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A GLOBAL VERSION OF THE INVERSE
PROBLEM

OF THE CALCULUS OF VARIATIONS

FLORIS TAKENS

1. Introduction

In [4], Tonti gave necessary and sufficient conditions for certain differential
expressions (namely those expressions which we call "source equations"; for
the definition see below or [3]) to be locally the Euler equation of some
variational problem. In this paper we consider the corresponding global
problem. To state the results we need some definitions.

In what follows, π: E —> W will be some fixed differentiate fibration i.e.,
(E, π, W) is a fibre bundle, E and W are smooth manifolds and π has
everywhere maximal rank. A variational problem, or Lagrangian, on TΓ is an
operator £ which assigns to each smooth (local) section S: JV-> E of π an
Λ-form (n = dim(W)) t(S) on the domain of S such that, for each x in the
domain of S, (£(S))(x) only depends (smoothly) on the value of 5, and on a
finite number of its derivatives, in x.

A source equation on a bundle 77 is an operator & which assigns to each
smooth (local) section S: W—> E of π and each x in the domain of S an
element (&(S))(x) E (Ker(</τr)5(jc))* ® An(T*(W)), which only depends
(smoothly) on the value of S, and a finite number of its derivatives in x.

A source equation & is the Euler equation of the Lagrangian £ if for each
bounded (i.e., having compact closure) oriented open U c W, and each
smooth 1-parameter family of local sections St of 77 with the properties:

(i) for each / E (-ε, + ε), U c interior of the domain of Sr and
(ii) S/JC) is independent of / if x £ U, we have

/-0

where St(x) denotes the tangent vector of the curve t -> St(x); this tangent
vector is in Ker(*r)5/(jc) so for each x, <S (£,)(*), St(x)}\tmmQ E An{T^{W)).
Hence on both left- and right-hand side there is an H-form under the integral
sign. The integral is defined because U is oriented and bounded.
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The above definition of "Euler equation" is obtained by adapting the usual
one to the "coordinate-free language" which one has to use when dealing
with arbitrary differentiable bundles; see also the introduction of [3].

The inverse problem of the calculus of variations is concerned with the
question how to decide whether a given source equation is the Euler equation
of a variational problem. If a source equation satisfies the condition of Tonti,
a corresponding Lagrangian can be constructed locally (local refers here to
E). If the bundle is sufficiently simple, e.g., π: E -> W is a vector bundle,
then the Tonti condition is enough to guarantee the existence of a (global)
Lagrangian. We want to determine for which bundles π the Tonti condition is
necessary and sufficient to guarantee the existence of a Lagrangian corre-
sponding to a given source equation (the Tonti condition is always necessary).
A source equation is said to be locally variational if it satisfies everywhere the
Tonti condition, and to be υariational if it is the Euler equation of some
variational problem. Our main result is

Theorem. The vector space of locally variational source equations modulo
the variational source equations is canonically isomorphic with Hn+ι(E; R),
n = dim(W).

The paper is organized as follows. In §2 we introduce the space of oo-jets of
(local) sections of our differentiable fibration m and define smooth functions,
vector fields and differential forms on this jet space. These definitions were
also given in [3], but are repeated here to make the paper self-contained. In §3
we consider Lie derivatives and various types of exterior derivatives for
differential forms on this jet space. In §4 we prove some local exactness
theorems for these differential forms, and relate in some case the lack of
global exactness to the real cohomology of E as in the theorem of de Rham.
In §5 we finally identify Lagrangians and source equations as certain types of
differential forms on our oo-jet space, and deduce the main theorem from the
results in §4.

2. Differential geometry of infinite-jet spaces

A number of the results in this section can also be found in [3]; the present
presentation is more complete, and in some points the proofs are simplified.

Let π: is —> W again be a differentiable fibration, i.e., m is a C°° map
(unless stated otherwise, everything in this paper is C00) which has every-
where maximal rank and is a bundle projection in the topological sense.
Jk(π), the space of λ>jets of local sections of 77, is defined as follows: Jk(ττ) is
the set of equivalence classes of pairs (w, S), w E W and S local cross section
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of π defined on a neighborhood of w; (w, S) ~ (w1, s') if and only if w = w'

and all the derivatives of S and S' up to and including order k are equal in

w = W. Jk(ττ) has, in the obvious way, the structure of a smooth manifold.

There are canonical projections ττι

k: Jk(ir)->Jι(π) whenever 0 < / < k, and

πk: Jk(π) -+ W. Note that j\<π) = E, so ττ0: E -+ W equals m. The space of

oo-jets of local sections, which is denoted byJ°°(π)9 is, as set, the inverse limit

of the system {Jk(π), iτk}', the induced projections are denoted by π ^ , π^-

We define on J°°(π) the inverse limit topology: if s G J°°(π), and U is a

subset of J°°(ir) containing s, then U is a neighborhood of s if and only if

there are some k G N and neighborhood Uk of π^ζs) in Jk(iτ) such that

(fl'w)"1^*) c ^ The description of all the projections above can be visual-

ized in the following diagram:

The differentiable structure of Jco(τr) is determined by specifying the C°°

functions on J°°(π). A function/: Jco(π) - * R is said to be C°°, or to belong

to C00(J00(iτ)), if for each s G / ^ ( T Γ ) there are a k G N, a neighborhood £4

of 7r£θ) in Jk(τr) and a C 0 0 function /*: ί/Λ -+ R such that/|(ττ* Γ*( £/*) =

Proposition (2.1). /°°(^) w paracompact, and each open covering % =

{ ^/}/G7 of^^i77) admits a smooth partition of unity, i.e., for each such covering

% /Aere w α 5̂ / of smooth functions φ f: J
00^) —> R, / G /, ŵcΛ ίλαί {support

(ψi)}i(=i /5> locally finite, (support φ,) C ϋ, , tf«d Σ / e / φ/(^) = 1 /or eflc/i 5 G

PAΌO/. We first show that J°°(π) is separable. For this, let Qk c Jk(τr) be a

countable dense set for each k G N; β^ exists because Jk(π), being a

manifold, is separable. We can clearly choose some countable β c /°°(π)

such that for each A:, π £ ( β ) D β* From the definition of the topology of

J °°(flτ) it follows that β is dense. The points of β are denoted by qx, q2, . . . .

