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DEFORMATION OF COMPLEX STRUCTURES
ON MANIFOLDS WITH BOUNDARY II: FAMILIES

OF NON-COERCIVE BOUNDARY VALUE PROBLEMS

RICHARD S. HAMILTON

In this paper we develop the machinery necessary for the theorems in
Deformations of Complex Structures on Manifolds with Boundary I. How-
ever these results hold in very general circumstances. We have relied heavily
on the important paper [5] by J. J. Kohn and L. Nirenberg. The main work in
this paper consists in rederiving their estimates with careful attention as to
how the bounds depend on the coefficients of the linear problem. We have
found it convenient to state the theorems not in terms of a first degree
quadratic form but instead in terms of the associated second degree linear
operator. Note that our self-adjoint elliptic operators are self-adjoint only in
the sense of symbols, i.e., the highest order terms. We have included some
sections on spectral theory which will be useful in constructing universal
families; this approach was introduced by Kuranishi in [6].
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PART 3. SELF-ADJOINT ELLIPTIC BOUNDARY VALUE PROBLEMS

3.1. Definition
Let X be a compact manifold with boundary dX, and let F b e a vector

bundle over X and P, Q vector bundles over dX, each equipped with a
hermitian inner product < , >. We consider an elliptic boundary value
problem

S: e°°(X; F) -> e°°(X; F) θ e°°(dX; P) θ e°°(θ*; Q\

&f=(Ef9pf,qf),

where E: β^iX; F)->GCC(X; F) is a linear partial differential operator of
degree 2, and/?: &°{X\ F) -> e°°(dX; P) and q: e°°(X\ F) -> e°°(dX; Q) are
linear partial differential operators at the boundary of degree 0 and 1. Then
E, p, q have principal symbols σE(ξ): F —• F, σp(ζ): F\dX —>P and σq(ξ):

F\dX ^> Q which are homogeneous polynomials of degrees 2, 0 and 1. Note
that op = σp(ξ) is independent of ζ since/? has degree 0. We write

DaE(ξ; η) = l im[ % (ξ + tη) - σE(ξ)]/t

for the derivative of the symbol. Note we take the derivative only in the
^-directions and not in the ̂ -directions. Since/? and q have degrees 0 and 1,
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we do not need their derivatives, for

Dσp(ξ; η) = 0, Dσq(ξ; η) = oq(η).

We say that E is a self-adjoint elliptic boundary value problem if the principal
symbols σE, σp, σq satisfy the following conditions with respect to the hermi-
tian metrics on F9 P, Q (here v is the unit normal covector):

(1) σE(ξ) is positive-definite, i.e.,

(2) σE(ξ) is hermitian symmetric, i.e.,

(3) <σE(v)f9 g) = <a/, σpg) + < σ » / , σq(p)g).
(4) If Opf = 0 and σpg = 0, then for all real η

(DσE(p; η)f, g) = (σq(p)f, σq(η)g> + (aq(η)f9 σq(p)g).

(5) dim F = dim P + dim Q.
We remark on the meaning of these conditions. The first makes E strongly
elliptic, and the second makes E essentially self-adjoint, i.e., if we choose a
volume element dV on X and form the inner product

[[<f,g>dV,Jx

then «£/, g» = «/, £*g» for all / and g with compact support in the
interior of X, and E* — E has degree 1. The third condition guarantees that
we can integrate by parts to find a hermitian bilinear form Q(f, g) such that

«£/, g» = Q(f9 g) when qf = 0 and/>g = 0.

The fourth condition assures us that Q can be chosen to be essentially
hermitian symmetric, i.e., if Q*(f, g) =Q(g,f), then Q — Q* involves no
product of first derivatives. Of course Q is still not unique. The fifth condition
assures us of the right number of boundary conditions.

3.2. Integration by parts

Here we justify the previous remarks. Let Kp = Ker σp and Kq = Ker oq(v).
If / e Kp n Kq, then (σE(v)/J) = 0 by (3) so/ = 0 by (1). Therefore

σp ® σq(v): F\dX-> P ®Q

is injective, and is also surjective since dim F = dim P + dim Q by (5). We
have a direct sum decomposition F\dX = Kp Θ Kq. We choose coordinates



412 RICHARD S. HAMILTON

{f\ - - - , / m } for the bundle F agreeing with this decomposition. Thus

Kp = {/:/* = Oforl < α < / } ,

Kq = {/:/ω = Ofor/ + 1 < co < m).

