

[0, 1]) satisfying

, x ί l i f x G R 3 - ί ί m ^ , ) ,
(l) Ψw(*) = ̂

(6.14) 1° tf*G

(ϋ) < wα2 for / = 1, 2, 3,

where α2 > 0 is a real number independent of E and m. If i? is a second set

of type Λisσ (cf. (6.1) and (6.2)), and ψ'm is its associated Urysohn function,

then we require the following additional property: for each translation T of

R3, cell σ in dE and neighborhood U of σ in R3 such that To is a cell in dE

and (Γί/) = n έ = Γ ( ί / f l £ ) ,

(6.14.1) ψ m * ) ) = ΨJ*) for all * e σ<">.

(Here σ ( m ) = (m) ι(mo)' where (mo)' is defined by formula (6.10.1) using
E = mE in place of E.) We proceed to construct these Urysohn functions.
Let c0 denote the cube centered at (0, 0, 0) whose sides have length a and are
parallel to the coordinate axes, and ψ : R3 —»R be a fixed smooth Urysohn
function such that

, 1 if d'(x, c0) > al9

(6.14.2) * ( * ) - { Q . f ' < ( 2 Γ V
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For each cube c in Λa, define the composite ψc = xpT where T is the unique

translation such that T(c) = co; define ψj by the following formula

(6.14.3) ψ,(x) - πcψc(x);

i.e., the product over all cubes c of Aa which are inside E. For each positive

integer m, define ψm by

(6.14.4) ψm(χ) = ψί(mχ),

where ψ[ is the Urysohn function defined by (6.14.3) for E = mE.

Now define a vector field Vm(x) on &m by

(6.15) Vm{x) = ψm(*)fFm(*) + (1 - *m(x))Vx{x)\

the flow φw(x, t) is defined by integrating Vm(x).

Next we state several lemmas about the flows φm(x, t), deduce Proposition

3.3 from them, and finally complete the paper by proving these lemmas.

Lemma 6.2. For each x E dB(E, ma), Vm(x) is transverse to dB(E, ma)

and points into B(E9 ma). For each x E dE(ε) Π &m (where ε > 0), Vm(x) is

transverse to dE(ε) and points into E(e).

If D is a subcomplex of dEy define Z)(m) by

(6.16) />(*»)= ( J τc»),

where T varies over all cells of dE contained in D; cf. the sentence following

(6.14.1).

Lemma 63. Let D be any subcomplex of 9is, and m a positive integer, then,

for each x E Z>(m), there exists a number tm(x) > 0 (depending continuously on

x) such that

(i) ψm(x, t) (ΞD^forO<t < tm(x),

Let E, E be two sets of the form nEσ (cf. (6.1) and (6.2)), and φm, φ'm the

associated flows on S m , Sm, respectively. Suppose D is a subcomplex of 32£,

U a neighborhood of D in R3, and T : R3 -• R3 a translation.

Lemma 6.4. If T(U) n E = T(U n E), and T(D) is a subcomplex of dE,

then

Tφm(x, t) = <p'm(Tx, t)

for all x E D{m) and all t such that 0 < t < tm(x). (Recall tm(x) is described in

Lemma 6.3 and D(w) in (6.16).)

Because of Lemma 6.3, we can define the homeomorphisms (6.3) by the

formula

(6.17) gm(x) = Ψm{x, tm(x)) for all* e 95(£, ma).
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Let σ be a 2-cell in dE. Then σ ( m ) (cf. (6.14.1)) is a smooth 3-cell with corners,

and d&m π σ ( m ) is a smooth 2-cell with corners which we denote by σm. By

Lemma 6.3, the composite g^gλ restricted to σx is a homeomorphism of σι to

σm, which we denote by gσm. But the composition

(6.18) g-ι

gι : dB(E, α) -> 9£(is, nα)

is always a diffeomorphism because the flows ψι(x, t) and φn(x, t) agree for JC

sufficiently close to dE and / > 0 by (6.14) and (6.15). Hence each gom is a

diffeomorphism.

Lemma 6.5. There exists a number α3 > 0 such that, for all E of type nEa

{cf. Lemmas 6.1 and 6.2), any positive integer m and each 2-cell σ in dE,

\dgσ,m{χ)\ > «3M

for all vectors X tangent to σv

We now use these lemmas to complete the proof of Proposition 3.3. We

choose the diffeomorphisms ψυ π, ψe n and xpfn (posited in Proposition 3.3) to

be the composites g~xgγ (of (6.18)) where E is Ev, Ee and Ef9 respectively. The

inequality in Proposition 3.3 is implied by Lemma 6.5, and the last two

sentences of the Proposition are satisfied because of Lemmas 6.3 and 6.4.

Our last task is to prove these lemmas.

Proof of Lemma 6.2. For m = 1, the transversality statements follow

directly from (6.5), (6.11) and the definition of E( ); for m > 1, they are a

consequence of the case m = 1 by using (6.13) and (6.14)(i).

Proof of Lemma 6.3. For each 0-cell v of dE and x E t/, FJ(JC) is parallel

to the line segment t/; for each 1-cell e of dE and x G e\ FJ(JC) is parallel to

the plane containing e'. Because of (6.13) and (6.15), these properties persist

when Vx(x) is replaced by Vm(x) for any positive integer m. Consequently, for

each fixed point x E S w , the R-valued function d'(φm(x, t), E) is differentia-

ble (in /) provided φm(x, t) is in the interior of &m. By the compactness of &m

together with Lemma 6.2, the derivatives of these functions are all strictly

negative and bounded away from zero. Hence for each x E &m there exists a

smallest number tm(x) > 0 such that d'(φm(x9 tm(x)), E) = 0. In particular,

<Pm(x> '*(*)) G dE> a n d Ψm(x> 0 ^ S m for 0 < / < tm(x). It is easily seen that

tm(x) depends continuously on JC. By the second sentence of this proof and

Lemma 6.2, for each cell T in dE and x E τ ( m ) , φm(x, t) E τ ( m ) for 0 < / <

tm(x); this implies property (i) of Lemma 6.3.