For each ^ G β we consider the following basis of neighborhoods:
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where py, for each/ 6 N, is a metric on JJ(π); these metrics are supposed to
be compatible in the sense that whenevery x,y G Jk(π\

Clearly, {^} i )/eN is a basis for the topology of /°°(^). Hence each open
covering % of J°°{π) admits a refinement Ύ = {^}/eN with each Vι G
{^},VGN, say Vι = Ba(l)β(l), and such that for each /, Vι c Vi for some / G /.
In order to obtain from Ύ a locally finite refinement, we first define

Vhm = {, e / "

for each /, m G N; the locally finite refinement ^ = {^}/<Ξ/ of Ύ is now
defined by

Wx = F,, W2 = V2 \ Vιa W3=V3\( Vh3 u F2>3), etc.

Hence /°°(π) is paracompact (this proof was essentially copied from Lang
[2]). Since for each / G N, there are an integer γ(/) and an open subset Wt of
JΎ(l\π) such that O ^ ' V W ) = Wh there is a Ψ, G C 0 0 ^ ^ ^ ) ) such that
Φg(s) > 0 if 5 G ^ , and Φ{(s) = 0 iϊ s & Wv Let now σ: N - * / be a
function such that for each / G N, fF7 C Uσ(ly Then we define for / G /:

( Σ */

This is the required partition of unity.
Definition 2.2. A vector field on /°°(77) is a linear derivation on

C^G/0 0^)), i.e., a vector field X is a map C °°(7 °°(7r))-» C °°(/°°(7r)) such
that *(α/ + βg) = α. JT(/) + β. X{g) for/, g G C^Jβ0(ir)) and α, j8 G R,

(7r)) denotes the vector space of vector fields on J°°(π). If A G J°°(π)
is a subset, and I , 7 G %(J °°(»), then we say that A" and Y are equal on A
if for each/ G C 0 0 ^/ 0 0 ^)), Aχ/)|Λ = Y(f)\A. %(A) is the set of equivalence
classes of %(Jco(7r)) under the equivalence relation ~A: X —A Y if and only
if X and Y are equal on A, %(A) can be interpreted as the set of vector fields
defined on A and extendable to /°°(π). If a G /°°(7r), %({a}) is also denoted
by Ta(J°°(π)). Notice that the elements of Ta(J°°(π)) are just the linear
derivations from C 0 0^/ 0 0^)) to R (in α). For X G 9C(/°°(7r)) its equivalence
class in Ta(J°°(π)) is denoted by X(a).

Examples and definitions (23). Let X be a vector field on W; we shall
associate to it in a canonical way a vector field X on /°°(7r); X is called the

vector field of X To do so we have to define (X(f))(s) for each
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/ e C 0 0^/ 0 0^)) and s G /°°(π). For this we choose a local cross section S of
π, defined in a neighborhood of π^O) and such that the oo-jet of S in π^s)
equals s. Then we define (X(f))(s) as (*(/ <> tS))(ττ00(^)). It is not hard to
verify that, for each s G J °°(π), the subset of TS{J °°(π)), consisting of those
elements which can be represented by total vector fields, is a linear subspace
of TS(J °°(π)) whose dimension equals that of W. We denote this subspace by
Hs and call its elements horizontal vectors.

We say that a vector v G Ts(J°°(π)) is tκ?rf/αi/ if for each /: W-+R,
υ(f ° Ό = 0 T n e vertical vectors in Γ// 0 0^)) form a vector space, denoted
by F,. Clearly Hs n Vs = {0} and //5 + Vs = Ts{J">(ir)).

It should be mentioned that the existence of the canonical splitting of
Ts(J°°(π)) as //y Θ K5, which cannot be constructed for Jk(ir), is the basis for
many of our constructions; the main reason to work on J°°(π), instead of
Jk(π), is the need for such a canonical splitting.

Lemma (2.4). For each s G /°°(7r), Ts(Jco(7r)) is canonically isomorphic

with the inverse limit of { Γw*ω(/Λ(w)), *r*}*>/;/,*eN
Proof. First we define maps dπ^: Ts(J°°(π))-+ 7;*ω(/*(7r)) as follows:

for X G Ts(J°°(π)) and /: Jk(π)-*R a smooth function, ((t/τr^)(Λr))(/) =
^ ( / ° Ό τ h e n clearly Λr̂  o <fe£ = ^TΓ^, / < fc. We have to prove that if
if G Ts(J°°(π)) and Λ̂  ̂  0, there is a A: such that dπ^(X) φ 0. For this we

take a smooth function/: J°°(π) -> R such that JT(/) ^ 0. Then by definition
there are a k e N, a neighborhood ί/Λ of ττ^(5) in 7°°(77 ) and a smooth
function/on Uk such that/KTΓ^)"^^) = /° TΓ .̂ From this it follows that
dπi(X) Φ 0.

Finally we have to prove that for each sequence Xv X2, , A', G
Tmi (^(/'(flr)) such that dπι

k(Xk) = Xt whenever / < k, there is an X G
Ts(J°°(π)) such that π^X) = ̂  for all k. For this we construct a sequence

;?!, X2J... of vector fields on /'OX J\*\ such that for each k,
* * ( * • ( * ) ) = ^ a n d f o Γ e a c h Kk and s k e Jk(cc), Xfa'k(sk)) = dττι

k(Xk(sk)).