In general we adopt the convention that α, β, γ are restricted to 1 < a < /

while φ, ψ, co are restricted to / + 1 < co < m. Latin indices i, j , k are

unrestricted, i.e., 1 < / < m. We also choose coordinates {x,yι, ,yn} for

X so that X = {x > 0} and ΘX = {x = 0}. We can easily make v = dx and

dV = dx dyι φΛ.We let r, s, t denote indices 1 < r < n ioτy.

The boundary operators will now be of the following form, for the

appropriate choice of bases in P and Q:

^ J > Φ dx ^ 9v' ^ 9yΓ

where dots denote terms of lower degrees. The hermitian metric will have

local representatives htj consisting of haβ, haω and h^. By a proper choice of

the basis in F we can make haβ = δaβ and hφω = δ^; however haω Φ 0 in

general since Kp and Kq may not be orthogonal.

The operator E has the form

,ay fr ay ,ra ay

When we integrate by parts it is clear that the c-terms will cause no problems

since they involve only tangential derivatives; therefore we neglect them and

relegate them to the dots. We have

«Ef,g)>=jJEfg%kdV

We write ^ = α/λΛ and 6£ = ^"ΆΛ. Then

The hypothesis (1) that σ^^) is hermitian symmetric with respect to h

guarantees that a0 and bζ are hermitian symmetric:

^ = ~^^r = br.

Condition (3) says that

<**«/, g) = (σj, σpg) + (oq{v% oq{v)gy.
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In local coordinates σj = {/"}, σq(v)f = {/ω} and

Therefore condition (3) implies that aaβ is the representative of the metric on

P, and aψ0} is the representative of the metric on Q, while aaω = 0 and

%β = °
What does condition (4) say? If v = dx and ηr = dyr, then

DoE{r, TJOJ = bf,

(DσE(v; ηθ/, g> = bjjψ,

oq{v)r = r

If oj = 0 and σ̂ g = 0, then /" = 0 and gβ = 0, so

Moreover the metric < , > on Q is given by αφω, so

Therefore condition (4) says

b*ω = α,*,?/'

We now proceed with the integration by parts. We must integrate

a2/" -fl
aβddr8 + dxdyrg

into an essentially hermitian symmetric bilinear form, using the boundary

conditions qf = 0 and/?g = 0; so we have

β = 0 on

First observe that ααω = 0 and aφβ = 0 by condition (3), so we can

eliminate these terms. Next since gβ = Q on dX, we can transfer d/dx or
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θ/θyr onto gβ with equal ease; therefore the terms

ί ί «J
J J p

11 *>

all can be integrated by parts into essentially hermitian symmetric bilinear
forms. We are left with only two terms with aφω and b^ as coefficients. Since
we can ignore the terms of lower orders, we may treat the coefficients as
constants. Using the boundary condition for/

//s.j

Now

J J OX OX

is hermitian symmetric, so we may ignore it. We are left with two expressions

We deal with the second expression first. This differs from a hermitian
symmetric expression by the conjugate expression

But ga = 0 on dX, so this can be integrated by parts into an expression of
lower degree (i.e., transfer d/dx off of g and then d/dyr onto g in the first
term and then it cancels with the second).

Now for the first expression (the one with aφω)9 the second term plus its
conjugate will equal a hermitian symmetric expression. Therefore we can
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replace the first expression by the equivalent expression

But we also have the b^ω expression

J J +ω dx dyr

As we saw before, condition (4) says

so these two expressions cancel. This completes the proof of the integration
by parts.

