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KATO'S INEQUALITY AND THE SPECTRAL
DISTRIBUTION OF LAPLACIANS ON COMPACT

RIEMANNIAN MANIFOLDS

H. HESS, R. SCHRADER&D. A. UHLENBROCK

1. Introduction

In this note we study Bochner Laplacians Dv given by connections V on a
smooth hermitian vector bundle V over a compact Riemannian manifold M
(without boundary for simplicity). We will compare the spectrum of Z)v with
that of the Laplace-Beltrami operator Δg on M.

Our analysis is based on Kato's inequality [11] which we prove for the
present situation, and the ensuing domination of the semigroup exp / Dv by
exp /Δg, [8] (see also [18], [19] for the special case of the complex line bundle
over RΛ). This domination leads to the comparison of the spectra in the form

(1.1) Tr exp t Dv <nΎτ exp /Δg (t > 0),

where n is the rank of V. Estimate (1.1) of course yields inequalities for the
corresponding Riemann zeta functions.

We extend this result by considering second order (linear) differential
operators on V which differ from Dv by a zero order differential operator,
i.e., a strict vector bundle endomorphism.

As an application we will consider Laplace-de Rham operators Δ and
spinor Laplacians t2. They differ from the appropriate Dv by a strict vector
bundle endomorphism involving the curvature of the connection employed.
To cover the most general case, both exterior forms and spinors are allowed
to have coefficients in an arbitrary hermitian vector bundle with connection
over M. We then compute the differences Δ — Dv and il2 — D v , obtaining
the corresponding Weitzenbόck formulas.

This note resulted from our study of the behavior of Yang-Mills potentials,
which are the Christoffel symbols of connections (over RΛ). Over arbitrary
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Riemannian manifolds they generalize to connections in hermitian vector
bundles, including the electromagnetic potentials as the special case where the
vector bundles are line bundles. In this context, estimate (1.1) reflects a
diamagnetic effect of Yang-Mills potentials. Its various aspects (over Rπ) have
been exploited by several authors [4], [6], [17].

2. Kato's inequality for the Bochner Laplacian

Let V be a connection on V which is always understood to be linear and
with respect to the hermitian structure. Furthermore, let gV be the Levi-Civita
connection on TM. These two connections induce a connection on T*M ®
V, the tensor product, which we denote by V1 in the present section. For fixed
M we follow the convention to abbreviate TM, T*M by T, T* respectively.
The metric tensor g will variably be considered as a linear map from
C°°(T*® T*) or as a bilinear map from C°°(T*) X C°°(Γ*) to C°°(M X R).

The Bochner (or reduced) Laplacian Dv is then defined by the diagram

Dv : C">(V)->C~{T*® K)^C°°(Γ® Γ* ® V)%• C^iV).

(Note that we use the physicist's sign convention.) The hermitian structure

<•,•>: C°°(V) X C 0 0 ( F ) - ^ C 0 0 ( M X C)

and the volume density |</vol| on M make C°°(V) into a pre-Hilbert space
whose completion will be denoted by L2(V), the Hubert space of square
integrable sections in V. We will write the scalar product as

(2.1) « α , j 8 » = f <α,j8>|</vol|

for a, β EL L\V). A routine computation shows that Z>v is symmetric on

If V is the trivial bundle M X C and V the standard connection d, then £>v

is the Laplace-Beltrami operator Δg.
We need some further notation and conventions. First g and < , > induce

a hermitian structure on T* ® V which will be denoted by < , >g. In
addition, < , ) induces sesquilinear maps

C°°(Γ* ® K) X C°°(F) -> C°°(T* ® C),

C°°(V) X C°°(Γ* ® K)->C°°(Γ*®C),

C°°(T* ® V) X C°°(T* ® V) -> C°°(T* ® T* ® C),

which we also denote by < , >. Furthermore, the continuous nonnegative
function \a\ on M will mean <α, α> 1 / 2 for a E C°°(F), <α, a}1/2 for α G
C°°(Γ* ® V\ or g(α, α)1/2 for a G C°°(Γ*). Finally, write \a\e := (|α|2 +
ε 2) 1 / 2 for ε > 0. Then \a\e is C°° on M and \<x\e > ε.
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Now let a E C^iV). We will compute Δg |α|e in two ways. First we have

\\a\\ = g o gV o d\a\\ = 2g . ,V(|α|.rf|α|.)