Such a sequence can easily be constructed by induction, starting with Xl9

X2, The vector field X on 7°°(7r) is now defined by (X(f)(sf)) =
( * ( > £ , ( > ' ) ) whenever s' G /°°(flτ), /: /*(w) -> R is a smooth function and,

on a neighborhood of j ' , / = /°?r*. Then Z = X(^) is the required vector in

TS(J ">{*)).

Lemma (2.5). A vector field X on J°°(π) determines α sequence of mappings
Xt: J°°(π) -» T(r(ir)), i = 0, 1, 2, . . . : Xs(s) = dπ'^Xis)). These mappings X,
satisfy
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3. for each smooth f: / ' ( T Γ ^ R , the function J°°(π)B J-> (*i(s))(/) is
smooth on /°°(y).

On the other hand, any sequence of mappings Xt\ /°°(77 ) -> T(Jι(ττ))
satisfying the above conditions 1, 2 and 3 uniquely determines a vector field
on/°V).

Proof. Trivial consequence of Lemma (2.4).
Remarks and definitions (2.6). Let X be a vector field on E such that

whenever π{e) = π(e'), dπ(X(e)) = dπ(X(e')) = π(X)(π(e)) (this last equation
defines the vector field π(X) on W). X induces a vector field on / °°(π) in the
following way:

For each i, X induces a vector field Xi on J \iτ) such that Xt{s\ s G J'(π), is
the tangent vector of the curve

where S is a local section of π representing s (hence defined in a neighbor-
hood of wf.(j)), and 6ϋχo t ° S ° Φ ĵp ) _, consequently is a section defined on
a neighborhood of ^ ( ^ ( ^ ( . s ) ) and thereby defining an element of J'(π).

Next we define X{: y°°(7r)-> T(J\w)) by *,. ° TΓ^; these maps jζ. satisfy
conditions 1, 2 and 3 in (2.5) and hence determine a vector field X onJ°°(π).
A vector field on /°°(7r) which can be obtained in this way is said to be
integrable; in case also π(X) = 0, it is said to be vertical integrable. The
original vector field X on E, for which π(X) on W could be defined, is called
a symmetry of m.

Sometimes we need vector fields which are somewhat more general than
integrable ones, namely deformations. A vector field X on J°°(π) is called a
deformation if for each local section S: WD U->E and each compact
K c U, there is an integrable vector field X' on /°°(7r) such that X and X\
restricted to S^K) are equal, where S^: U —> J°°(π) is the map assigning to
each u G U, the oo-jet of S in u. One can think of vertical deformation X such
that for each s G ./^(π), ^ ^ ( ^ ( ί ) ) = 0, as vector fields on the space of
(local) sections of π.

Notice finally that for each X e Ta(J°°(π))9 there are a total vector field H
and a vertical integrable vector field X such that X = //(s) + X(s).

Definition (finite type) (2.7). We say that a vector field X on J°°(7r) is of
finite type if for each s G J°°(π) there is a A:o G N such that for each k > k0,
there is a neighborhood U of τr^(^) in Jk{ττ) such that for each pair s\
s" G y°°(7r) with τr£(/) = ττ£(.y") G I/, A^(s') = **(.*"). Xk is again the map
from J°°(π) to T{Jk{iτ)) as in Lemma (2.5). Notice that a total nonzero vector
field is not of finite type, and also that if a vector field X is not of finite type,
it is the limit of a sequence of vector fields of finite type, i.e., there is a sequence
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of vector fields X\ X2, X3, . . . such that for each smooth/: J°°(7r) -* R and
each s e /°°(7r), there are a neighborhood U of s in /°°(π) and a A: G N such
that (Λ" - Λr/:)|(/)ί/ = 0. It is enough to make Xi to be of finite type such
that (X — Xι)k = 0 whenever k < i. In this case we define X to be the limit of
X' for/^oo.

Definition (2.8). A &-form ω on /°°(7r) is a multilinear alternating map,
assigning to each &-tuρle of vector fields Xl9 , Xk on /°°(π) a smooth
function <o(X1? , Xk) on /°°(π) in such a way that ω(Xl9 , Λ^O) is
completely determined by ω and Xχ(s), , A^s). We denote by ω(s) the
induced alternating A>linear map from TS{J °°(π)) to R.

Lemma (2.9). Let ω be a k-form on J°°(π). Then there is a sequence of open
sets Ui c Jι{π) and k-forms co; on ί/, such that

Mό
2. U
3.(7r/-
A. for each s e

ω(s)(Xι(s)9 - )

jE'αcΛ .SMCΛ sequence {ϋi , «/} iGN satisfying conditions 1, 2 an*/ 3 uniquely
determines a k-form on /°°(7r); /wo swc/ι sequences {Ui9 ωέ} and {Uf, co )
determine the same k-form if and only if ωi\Ui Π ί// = ωf|Lζ Π ί̂ ' /or a//
/ 6 N .

Proo/. We choose 5 E 7 °°(w) and want to show that there are an / E N, a
neighborhood U of π^(.y) in / ' (π) and a differential form ώz on U such that
for each s' ^

Suppose that such an / does not exist. Then there is a sequence of points
{Pj}jeN in /°°(7r), converging to s, such that <ύ(PjXX\(Pj)> ' ' ' > Xk(Pj))is n o t

determined by the projections dιr'O0{Xx{pJ))9 , dir^iX^Pj)). This means
that, for suitable vector fields Xl9 , Xk9 the function io(A ,̂ , Xk) is

not constant on any of the sets (<0)"1(^4(/7,))»7 = ^ 2> B u t t h i s implies
that ω ^ j , , A )̂ is not smooth and we have the required contradiction.

Next we take for each s e J°°(ir) an i(s) and ί/(.y) c Ji{s\ττ) as
above, where U(s) is an open neighborhood of πι£\s). Now t̂ .Q =
U^e/^iiίjXio}^/^" 1^)- ^ t n e a ^ o v e construction there is a unique ω,
on Ό{ with the required properties.