33. Norms
We introduce the Sobolev norms | |/ | |π for/ E &3O(X; F) which measure

the L2 norm over X of / and its partial derivatives of degree n or less. We also
introduce norms \j\n and | / | π _ 1 / 2 for sections / E Q°°(dX; F\dX) defined
only on the boundary. The norm \f\n is just the Sobolev norm on dX which
measures the L2 norm over dX of / and its partial derivatives of degree n or
less in directions tangent to the boundary only. The norms | / | π _ 1 / 2 can be
defined in local coordinates using the Fourier transform and the multiplier
(1 + H ) Λ ~ 1 / 2 There is an equivalent and more useful definition, which is
that for integer n > 1, |/ |Λ_i/ 2 is just the norm | |/ | |π of the best extension/of
/to all of X

l/L-i/2 = ω { l l / L : / eβ°°(X; F) and/|3Jf = /}.

Since expressions with norms invariably involve arbitrary constants, we adopt
the convention of Kohn and Folland:

Vι(f) S V2(f) means 3C, V/, Vγ(f) < CV2(f).

In case of more terms we say

Vι(f) S V2(f) + F3(/) means 3C2, 3C3, V/, Vx(f) < C2V2(f) + C3F3(/).

Note that if F2(f) becomes negative, we may need C3 larger than C2.
We have the relation

More precisely one can show by interpolation methods that

l/l2n-i/2 s I/IJ/L-,, \f\l z l/L+I/2l/L-,
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We do not need this good a result; all we use is that (for n > 1)

V ε > 0 , 3 C , | / | n _ 1 / 2 < ε | / | π + C|/|0.

We can find a continuous linear extension operator

T: e°°(dX; F\dX) -> e°(X; F)

such that Tf\dX = f and

117/11- l̂/l»-1/2
for all integers n > 1. More generally, let

4- • &°(X\ F) -». &°(dX; F\dX)
on

be a linear partial differential operator at the boundary whose symbol is

where v is a vector field pointing outward at dX, i.e., with v(υ) = 1 where v is
an outward normal cotangent vector field. We call 9/9AZ a normal derivative,
since we can always choose a coordinate chart on X and a vector bundle
chart on F such that d/dn is exactly the normal derivative in local coodinates.
Then we can choose a continuous linear extension

T: e°°(dX; F\dX) Θ e°°(dX; F\dX) -> e°°(X; F)

such that T(g, h)\dX = g, d/dnT(g9 h)\dX = h, and

for all integers Λ > 2.
On the other hand, we can approximate as closely as we wish in || Hj

without any restriction on the normal derivative.
Lemma. Given any f E e°°(X; F) and any h G &°{oX\ F\oX) we can find

a sequence fj G e°°(X; F) such that f^dX = /, (d/drift = h and \\fj - f\\x -» 0
α^y —» oo.

Proo/. It is enough to verify the lemma when / = 0, and h has compact
support in a local coordinate chart. Choose a chart with coordinates {x,
y\- - - ,yn} on X and {f\ , f } on F so that d/dn becomes d/dx.
Choose a sequence of functions ψj(x) such that ψj(x) — 0 for x > l/j,
0 < φj(x) < 1 for all x, φ/0) = 0 and φ;(0) = 1. P\xtfj(x,y) = ψj(x)h(y). It is
then clear that^13^ = 0, (d/dnft = h and ||j£ ||i ->0 as claimed.

3.4. Coercive boundary value problems

Let &f = (Ef, pf, if) be a self-adjoint elliptic bound value problem as
described in §1. We say S is coercive if satisfies a coercive estimate or
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Garding's inequality

for all / with pf = 0 and qf = 0. This has several well known consequences.
For every integer n > 2 we have estimates

II/IL S ll^/IL-2 + b/L-1/2 + ltfL-3/2 + ll/llo
The map

S : e°°(X; F) -> e°°(*; F) θ e°°(3^; P) θ e°°(dX; Q)

has finite dimensional kernel and closed range with finite codimension. We

can solve Ef = g, pf = h, qf = k if and only if g, h, k satisfy a finite number

of linear relations of the form

where γ E e°°(X; F), η G e°°(dX; P), K E e°°(dX; Q) and

» = / f<g> y> dv, <A, η> = Γ <A, η> rfs, <fc, κ> = Γ

where dS is the "surface area" on dX with dV = dS /\v. Moreover the

classical Fredholm alternative holds.

Lemma. If & is a coercive self-adjoint elliptic boundary value problem then

dim ker & = codim Im S .