(2.2) -2 |a | β Δ, |α | ,

On the other hand

Ag\a\2

ε = Δ g « α , α> + ε2) = g o gV o </<«, «>

= g ° .V<Vα, α> + g o V<α, Vα>
(2.3)

<V! o Vα, α> + 2g<Vα, Vα> + g<α, V1 o Vα>

= 2 Re<Z)vα, α> 4- 2<Vα, Vα>g = 2 Re<Z)vα, α> + 2|Vα|2.

Next we claim

(2.4) μ|«|e|
2 < |V«p.

Indeed we have d\a\] = 2\a,d\a\t and also d\a\] = 2 Re<Vα, α> e C°°(Γ*).
Thus

l«leM«l.f = 8 (Re<Vα, α>, Re<V«, « » < |<Vα, α>|2.

We now claim the following inequality

(2.5) |<Vα,α>|<|Vα| | α | < | V o | |α|.,

from which relation (2.4) follows. Indeed (2.5) is a statement on each fibre.
Therefore it is an immediate consequence of the following easy lemma in
linear algebra.

Lemma 2.1. Let %γ and %2 be two (finite-dimensional) Hilbert spaces with
scalar products < , >i and < , >2, respectively. Denote by < , > the induced
scalar product in %ι ® Xj, and also by < , >2 /Ae induced map (%x ® SK̂ ) X

(A! ® Λ2, A2) ̂  Aj < A2, A2>2, (A! G ϋd, A2, A2

/or αwy x E %γ ® %χ and y G Xj the following generalized Schwarz

inequality holds:

«χ>y>2> <χ>y>i>ι < <*> χ> <y>y>τ

Proof. Write

x =

with Aj, A{ G 3 C , , ^ 6 X J and <>>, A^>2 = 0. Then
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such that

«*, >>>2, <χ,^>2>j = <*„ hx\ «y,y>2)
2

< <x, x> <>>,>> >2. q.e.d.

We now compare (2.2) with (2.3) and use (2.4) to obtain the first part of
Proposition 2.2. The Bochner Laplacian Dv satisfies Kato's inequality

(2.6) Re</)vα, α> < \a\ε\\a\ε, (α G C°°(F)).

/AZ /Ae ftm/7 e \0 the following inequality between distributions in Φ '(A/ X R)

(2.7) Re<Z)vα, sign^ α> < Δ g |α |, (α

T I T on S U PP «>
sign^ α =

otherwise,

ξ being an arbitrary measurable section in the sphere bundle of V.
The second part of the proposition is an easy consequence of the first part

(see, e.g., [8]).
Remark 23. It is not difficult to show the existence of measurable

sections in the sphere bundle of V. The above definition makes sign^ a also a
measurable section in the sphere bundle of V. The proof of the proposition is
the base-free formulation of the original proof of Kato's inequality. Note that
no use has been made of the compactness, so it holds in the noncompact case
as well. However, compactness is used in the following corollary, although
there are cases where it is possible to do without, as for example when
M = RΛ (see, e.g., [8]).