The rest of the lemma is trivial.
Definition (2.10). We denote by %^{ττ) the vector space of those (k + /)-

forms ω on /°°(π) with ω(Xv - - , Xk+ι) zero if among Xλ, - , Xk+ι there
are more than / horizontal vector fields (a vector field X is horizontal if each
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X(s) is horizontal), or more than k vertical vector fields (a vector field X is
vertical if each X(s) is vertical).

Lemma (2.11). Each element ω G 3C*(π) determines a map Eω, which
assigns to each local section S: W D U -> E and k-tuple Xv , Xk of
vertical symmetries of ir an l-form on U, which is defined by
Eω(S; Xl9 , Xk) = (SJ*(XV , Xk) where Xl9 _-9Xk are the verti-
cal integrable vector fields corresponding to Xv , Xk, and S^u) is the
oo -jet of S in u.

This map Eω satisfies:
1. Eω(S; Xl9 • , Xk) = Eω(S; X[9 , X£) if*;|Im(S)_= */|Im(S),
2. Eω is alternating and multilinear (over R) in Xl9 , Xk,
3. for each s G J^{iτ) there are some i G N and neighborhood U of π'^s)

in J'(π) such that, as far as S^u) e (TΓ^)"1^, (^ω(S; ^ , Xk))u de-
pends in a smooth way on (and is determined by) the /-jet of S in u and the
/-jets of *j|Im(S), , X*|Im(S) in S(u).

Also, if is is a map which assigns to each local section S: W D U -* E and
each λ -tuple X,, , Xk of vertical symmetries of π, an /-form on £/ in such
a way that conditions 1, 2 and 3 above are satisfied, then there is a unique
ω e 3C*(π) such that E = Eω.

Proof Trivial.
Remark (2.12). The operations Λ, ιx can be defined in the usual way. Also

the ί/-operator could be defined now, but we shall pospone this until after the
discussion of the Lie derivatives.

3. Lie-derivative and exterior derivatives
Usually the definition of Lie derivative is based on the time t integral of

vector fields (locally and for small t). On /°°(7r), integral curves of vector
fields do not always exist, and if they do they are not always unique. On the
other hand, if a vector field X on J°°{IT) is integrable, and X is the
corresponding symmetry of π, then the time / integral ^D^, maps s G J°°(π)
to the c»-jet of <%,, ° S ° ^x^-t a t ^ j r y ("ΌoCO) provided that S is a local
section representing s.

Definition (3.1). If A" is a vector field on /°°(7r), and/ a smooth function
on / °°(7r), then we define the Lie derivative Lxf of / with respect to X as
Lxf=X(f).

If AΊ, X2 are two vector fields on J°°(π), then we define the Lie derivative
LxX2by

= (LxX2)(f) + X2(LXι(f))
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or

(LxX2)(f) = Xx(X2(f)) - X2{Xx{f)).

It is easy to see that LXX2 thus defined is again a vector field. Lx x2 is also
denoted by [Xx, X2\

If X is a vector field, and ω a k-ϊorm on / °°(77 ), then the Lie derivative Lxω
is determined by

Lx(ω(Xx, , Xk)) = (Lxω)(XX9 , Xk)

k
_1_ ^S^ ( V^ T \^ V \
-I- ^j ω\ΛV ' 9 ^XΛi> ' ' # > Ak)->

or

(L^ω)^!, , Xk) = X{ω(Xl9 , JTΛ))

A:

Σ t \( Y . Γ V V Ί y \

\ 1' > | y * > ' ^ * / > » k)'
i=\

Remark (3.2). In case X is an integrable vector field on / °°(7r), the above
definitions are equivalent with

Lxω = lim - ( ^ ω - ω),

where (^Λ^)* denotes the induced map for vector fields ((tyx>h)X')(f) =
(X'(f° ^ Λ ) ) ° ^ , - Λ ' a n d ^ Λ denotes the induced map for differential
forms, defined as in the finite dimensional case.

Theorem (33). Let Xl9 X2 be vector fields on J °°(π).
1. If Xl9 X2 are integrable with corresponding symmetries Xl9 X2 of π on E9

then [Xx, X2] is integrable with corresponding symmetry [Xv X2\\ for the projec-
tions we have [π{X^ πX2] = π[Xx, X2].

2. If Xx is integrable with symmetry Xx and projection π(Xx), and X2 is the
total vector field of X2, then [Xx, X2] is the total vector field of [π(Xx)9 X2].

3. If Xx and X2 are total vector fields of Xx and X2, respectively, then [Xx, X2]
is the total vector field of [Xv X2\

Proof. If X is an integrable vector field on J^iπ), then (^D^,)*, maps
integrable (resp. total) vector fields to integrable (resp. total) vector fields,
although it is only defined locally and for small /. From this it follows that
the Lie bracket (is Lie derivative or Lie product) in case 1 is integrable and in
case 2 is total. By evaluating this Lie product on functions of the form
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f = f ° ^°oo a n d / = / ° ôo where /, / are smooth functions on E = J°(π) and
W respectively we obtain the above statements for the cases 1 and 2.

In order to deal with case 3, we consider the vector fields Xv X2, Xλ, X2,
take a local section S: W D £/-> E of π, and denote again by S^ the
corresponding map U —> J°°(π). Then, for any smooth function/: /°°(π) -> R
and n e t / , (AΊίΛXS^n)) = (Xλ(f ° S°°))(w) so that

~ X2(Xι(f))(S">(u))

= {Xx(X2(f)

Since the last expression equals the results oftained by applying the total
vector field of [Xl9 X2] to/on w, the proof is complete.

Definition and proposition (3.4). There is a unique operator d which
assigns to each form ω on 7°°(7r) a form dω such that the following formula
holds: Lxω = ιx dω + dιxω for each vector field X and differential form ω. d
is called the exterior derivative.