Hence in particular if & is injective then it is also surjective.

Proof. Since S is self-adjoint it follows from §2 that we can integrate by

parts to obtain an essentially hermitian symmetric bilinear form Q(f g) with

« £ / , g » = Q(f g) when qf = 0 and/7g = 0.

Moreover from the construction it is clear that there are boundary linear

partial differential operators

p': e°°(X; F) -> e°°(dX; P) of degree 1

q': e^iX; F) -» e°°(dX; Q) of degree 0

such that

((Ef g» + (p'fpg> + (qf, q'gy = Q(f g).

Hence also

«/, Eg)} + (pfp'g) + <^/, qg) = T

and Λ(/, g) = (2(/, g) — Q( g, f) contains no product of derivatives. Thus

where L and M are linear partial differential operators of degree 1:

L, M: e°{X; F) -> e°°(X; F).
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Thus we have the formula

« ( £ + L)f, g» + <p'f,pg> + <qf, q'g)

= «/, (E + M)g})

Let

SL/ = {{E + L)/ />/, tf), S M / = ((£ + M)/, />/, tf).

Then S^ and &M are also coercive self-adjoint elliptic boundary value
problems. Let

index & = dim Ker & — codim Im S.

Since &, &L, &M all differ only by operators of lower degrees, it is a classical
result of Fredholm theory that they all have the same index. Therefore index
S = 0 follows from the relations

dim Ker &L = codim ImS^, dim Ker &M = codim Im &L.

By symmetry it suffices to prove only the second. Suppose g G Ker &M. Then
(E + M)g = 0,pg = 0,qg = 0so

+ L)f, g» - </>/,/>'g> + <tf, ?'g> = 0

for all/. Thus (g, -p'g, q'g) defines a linear relation on Im SL . Conversely
suppose (g, -h, k) defines a relation on Im SL, so that

« ( £ + L)f, g» - </»/, Λ> + (qf, k> = 0

for all /. Then

«/, (£ + M)g» + </,/,^g -h} + (qf,k- q'g)

for all/. If/has support in the interior of X9 then «/, (E + M)g» = 0. This
forces (E + M)g = 0. Now pf, q'f, p'f, qf can all be specified arbitrarily at
dX. Thus pg = 0, qg = 0, /g = Λ and ^'^ = /:. Hence g G Ker S^ and the
linear relation is of the form considered before. Thus there is a 1-1 correspon-
dence between Ker &M and linear relations on Im &L, so

dim Ker &M = codim Im &L

as we asserted before.
We still have to show that p, p\ q, q' are independent as claimed. The

following assertions are clearly equivalent since dim F = dim P + dim Q:
(a) the map

pΘp'θqθq': &°{X\ F)

-> e°°(X; P) θ e°°(X; P) θ e»{X\ Q) θ e°°(X; Q)



DEFORMATION OF COMPLEX STRUCTURES 419

is surjective;
(b) the maps

σp Θ oqr. F\dX ^P θ Q, σp.(v) θ σ,(i>): F\dX -+P ® Q

are isomoφhisms;
(c) if pf = 0,/>'/ = 0, qf = 0, ?'/ = 0, then/ = 0 and df/dn = 0 on ΘJT.
We prove (c). If/?/ = 0,/?'/ = 0, qf = 0, ?'/ = 0, then

« ( £ + L)/, g» = «/, (E + Λ/)g»

holds for all g. Moreover we can find two boundary linear partial differential
operators of degree 1:

r, s: e°°(X; F) -> Θ°{dX\ F\dX),

so that

« ( £ + L)/, g» + <r/, g> = «/, (£

holds for all / and g. In local coordinates

L)/,g» =
"x J όx* Jdx

so σr(v) = σE{v). By symmetry σs(v) = oE(v) as well. Since oE(v) is invertible,
g and sg are completely arbitrary on dX. Thus, if pf = 0, /?'/ = 0, qf = 0 and
#'/ = 0, we must have / = 0 and rf = 0 on ΘX. But again since σE(v) is
invertible we must have/ = 0 and df/dn = 0 on dX. This proves the assertion
(c).