Corollary 2.4. Z)v is essentially self-adjoint on C™(V).
Proof. Since -Z>v is symmetric and nonnegative on Cc°°( V\ it is sufficient

to show that Ker(-Z>v + λ)* = 0 for some λ > 0 by a standard criterion for
essential self-adjointness, (see, e.g., [10]). Thus let ax e L2(V) be such that

« α 1 , ( - Z ) v + l ) α » = 0

for all α G CC°°(F). But then as a relation in ^ '(K), the dual of CC°°(F),
(-Dv + l)aι = 0, and therefore by Kato's inequality we have

Now the resolvent (-Δg + I)"1 maps CC°°(M X R) and hence its dual into
itself. Furthermore it is positivity preserving since its kernel is positive. This
again follows from the fact that exp — t(-Δg + 1) has positive kernel [13].
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Since \ax\ G fy'(M X R) we obtain

|«il = (~Δg + lΓVil < 0,

implying aι = 0 as desired.
To extend Kato's inequality to some second order differential operators,

which are not necessarily of the form Z>v, let L be a strict C°°-vector bundle
endomorphism of V, whose restriction to each fibre is hermitian, i.e.,

<Lxa, β} = (a, Lxβ}> (α, β G Fx, x G M).

Since M is compact, L induces a bounded, self adjoint operator on L2(V),
which also will be denoted by L. Therefore Dv + L is essentially selfadjoint
on CC°°(V) and semibounded from above.

Furthermore, ϊoτ x E M let

lx := sup spec Lx.

By pointwise multiplication, (JX)X(ΞM defines a C°-vector bundle endomor-
phism of M X R (see, e.g., [10]). Since Λf is compact, this endomorphism
extends to a bounded selfadjoint operator on L\M X R) which we denote by
/ satisfying

/ := sup lx = sup spec / = sup spec L.

This gives

Re<Lα, α> < \a\I\a\ < ϊ\a\2 for a G C°°(K),

and thus relations (2.6) and (2.7) extend, respectively, to

(2.60 Re<(Z)v +L)a, a) < \a\ε(\ + l)\a\ε < \a\ε(\ + /)|α|

(2.7) Re<(Z>v +L)α, sign^ α> < (Δg + /)|α| < (Δg + ί)\a\.

3. The main result

The general framework in [8] allows to discuss the relation between the
semigroups exp t(Dv + L) and exp ί(Δg + /). First we note that the map

I I :L\V)-*L\M X R)

is an absolute map which is absolutely pairing in the sense of [8]. With the
help of sigiî  as given above, this indeed follows as in [8]. Also, exp ίΔg is
positivity preserving [13], therefore by Trotter's product formula [20], [5],
exp t(Δg + /) is positivity preserving. It follows that (-Δg - / 4- c)"1 is posi-
tivity preserving for each c > I.

Hence by Kato's inequality (2.7r) and theorem 2.15 in [8], exp t(Dv + L) is
dominated by exp t(Δg + /) which again is dominated by etl exp /Δg for all
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t > 0. More explicitly, this reads as follows:
Let exp t(Dv + L)(x,y) G Hom(ϊ^, Vx), (x,y G Λf), be the kernel of

exp t(Dv + L). We take the operator norm fibrewise and obtain

||exp t{Dv +L)(x,y)\\ < exp t{Δg + /)(*,>>)

< e''(exp t\)(x,y).

Setting x = y and integrating out, we obtain the following a priori estimate.
Theorem 3.1. With the notation as above, the estimate

Tr exp t(Dv + L ) < n T r exp t(Δg + /) < n e" Tr exp tΔg

holds
We note that this a priori result may be extended to noncompact cases as

well. Then however, lx has to tend sufficiently strongly to -oo as x -» oo to
make exp t (Δg + /) of trace class giving in particular Δg + / a discrete
spectrum. As an example, consider the case M = Rm where Δg is the ordinary
Laplacian Δ. In addition, for simplicity, let L be such that / is bounded above.
Then as in, e.g., [6] we have the following additional result:

Tr exp t(Dv +L) < n T r exp t(Δ + /)

n(2π)-m(exp -t(k2 + lx) dmkdmx.

Since the last estimate is given in terms of an integral, involving the symbol of
Δ + /, over phase space (the cotangent bundle), it is called a classical bound
by physicists.