Proof (As in the finite dimensional case). If ω is a 0-form (or function),
then Lxω = ιx dω + dιxω\ ιxω = 0, Lxω = X(ω), so ΛoίX) = X(ω). For ω a
1-form we have Lxω = ιx dω + J^co, so

λ, X2) = (L^«)^ 2 - (d(lχω))(X2)

= A-.^Jfj)) - «([ A",, X2]) - X2

By induction, for a fc-form ω we find

dω(X» . . . , Xk) = Σ (-l)'*,(ω(*0, , Xi9 , Xk))
i = 0

+ Σ ( - 1 ) / + M [ ^ *y]> ̂  > K , ̂  • , ̂ )
«</

Notice that, since our construction is made in the same way as for the finite
dimensional case, if a &-form ω is given by the sequence {(Ui9 ω,)},^ as in
Lemma (2.9), the corresponding sequence for dω is {(Ui9 <&>,)}|€ΞN.

It is clear that the d operator defined by the above formula is unique.
Lemma (3.5). If ω e 3#(*τ), then dω e 3ίJ+1(9r) θ ϋ(J+1(flr).
Proof. We take .s e /°°(7r) and a number of vectors Xo, Xi9 . . . , Xk+ι E

Γ (̂y °°(77 )) each of which is either horizontal or vertical. We have to show that
if less than / or more than / + 1 of them are horizontal, dω(s)(X0, . . ., Xk+j)
= 0. For this we extend Xo, . . . , Xk+X to vector fields each of which is either
total or vertical integrable. Now the lemma follows as a direct application of
(3.3) and (3.4).
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Definition (3.6). The operators 3: ϋίJ(9r)-> %^ι(τr) and D: 3£*(ττ) -+

3C?+i(π) are defined by d = θ + D. θ is called the vertical exterior derivative,

and Z) the horizontal exterior derivative.

Remark (3.7). Foi^ωΈ %^Jjr) and Eω given Lemma (2.11), EDω is de-

termined by EDω(S; * „ _ . . . , Xk)_= (-l)kd(Eω(S; Xl9 . . . , **)), where 5 is a

local section of π, and Xv . . . , Xk are vertical symmetries.

4. Exactness theorems

In this section we are concerned with the following diagram and the

diagram obtained from it by replacing each %ϊ(π) by its sheaf ^(π) of

germs of sections (see [1]).

θ

W-M

T T T
R 0 0

We are interested in various exactness properties of these diagrams. First of

all we have the Poincare lemma.

Theorem (4.1) (Poincare). If a0 G Ck?m(π))s, α, G (SCjL-iOOk . . . , am G

= 0, then there are β0 G (5C^_i(τr))5, . . . , βm_λ G (Xo~ι(π))s such that Dβ0

= «0, θβ 0 + Z>^ = Ctχ, . . . ,Jβm-2 + Dβm-\ = «m-l> ^ m - 1 = «m'

We use the conventions: 5(J(π) = 0 whenever I > n, I < 0 or A: < 0, where

( ^ ( π ) ) ^ denotes the stalk of germs of sections at s G J°°(π) in ^ ( π ) . We

also assume « > 1. The main result of this section is

D-Exactness theorem (4.2). Let ω G (%Ί(π))s, 0 < / < n = dim(W^), and

Dω G (%ϊ+ι(π))s = 0. Then there is an η G (OCjL^ir)), swcA / t o Dη = ω. D:

) —> 3Cf(τr) w injective for k > 0, /Ae kernel of D: 5K (̂7r) ̂  5C^(^) consists

the locally constant functions in ίK^π), tfrtd Âe /m^g^ of D: %k

n_λ(π)^>

Cj(ττ) w characterized as follows,

ω G (5ίί (τr))_, k > 0, w /« ίAe /mαge o/ D // and only if there are a
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representative ώ of ω in %k

n(iτ), and a neighborhood U of s in J°°(π) such that

for each local section S, defined on a neighborhood of TT^S), and each

V C V ^(S^)~X(U\ V a bounded oriented open subset of W,

fv E^S; Xx, . . . , Xk) depends only on the germs of the vertical symmetries

Xv . . . , Xk along S(dV) (and so 5, V, ώ but not on Xx, . . . , Xk away from

s(dv)).
Remark (4.3). The proof of the above theorem is somewhat complicated

and therefore postponed until the end of this section. We first derive a

number of consequences from it.

First we note that our diagram is anticommutative: because d ° d = 0,

d = D + θ we have 3 ° 9 = O , D ° D = O and 3 ° D + D ° θ = 0.

3-Exactness theorem (4.4). §'(π) denotes the quotient sheaf

%(<π)/D(%_x(π)). If ω E φ(ir))s9 i > 0, with 3ω = 0 (3 is defined here

because d(D(%_x(π))) C D(%^_\(7r))\ then there is an η E g ' " 1 ^ ) such that

dη = ω, and 3: S°(τr) —> §ι(π) is injective.

Proof. First we show that 3: §0(τ7) -^ §ι(π) is injective. Suppose not; then

there is an a E (§°(π)\ with da = 0. By definition of g°(ττ) there is β0 E

(%(π)\ with [β0] = a and hence dβ0 E lm(D: %l_λ(π)-+%ι

n(π)). Choose

βx E 0Cn(ττ))s such that dβQ + Dβx = 0. With induction we go on and find

& , . . . , & with β. E (^..-(w)), such that 3)8, + Z>β.+ 1 = 0, i = 0, 1, , n

- 1. Then dβn = 0 because Ddβn = -dDβn = ddβn_x = 0, and D in this case

is injective. Applying the Poincare lemma to (β 0, . . . , βn) one obtains

(Yo> , γΛ-iλ Y/ e (*„_,_^TΓ)) , , Z)γ0 = ^ 3γ0 + Dγ, = ^ . So i80 E

Im(Z>) and hence α = 0.