3.5. Persuasive boundary value problems

Let &f = (Ef,pf, qf) be a, self-adjoint elliptic boundary value problem as
defined in §1. A coercive estimate or Garding's inequality,

when pf = 0 and qf = 0, is very strong and fails in certain interesting cases.
Nevertheless many of the important results are still valid, if we have instead a
persuasive estimate or subelliptic inequality,

when pf = 0 and qf = 0. Such an estimate occurs for example in 3-Neumann
problem by a clever integration by parts. The consequences of such an
estimate are discussed at length by Kohn and Nirenberg [5]; we give a brief
review of their argument since we shall shortly need to rederive their main
estimate with uniform bounds in terms of the coefficients.

Theorem {Kohn-Nirenberg). Let &f = (Efpf, qf) be a self-adjoint elliptic
boundary value problem as defined in §1, satisfying conditions (l)-(5). Suppose
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& satisfies a persuasive estimate or subelliptic inequality

|/β<Re«£/;/» + 11/11$
when pf = 0 and qf = 0. Then

&: e°°(X; F) -> e°°(X; F) θ β 0 0 ^ * ; P) θ

has finite dimensional kernel and closed range with finite codimension; moreover

dim Ker & = codim Im S.
The first step is to integrate by parts as in §2 to obtain an essentially

hermitian symmetric bilinear form Q(f g) with

«£/, g» + </?'/,/?£> + (qf, q'g} = Q(f g).

Then the persuasive estimate says

when/?/ = 0 and qf = 0. Observe that now it is unnecessary to require qf = 0.
For given any / E G°°(X; F), we can find a sequence fj according to the
lemma of §3 such that \\f. - f\\x -* 0, fj\dX = f and the normal derivatives
(d/dn)fj = h for any given h. Since aq{v) is surjective, for an appropriate
choice of h we will have qfj = 0 for all j . If pf = 0, then pfj = 0 also. Apply
the persuasive estimate to fy,

Since \\fj - f\U -» 0, surely QUPfj)-> β(/,/) Therefore | /β < Re β(/,/) +
Il/Ho when/?/ = 0 without any restriction on 4/.

Let v be a vector field on X. We can choose a linear partial differential
operator V of degree 1:

V: e°°(X; F) -> e°°(X; F)

with symbol σ V(£) = ζ(v)I. This determines V up to an operator of degree 0.
If v is tangent to the boundary of X, then by restriction

V: e°°(aX; F\dX) -> e°°(3X; i ^ X ) .

In this case, by changing V by an operator of degree 0 we can make V
preserve Ker/?, so that/?/ = 0 =>Vpf = 0. It is sufficient for this to construct
V in local charts where Ker/? = {/: fa = 0 for 1 < a < 1} and patch
together with a partition of unity. We call such an operator V a simple
operator. Notice that there are enough simple operators so that we can find a
finite number of them V1? , V^ with

n N

n v
 ZJ ZU I v jJ lO

k=0j=\

Let V be a simple operator. Then pf = 0 =>/?V/ = 0 =» =>/? Vπ/ = 0.
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Hence if pf = 0, we can apply the persuasive estimate to Vnf;

At this point Kohn and Nirenberg [5] perform a careful shifting of derivatives
to transform Re β(Vn/, Vnf) into Re Q(f, V2nf) with only small error terms.
In particular they prove the following result.

Lemma (Kohn-Nirenberg). Let Q(f g) be an essentially hermitian symmet-
ric bilinear form of degree 1 in f and g. Let V be an operator of degree 1 with
symbol σ V(£) = ζ(v)I where v is a vector field tangent to dX. Then for any n

|Re Q(V% V/) - (-l)-Re Q(f, V2"/)| < ||/||2Π.

Assuming this result for the moment, we complete the derivation of the
main a-priori estimate. Assume/?/ = 0, qf = 0. Then/?V2y = 0 as well, so

Q(f, v2y) = «£/, v2"/».

Since V is a differentiation parallel to the boundary, V(p) = 0. Therefore V
will have an adjoint operator V* of degree 1 such that

«V*/,g» + «/, V g » = 0

for all/and g without restriction at the boundary. Thus

«£/, V2Λ/» = {-\)XV*nEf V/».