4. Laplace-de Rham operators

Consider first the vector bundle V := APT* ® C for some p G No, p <
dim M. By means of the Gram determinant, the metric g makes V a
hermitian vector bundle. The Levi-Civita connection ?V on Γ induces a
connection on APT* and hence on V, which is denoted by 8VP and is with
respect to the hermitian structure.

The Laplace-de Rham operator Δp = -{d8 + 8dγ and the Bochner Lapla-
cian DgvP on V are related by the Weitzenbόck formula involving the
curvature tensor R, [21], [15], [16],

(4.1) Δ' = Dgvp + DpR,

where DPR is a strict vector bundle endomorphism of V which is selfadjoint
on each fibre. Hence the discussion of the previous section may be applied.

In two special cases it is easily computed: D°R = 0, and DιR is minus the
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Ricci tensor (with the sign convention Ry = Rk

ikj by which ordinary spheres
have positive curvature). Note that s u p ^ ^ sup s$ec(DpR)x < 0 if the curva-
ture is nonnegative constant [12]. (The same reference discusses conditions
for DPR to be negative definite on each fibre with its consequences.)

This result may be generalized in the following way: Let F be an arbitrary
hermitian vector bundle over M with hermitian connection FV. Consider now
the hermitian vector bundle V := APT* ® F, and denote by V̂  the exterior
covariant derivative on V induced by FV

V* : C 0 0 ^ ® F) -* C°°(Ap+ιT* ® F).

(For normalized conventions we refer to [7].) We will compare Vp with the
tensor product of the connections 8VP and FV9 which will be denoted by v7*:

Vp : C 0 0 ^ ® F) -> C">(T* ® ApT* ® F).

Therefore let

Ap : T*®ApT*^>Ap+ιT*
be the strict vector bundle morphism induced by the wedge product via

Ap(η β α ) = τ,Λ«, (η G Γ*, α G ΛT*),

implying [15] that

%p = (Ap ® lF) o V^.

Consider the strict vector bundle morphism

gp : T* X Ap+ιT*^>ApT*

given in terms of the canonical isomorphism T* —» T, η ι-> η # (induced by the
metric) via

gp(η ® a) = η # Jα (η G Γ , α G Λ^+1Γ*).

The exterior covariant coderivative then is defined to be the composition

^ y/»+1 — gp ® 1 f

V*p : C°°(Ap+ιT* ® F) -^ C°°(Γ* ® Λ^+1Γ* ® F) -• C°°(APT* ® F).

Thus V̂  and V+/7 are first order linear differential operators which are formal
adjoints of each other, generalizing d and 8 respectively. We define

(4.2) Δ' := - (V*-1 o V**"1 + V** ° V^)

to be the generalized Laplace-de Rham operator on .F-valued/j-forms.
Denoting the tensor product of the connections 8Vι and Vp by gVι ® V ,̂

we may rewrite (4.2) as

Δ2 = (β1* ® \F) o (̂ V1 ® Vp) o V̂

with
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An easy calculation shows that the symmetric part of βlφ is equal to
g ® 1Λ,T . Therefore the difference of the Laplacians Δ' - Z)v, is a differen-
tial operator of zero order, i.e., a strict vector bundle morphism, which can be
expressed in terms of the curvature of Vp. The latter in turn is determined by
the Riemann curvature tensor R, or more precisely its dual

R* E C°°(T* Λ T* ® End(r*)), and by cun>V e C°°(Γ* Λ T* ® End(F)).

In more detail, let

λ* : End(Γ*) -+ End(ApT*)

and

°~ : End(ApT*) ® End(ΛT*) -* End(ΛT*)

denote the derivation extension of endomorphisms and the linear map in-
duced by composition ° of endomorphisms, respectively. Then the dif-
ference of the Laplacians is given by the generalized Weitzenbόck formula
(extending (4.1)):

Δ* - ZV = " ( °~(λ* ( 0 # ) ) )

(4.3) + {λp ®

Comparison with [16] shows that the first term on the right-hand side is just
DpR ® \F.