Next 3 ° 3= 0 (also for the sheaves S(π)), so we have to prove that if

a E (§\v))s and 3α = 0, there is γ E (9°(π)), w i t h θ ϊ = «• Choose β0 E

(5C^(7r))Λ with [β0] = α. Then 3)β0 E Im(Z>), so there is βx E ( ^ . ^ ^ such

that dβ0 + Z)^! = 0. Now we proceed as in the above case to find βv . . . , βn

and then γ0,' . . . , yn with γ 0 E ( ^ ( T Γ ) ) , , 7 l E (%ι

n_x(π)\, 3γ0 + Z) γ i = β0.

Hence 3[γ0] = α, so we may take γ = [γ0].

In the same way one now proceeds easily to prove that 3 makes §ι(π) an

exact complex. This completes the proof.

Remark (4.5). A stronger version of (4.4) can also be proved using a kind

of "fibrewise Poincare lemma"; in this way one can show that if ω E (5Cf(τr))s

and 3ω = 0, k > 0, then there is an η E (ϋCf ~ι(π))s with 3η = ω; see [3.]. We

shall however not need this fact here.

D-cohomology theorem (4.6). Let §ι(π) denote the set of global sections of

the sheaf §\π) defined in Theorem (4.4); the canonical map 3Cπ(π) -> ^ ( π ) is

denoted by D (one has to be careful; for a correct interpretation of (4.1), D:

0CΛ(7r) -> %+ι(π) is the zero map\). Then
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Ker(Z): %(π) -> %+ι(w)) _ f Q, ,// * 0, 0 < k < n,

Im(£>: 3Ct_,0r) -» ^(w)) " I Hk(E; R), if i = 0, 0 < k < n;

D: 9ί^(π) -» 9C,(π) « injective provided i > 0, a«ί/

Ker(Z): 3Cπ(τr) -» S'(ir)) ί 0, if i + 0,

Proo/. By (2.1), OCj(π) is a fine sheaf for all 1,7; see [1]. Hence

is a fine resolution of the constant sheaf R, and applying the argument used

in [1] to prove the Rham's theorem, one finds that for 0 < k < n

Ker(Z): ϋί&π)) -» 3ί« + 1 ( W ) / I m ( D : SC°_,(ir) -> ^ ( ^ ) ) « i/*(£;r) .

This argument still works if the last sheaf of the resolution is not fine; hence

we can add -» §°n{π) -* 0, and for the case / = 0 the theorem follows.

For / > 0, one has to deal with a "fine" resolution of the zero sheaf, and

hence we obtain the exactness.

Remark (4.7). Using the same arguments one can show that D: 3Cπ(τr) —>

S1 is surjective for / > 0.

G-cohomology theorem (4.8). For i > 0,

Ker(θ: g'(iτ) -^ Si+ι(π))/lm{Dd: 3£" V ) ^ &(v)) - Hn+i(E: R).

Proof. We shall use the following procedure.

First we show how to associate to each a E β'(τr) with θα = 0 an (n + i)

form β on J^fjr) with dβ = 0. The construction of such β is not unique but

we prove that each closed (n + /)-form β on J °°(π) can be obtained by the

above mentioned construction, from some a G β'(ττ) with dά = 0 and that

a G lm(Dd) if and only if β is in the image of d (independent of the

choices). From this one deduces immediately that Ker(9: §'(π) ->

§i+ι(π))/lm(Dd: %~ι(ττ)-^§\π)) is isomorphic with the (n + /)th de

Rham cohomology group of /°°(π), which course equals Hn+i (E; R).

Now we come to the construction of β for given a G §ι(π) with θα = 0. By

(4.7) there is a β0 G 3Crt(τr) such that Z)/?o = α. Since 3α = 0, we have

-dDβ0 = Ddβo = 0, and hence by (4.2) there is a βλ G O C ^ ί ^ ) such that

Z)^! + 9>8O = 0. By induction, one finds now β2 G ίJC^ίtf), > > βn

 G

%+n(ττ) such that Z))82 + dβ, = 0, , Dβn + 3 ^ . ! = 0. Then Ddβn = -

dDβn = a ° a J 8 n _ 1 = 0 and hence 3βΛ = 0 by (4.2). Now we define 3 =

Σ"=o βή clearly dβ = 0. For any (n + /)-form β (with dβ = 0) one has

β = Σj=0 βj with βj E ^ ( T Γ ) and 3^. + DβJ+ι = 0. Hence, if a = Dβ0,

then β could be obtained from a by the above construction.
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Finally, assume there is a γ 0 6 ϋC,,-*(π) with Ddy0 = α: β0, . . . , βn are
still as above. Then D(dy0 — β0) = 0, and hence there is a γj G cXίn_ι(π) such
that βΌ = θγ0 + Dyλ. Similarly, one makes γ2 G ^ " ^ ( T Γ ) with Z>γ2 + dyx =
/?!, etc. Then dy = β if γ = Σ ^ o ϊ/ Tm"s completes the proof.

Corollary (4.9). /// > 2, then
Ker(θ: g'(77)^g/+1(7r))/Irn(a: %ι~\m) -> β'(π)) ̂  Hn + i(E).

Proof of Theorem (4.2). For this we have to consider form- operators:
A /?-form-operator of order k on R" is a linear map δ assigning to each

smooth function /: R " ^ R a /?-form δ(f) on RM such that δ(f)(x) depends
(smoothly) only on the λ>jet of / in x. Clearly, if δ is a p-form-operator of
order k on R", then (/—> dδ(f)) is a (p + l)-form-operator of order A: + 1 on
R".