Now

|«V"2J/, V"/»| < \\Ef\\n\\f\\n,

so also

Then by the Lemma of Kohn-Nirenberg

Therefore

Summing over a finite number of V

\f\2n ̂  \\m\n\\f\\n + \\f\\l
when pf = 0 and qf = 0. Hence

For any elliptic operator Ef the Dirichlet boundary conditions f\dX are
always coercive. Thus
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by Garding's inequality. But

V e > O , 3 C . , | / L _ I / 2 < e | / L +

Therefore

+ Il/L) + C\\Ef\\n_2

IfεC < 1/2, we have

H/L < eC||£/| |n + C| |£/L_ 2 + C| |/ | | o + Ce |/|0.

But Vε > 0, 3Cε with

and ||£/||o < C| |/ | | 2. Thus

| | / | | Λ <

ButVη > 0, 3Cη with

II/II2 + l/lo < ^ll/lli, + Cηll/llo

Choose TJ so small that Ceη < 1/2. This makes η a function of ε, so we can
write Cε for Cη. Then Vε > 0, 3Ce with

when/?/ = 0 and qf = 0. In particular

Il/L ;
when pf = 0 and qf = 0. (We need the better version with any ε > 0 at one
point in discussing the spectral theory.)

It is now easy to obtain an estimate in the case of inhomogeneous
boundary data. Recall that/?//?'/, qf, (//uniquely determine f\dX and df/dn.
Therefore we can find two linear partial differential operators φ and ψ on dX,

φ: e°°(3*; P) Θ e°°(dX; Q) -> e°°(3ΛΓ; F\dX),

ψ: β^ίa^; P) θ β ί̂θΛ ;̂ P) θ e°°(dX; Q) θ

where φ(Λ, /) is of degree 0 in h and /, and ψ(Λ,y, A:, /) is of degree 1 in h and
/ and degree 0 inj and k such that iff\dX = φ(h, I) and df/dn = ψ(Λ,y, fc, /),
then pf = Λ, /?'/ = j , qf = A:, r̂'/ = /. Now let T be a continuous linear
extension

T: β^idX; F\dX) θ &°(dX\ F\dX) -> β^ί^; F)

as described in §3, so that if T(u, υ) = / then/|3X = u and df/dn = t). Let
/ = T(φ(h, /), ψ(A,y, Λ, /)). Then pf = A, /?'/ = y, ^ = fc, ^ / = /. Moreover
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for each n > 2

Il/L S IAL-i/2 + UL-3/2 + l*L-3/2 + l'L-1/2.
If we choose for simplicity to lose half a derivative, then

Suppose now that we are given an arbitrary/. Put

f - T(φ(pf,0),t(pf,0,qf,0)).

Then pf = />/and qf' = 5/", while

Let / = . / ' + f"'. Then /?/" = 0 and qf" = 0. Applying the previous a-priori

estimate t o / " we have

ll/ΊL^II^/ΊU + ll/Ίlo
Then

Il/L S IÎ /IL + l/>/L+2 + I2/U1 + ll/llo
This proves the following.

Main a-priori estimate. Let &f = (Ef, pf, qf) be a self-adjoint elliptic

boundary value problem. Suppose S satisfies a persuasive estimate {or subel-

liptic inequality)

\f\l^«Efj» + 11/112,
whenpf = 0 and qf = 0. Then for all f without restriction and all n

Il/L Ξ ||£/L + |/»/L+2 + l-z/U, + ll/llo
4̂/ΛΌ we have the more precise estimate

Vε > 0, 3C ε , y/fwithpf =0andqf=0,

\\f\\n<e\\Ef\\n + Cε\\f\\0.

Remark. This is not the best possible estimate. With a little more work we

could have proven

Il/L ^ P/L-i + l/»/L+i/2 + I4/L-1/2 + ll/llo
However it is not clear that there is any advantage to justify the work

involved.

3.6. The lemma of Kohn and Nirenberg

We now prove the lemma which we used in the last section. We state it

again briefly for reference. Recall that V is an operator of degree 1 with

symbol σ V(£) = ξ(v)I for a vector field v tangent to dX.
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Lemma (Kohn-Nirenberg). If Q(f g) is an essentially hermitian symmetric
bilinear form of degree 1, then for any n

|Re β(V»/, Vf) - (-1)" Re Q(f, V2«/)| < | |/ | | 2 .