5. Spinor Laplacians

The role which exterior covariant (co-)derivatives played in the previous
section will now be taken over by Dirac operators. Assume that M is
equipped with a spin structure [1], [2], [3], [14]. Thus suppose M to be oriented
and let P(M, g) be the orthonormal oriented SO(m)-frame bundle of T
(m = dim M). Denote by

p : Spin(m) -+ SO(m)

the canonical epimorphism. The spin structure is a principal Spin(/w)-bundle
P(M, g) being a two-fold covering of P(M, g) in a p-equivariant way. It
follows that we can identify T with the associated vector bundle P(M, g)
Xp Rm. Let C1(RW) be the Clifford algebra of Rm relative to the standard
(positive) bilinear form which we also denote by g, and S be a hermitian
Clifford module via

σ : Cl(Rw)-»End(S)

such that σ restricts to a unitary representation of Spin(m). Note that we
make no use of any irreducibility assumption on S.

For each k G No, σ combined with the canonical map ®*Rm -»Cl(Rm)
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yields a map

ak

which is a morphism of Spin(m)-modules. We define the spinor bundle to be
the associated (hermitian) vector bundle over M

E:=P(M,g)xσS.

σk then defines an associated strict vector bundle morphism which together
with the canonical isomorphism # : T* -> T yields a strict vector bundle
morphism

yk : (®*:Γ*)® E-+E

satisfying

(5.1) γ * o ( ( ® M 7 , ) ® γ ' ) = γA:+/, ( M 6 N 0 ) .

γ1 may be viewed as the generalization of Dirac matrices.

Next the Levi-Civita connection induces an so(w)-valued connection form

co on P(M, g) which lifts uniquely to a connection form ώ on P(M, g).

Association to ώ with σ then yields a hermitian connection on E which will be

denoted by ^ V. By construction of ώ, gV is associated to ώ via p. (For details

of these associated procedures, we refer to [7].)

Furthermore, let F be an arbitrary hermitian vector bundle over M with a

hermitian connection FV, and denote the resulting connection on E ® F by

V.

The Dirac operator is defined to be the composition

^E ® F).

Its square t2 is called the spinor Laplacian. Denoting the tensor product of

the connections ̂ V1 and V by g V ! ® V, in virtue of (5.1) we may write t as

(5.2) t2 = ( γ 2 ® 1F) o (SV1 ® V) o V.

From the defining property of Clifford algebras it easily follows that the

symmetric part of γ 2 is equal to g ® \E. Therefore the difference of the

Laplacians t2 — Z)v is a strict vector bundle morphism which can be ex-

pressed in terms of the curvature of V. The latter, in turn is determined by the

Riemann curvature tensor R and curvFV. In more detail, note that the bundle

End(Γ, g) of fibrewise antiselfadjoint endomorphisms of T can be identified

with the associated vector bundle P(M, g)XAdop so(w), and End(E) can be

identified with P(M, g)XAάoσ Enά(S). The infinitesimal operation

Lσ : so(/w)->End(S)

now defines an associated strict vector bundle morphism which will be
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denoted by

μ:End(T,g)^End(E).

Again, let

°~ : Enά(E) ® End(E) -* Enά(E)

be the linear map induced by composition ° . Finally b = (-*)"1 : T-* T*
denotes the isomoφhism induced by the metric.

Then the difference of the Laplacians is given by the Weitzenbόck type
formula (in close analogy to (4.3)):

(5.3) t2-Dv = -2( o~(μ ® μ )(( * ® V ® lE n d ( Γ ))Λ)) ® lF

Furthermore, the first term on the right-hand side can also be expressed as

I γ 4 ( ( l ^ ® I,* ® •* ® l ^ Λ ) ® lF = ̂ 1 * ® 1F

(cf. [9]), where Rsc is the scalar curvature. Thus (5.3) becomes

P - Z>v =\RSC\E ® 1F - 2(μ ® W > ) ( ( # ® 1^ ® WF))eunrFV).
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