Definition (4.10). A/?-form-operator δ on R" is said to be closed if:
for/? < n, ί/δ(/) = 0 for all smooth/,
for/? = n, for each bounded oriented A c Rπ, /^ δ(/) depends only on the

germ of/along dA.
Note that the (p + l)-form-oρerator dδ is always closed.
Remark (4.11). We shall use the following conventions:

for J = (j\, - ,/,) G Anj9 djf = dJχ jj = dιf/dxj^... jdx .
A /7-form operator δ of order k on Rn can always be written in a unique

way as

^ °Jι,...jp{
χ'

/eΛn,

The Λ-jet of such δ in x is supposed to be determined by the Λ-jets of the
functions δ/ . in x.

Lemma (4.12). There is a linear map P which assigns to each closed
p-form-operator δ of order k on R" a (p — 1)-form-operator P(δ) of order
(k - 1) on Rn such that d(P(δ))(f) = δ(f)for each smooth function /: Rn -* R,
and that

(P(δ))(f)(x) is determined by and depends smoothly on the (k — \)~jet of f in
x and the h-jet of δ in x where h G N is some integer determined by p, k and n.

Proof. If p = 0, δ(f) has to be a constant function for each /. But
(δ(f))(x) depends only on the λ>jet of/in x (in a linear way), hence δ(/) = 0
for each/. So P(δ) = 0 if p = 0.

If p = Λ, we may write δ(/) = Σ / e Λ ^ δ\x) 37/(x) dxx Λ /\dxn.
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Then

Σ - p ^ ^ ^ . a / ω.^[ Λ... Adx

Λ Λ<**,> Λ Λ ^ π l

with δ, and δ2 as n- and (Λ — l)-form-operators of order (A: — 1) respec-
tively, δj is of course again closed, so we can aply the above construction
again on δl9 and repeat until we have δ = δx + dδ2 with δt and fi"2 as n- and
(n — l)-form-oρerators of orders 0 and (k — 1) on RΛ, respectively. By
assumption δ is closed and hence δ,. But it is easy to see that any closed
«-form-operator of order 0 on R" is identically 0, so δ = dδ2, and we define
P(δ) in this case as δ2 constructed in the above way. Notice that this
definition of P(δ) even depends on the order of the coordinates; it is highly
not unique.

If 0 < p < n , we may write

«(/) = Σ K • • •. t W a//W d*lχ Λ V

i"i < <«>

For each summand with AZ G / and n = ip we perform the following (with

/ = c/i, • j/))

9,,, „,_,/(*)) dxh Λ

)) (3,,, .,,_,/)(*) A ,

+ (-ir+1 Σ 3 , « . - Λ W (9Λ,

ίίxΛ Λ <&,-, Λ ^ _ ,

Applying this to each summand above, one finds that δ(f) = δ,(/) + d82{f)
with δ2 of order < k - 1 and δ, of order k but such that the summands with
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dxn only contain derivatives of / of order < k — 1, with respect to xn 8λ and
δ2 depend linearly on δ. Now we apply the same procedure over and over to
δ,, and obtain 8 = 8\ + dδ2 with δ2 of order < k - 1 and δλ of order < k but
such that in the summands with dxn no differentiation of / with respect to xn

occurs, i.e.,

= Σ δ ' 9//W * dxiχ Λ Λdx; with δ{ - 0,
/eA ' I f ' " " > > l t " ' t f '

whenever n G / and ip = n. Clearly d8x = 0; we shall use this fact to prove
also that δ{ = 0 whenever ip <n. The summand of dδx with dxi

Λ * * * f\dx'ip/\Pdxn, i ! < < <ip <n, equals

( Σ *ί (*) (Θj/)W) Λ/f Λ Λώj Λ

Σ (-1)Λ + I

A - l , •

= Σ L\x) - dj(x) dxiχ Λ Λ ^ Λ ^ Λ ,

where LJ is defined by the last equality.
For each / e Λπ^+1, L 7 has to be zero. For / = (Jv ,jt_v n), j ι _ ι

< A2, this means that

} = 0;
for/ = (y'j, . . . ,j)_2, n, n)Jι_2 < n, this means that

) 0;
Ί.- .ip '\, ,ip

etc. Thus

βU -Ji-x = _3nί>"i. .Λ-.,» = +3Λ I IS{;-Λ # I = = 0
Ί, ,ip 'h ,ip Ί, .ip

(we get zero when the number of superscripts exceeds k);

etc. Hence we have

«,(/) - Σ *ί W 9y/(^) dxiχ Λ/Λdx^ , Λ dxΛ

Since this is a 1-parameter (namely Λ:Π) family of (p — l)-form-operators of
degree k on R""1, this means that our lemma can be obtained by induction:
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it holds for 0-form-operators of degree k on Rn~p. If it holds for (p - 1)-

form-operators on R"" 1, then it holds for/7-form-operators on RΛ, since a

closed/?-form-operator δ can be written as δ = δι + dδ2, where δl9 δ2 depend

nicely on δ, and δλ is as constructed above, and since there is a smooth

1-parameter family of closed (p - l)-form-oρerators δj o n R " " 1 such that

8 i φ ( * i , * > x n ) = k χ S f X f ) ( x v > * n - ι ) A d x n , w h e r e f x \ R n l - > R i s
defined b y / ^ , , ̂ . ^ = /(xj, , xn).

One can now define P(δ) by

, , * „ _ , ) Λ < & „ + ( δ 2 ( f ) ) ( x v •••, x n ) ,

which completes the proof of the lemma.