Proof of Lemma 6.4. Denote the vector fields (cf. (6.15)) determining φm

and φ'm by Vm and V'm, respectively. Because of (6.5), (6.12), (6.13), (6.14.1)

and (6.15), we have that Vm(x) = V^(T(x)) for all x E Z) ( m ). By the unique-

ness of solutions to ordinary differential equations, this implies the validity of

Lemma 6.4.
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Proof of Lemma 6.5. We factor gσm as the composite of three maps

So = Silσi : °i->°>

(6.19) Km : * - > * * ,

Km < -> σm,

where σ^ = σ(/w) n ^ ( m " 1 ^ ) ; cf. the sentence after (6.13) for the definition

of α,. Both Λσm and kσm are induced by the flow φm. To be precise, for each

x E σm there exists a unique number t*(x) such that

(0 0<C(x)<tm(x),

The function /^"(JC) is continuous (in x); this is seen by the same argument

used to prove Lemma 6.3. In fact, the functions tm(x) and t^{x) are smooth

for x 6 σOT; in particular, gσ is a diffeomorphism. The map (diffeomorphism)

kσm is the inverse of the diffeomorphism

(6.21) x -» φm(x, / + (*)) for x E σm.

Define a smooth R-valued function tm(x) (for y E σ "̂) by the following

formula

(6.22) tm(y) = tm(ka,m(y)) - C(kajy))

and the map (diffeomorphism) ham to be the inverse of the diffeomorphism

(6.23) y -> φ m ( 7 , /-(^)) ioτy e σ+.

With these preliminaries, Lemma 6.5 is an immediate consequence of the

following assertion whose verification will complete this article.

Assertion 6.6. There exist numbers γ, > 0 (where i = 1, 2, 3) such that, for

all E of type nEσ (cf. (6.1) and (6.2)), any positive integer m and each 2-cell σ in

dE,

(i) \dgβ(Xι)\>γι\X1\,

(ii) idh^XJl > y2\X2\,

(iii) \dka>m(X%)\ > γ 3 | * 3 | ,

where Xv X2 and X3 are arbitrary vectors tangent to σl9 σ and σ "̂, respectively.

We first observe that inequality (i) follows from Lemma 6.4 with m = 1,

since there are only finitely many equivalence classes of 2-cells σ if we

proclaim as equivalent 2-cells σ and σ in dE and θ£, respectively, provided

there exist a neighborhood U of σ (in R3) and a translation T such that

Γ(σ) = σ and T{U Π E) = T(U) Π £

To verify inequality (iii), let E = mE9 and let p : R3 -> R3 denote multi-

plication by /w. X3 is tangent to σ̂ J" at some point x E σ* and let T be a 2-cell

in 3.E such that r c mσ and w x £ τ , + ; cf. (6.19). Consider the following
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commutative diagram

(6.24)

(cf. (6.13), (6.14), (6.15) and (6.21)). Since \dp(X)\ = m\X\ for all vectors X

tangent to R3, diagram (6.24) shows that it suffices to demonstrate inequality

(iii) when m = 1. But this follows now from Lemma 6.4 in the same way that

inequality (i) did; i.e., there are only finitely many maps kτl up to translation.

To verify inequality (ii), we need an extra ingredient not needed above;

namely, we use a basic result from the elementary qualitative theory of

ordinary differential equations which gives a Lipschitz constant for the

solutions in terms of the Lipschitz constant for the equation. Because of (6.5),

(6.13), (6.14) and (6.15), there exists a number βλ (independent of E, m and σ)

such that for each x E σ ( w )

(6.25)
the angle between Vm(x) and the plane through x parallel to

σ is > βv

Also, there exists a number β2 (independent of E, and m and σ) such that (for

x e σ
( m ))

(6.26) β2>\Vm(x)\

Arguing as in the verification of inequality (i) by using formulas (6.5) and

(6.12), there exists a constant /?3' (independent of E and σ) such that

(6.27)
dx,

for i = 1, 2, 3;

and arguing as in the verification of inequality (ii) using formulas (6.13) and

(6.27), we obtain that

(6.28) for i = 1, 2, 3.

Combining (6.27), (6.28), (6.14) and (6.15), there exists a constant β3 (inde-

pendent of E, m and σ) such that, for x

3F_

σ ( m )

(6.29)
dx,

(x) < mβ3 for i = 1, 2, 3.

Inequality (iii) now follows from (6.25), (6.26), (6.29) and the theorem about

ordinary differential equations referred to above. (See [3, p. 169] for the exact

statement of this result.) This theorem is applied to φm; to be precise, it is
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applied to the normalized vector field (Vm(x) F(σ))~1Vm(x) which has the

same integral curves as φm; cf. the paragraph preceding (6.5) for the definition

of F(σ).

Added in Proof. We have recently answered Question 0.5; see F. T. Farrell

and L. E. Jones, Expanding immersions on bounded manifolds, to appear in

Amer. J. Math. This paper also contains a negative answer to Question 0.7;

see Remark 0.9.
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