Remark (4.13). The above lemma of course also applies to operators

which assign a A>form on RΛ to each smooth map /: RΛ —> V, where V is a

fixed finite dimensional vector space. We need even more:

We say that δ is a p-multi-form-operator of order k and multiplicity I if δ

assigns a/?-form on Rn to each /-tuple of functions fv ,ft: RΛ —> V such

that δ(/j, ,//)(x) depends smoothly on and is determined by x and the

λ>jets of fv - - - ,/7 in x and such that δ(fv ••*,//) is multilinear and

antisymmetric in/ 1 ? ,/7. Also for these multi-form-operators the analogue

of (4.12) holds: such δ is closed if for each /2, ,fh the operator /, —>

δ{fvf2, - - - ,//) is closed. Applying Lemma (4.12) we find that for each

f2, ' ' ' 9fι there is a form-operator P(δ(-9 f2, , //)), which is linear in

S{-Ji, " ' Ji) and hence in /2, - ,/„ satisfies d(P(δ(fl9 ,/7))) =

δ(fl9f2, ••-,//) for each/!. Now define

(P(δ))(fv ,/,) = ̂  Σ (-i) |σ|W(/σ(2), .Λ(/))))(Λ(i)).

Then we have d(P(δ)) = δ for each closed multi-form-operator.

Proof of (4.2). Let xv , xn be a local coordinate system on a neigh-

borhood of πj^s) in ϊF. We also use xt to denote x. o τr0 which we shall use as

coordinate function on E in order to get a complete coordinate system on a

neighborhood of π^s) in E we add the coordinates yl9 , j ; m . If ω E

3Cf(ττ) then 2sω, restricted to the coordinate neighborhood, can be considered

as a map, assigning to each local section S (as far as its image is in the

coordinate neighborhood) an /-multi-form-operator of multiplicity k in the

following way:

Let /u , fk: RΛ -> Rm be k smooth functions: ft(x) =

(ff(x), - - - 9fΓ(χ)) One associates to each/ a vertical integrable vector field
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Xx a l o n g I m S^ s u c h t h a t * , ( S ( x ) ) = Σ^ιJί(x)d/9yJ. E ω ( S ; Xl9 - 9 X k ) i s

the corresponding /-form.

If the germ of ω is as in the assumptions of (4.2) then, restricted to a

sufficiently small neighborhood of s, the corresponding multi-form-operators

Eω(S; - , - • * , - ) are closed, hence P of these operators is defined. So we can

define η (locally) by (-\)kP(Eω(S; - , . . . , - ) = Eη(S; -, , -)). From

the various constructions and definitions it follows that η is locally well-de-

fined and has the required properties.

5. The main results

Definition (5.1). A variational problem or Lagrangian on m is an element

£ e ϋC°(tf).

Indeed such £ assigns to each (local) section S and «-form Ee(S) on W

(see the introduction).

Lemma (5.2). Let A c W be a bounded open oriented subset of W, and

K c A some compact subset. Then, for each section St of π, defined on A and

depending smoothly on t such that St(w) = 50(>v) whenever w G A \ K, and for

each Lagrangian £,

•if Ee(S,) =JEdt{S;X),
atJA , = 0 JA

where X is a vertical symmetry of m such that for each w G A9 X(S(w)) =

d/dtSt(w).

Proof. Clearly (d/dt) fAEt(St)\t=0 = [A ELχ^S0) where X is the vertical

integrable vector field corresponding to X. Lxt = d£(x,-9 •••,-) implies

the lemma.

Remark (5.3). Lemma (5.2) remains of course true if we add to dt an

element which belongs to lm(D: OCi.jίπ)-* %ι

n(π)). We shal use this free-

dom to associate to each Lagrangian £ a particularly nice form Π dt G

%\(TT) such that dt - Π dt e lm(D). These forms Udt will be called

source forms, to be defined below.

Definition (5.4). A form S G %ι

n(π) is called a source form, or source

equaton, if for each section S, x G Domain^) , and vertical symmetry X,

E6(S; X)(x) depends only on S, S, x and X(S(x)) but not on the higher

derivatives of X in £(*).

Lemma (5.5). Each ω G 3Ci(π) can be written uniquely as ω = ωx + ω2

with ωλ a source form and ω2 G Im(Z)).

Proof. It is clear that if ω G Im(Z>) and ω is a source form, then ω = 0;

this also holds for ω\U, U an open subset of J^iπ). Hence it is enough to
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make, for given ω, locally a source form ω, such that ω — ωι E lm(D)

(locally). In order to perform the local construction, we take local coordi-

nates: xl9- -,xn on W and yl9 ,ym on E such that xv , xn,

JΊ> * * * >Λn f o r m a set of local coordinates on £" (if we identify xfπ0 with x ) .

In these coordinates vertical integrable vector fields have the form X =

ΣΓ=i ^ , 7 ) 9 / 9 ^ and

**(»; x)W - Σ (Otf))/*. ,AW d

i - i d

K;"i< <Jk<n

-dxλ Λ

where * means that the summation is locally finite. Now we define ω, locally
by

Eωι(S; X)(x) = Σ

Kjι< ••

It is not difficult to see that this ωx has the required properties.

Definition (5.6). For ω E 3Ci(ττ), Π ω E 3Ci(7r) is the unique source form

with ω — Π ω G lm(D). Note that there is a 1-1 correspondence between

source forms and elements of §ι(π).

Remark (5.7). If £ is a Lagrangian, its Euler equation is Π dt. This

follows from Lemma (5.2) and Definition (5.6). A source equation S is

locally variational if D ° dE = 0; namely, this implies by the θ exactness

theorem (4.4) (see also Tonti [4]) that for each s E J°°(π) there are a

neighborhood Us of s in /°°(π) and a Lagrangian β, defined on Us such that

Udt = &\US. & is globally variational if there is a globally defined

Lagrangian £ with S = Udt. From the β-cohomology theorem (4.8) we

have

Main theorem (5.8). Each locally variational source equation is globally

variational provided Hn+ι(E; R) = 0. More precisely, the vector space of

locally variational source equations modulo globally variational source equations

is canonically isomorphic with Hn+ι(E; R).

Added in proof. The main results of this paper were obtained indepen-

dently by A. M. Vinogradov, Sov. Math. Dokl. 18 (1977) 1200-1204, 19

(1978)144-148.
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