Proof For any hermitian bilinear form Q(f g) of degree 1, there is
(uniquely) defined another such form V Q(f g) with

for all / and g. The coefficients of V Q are obtained by differentiating the
coefficients of Q with the operator V (in some sense). If Q is essentially
hermitian symmetric, then so is VQ. Using the above relation we can transfer
derivatives V from one side to the other in Q(Vnf V"/). In doing so we
generate various terms

ΨQ{Ψf Vkf)

with / + j + k = 2n. We call max(y, k) the degree of the term, and i the
rank.

Consider first the expression

Q{Ψ"f,f) - 2(-l)"ρ(V«/, V/) + Q(f, ΨJ).

We claim we can rewrite this as a sum of terms Σ Vlg(V7/, Vkf) of degree
max(/, k) < n - 1 and rank 2 < i < n + 1. We have

Q(V2JJ) - 2(-i)Λρ(vy, v/) + ρ(/, v2y)

= vρ(v2Λ-y,/) - vρίv2"-2/, v/) + •

- (-i)Λvρ(vy, v-1/) - (-irvρ(vΛ-y, vy) +

-vβ(v/, V2Λ-2/) + vρ(/, v2"-1/)

= v2ρ(v2"-2/,/) - 2V2ρ(v2"-3/, v/) +

-n(-)nψQ{Vn-χf Vn~ιf) +•• •

-2V2ρ(v/, v2"-3/) + v2ρ(v2"-2/,/).

Thus we have reduced the expression to a sum of terms of rank i > 2. If we
make a substitution.

vρ(v# v*/) = -ΨQ(yj-χf9 v
k+ιf) + vi+ιQ(vJ-ιf, vkf),

we will obtain terms of strictly lower degrees and equal or greater rank,
provided j > k + 2. A similar remark applies if k >j + 2. Therefore we can
reduce the expression to a sum of terms with i > 2 and either max(y, k) < n
— 1 or \j — k\ < 1. Since i + j + k = 2n, these relations imply max(y, k) <
n — 1. Moreover we do not need to make such a reduction on a term unless
either j or k > n. Therefore, if we only make such reductions when necessary,
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we only generate terms of rank i < n + 1. This remark will be important later

when we study uniform estimates in terms of the coefficients, as it guarantees

that we do not differentiate the coefficient of Q more than n + 1 times. Now

any term of degree max(y, k) < n — 1 satisfies

We would be done with the proof if Q were completely hermitian symmetric.

Since Q is essentially hermitian symmetric, the difference form

)- Q(gJ)

involves no product of first derivatives of / and g. Moreover we can write

^(/> S) = ^i(/> g) + ^2(/> #) where Rγ involves no derivatives of /, and R2

involves no derivatives of g. If we apply the previous argument to Re Q, we

have

|Re Q(V2JJ) - 2(- l ) Λ Re Q(V% V/) + Re β(/, V2"/)| < ||/||2

Λ.

We then have to estimate the difference

Re Q(V2JJ) - Re β(/, V2"/) =\{R(V2JJ) - R(f, V 2 Λ/)}.

We estimate Rx(y2nf,f) - Rx{f, V2nf); the estimate for R2 is symmetrical. We

can write

f, v2y) =VΛ 1 (V 2 Λ - 1 /,/) - v/^v2"-2/, v/) + ..

Further rearrangements produce terms of the form ψRx(yJfy Vkf). As before

we can shift V from one side to the other until in each term either j < n and

k < n — 1 or else j = k or k + 1, and we can do so without producing a term

of lower / than we start with. Since we have already reduced to i > 1, we

continue to have i > 1. Then, if j = k or k + 1, we will have y < w and

k < Λ — 1. Moreover if we only make reductions when necessary, then in the

final terms we will have either j = n or k = n — 1 so i < n. Therefore we can

rewrite the expression /?1(V2/t/, f) — Rx(f, V2"/) as a sum of terms

ΨR^f, V*f) with 1 < i < nj < n, k < n - 1. Since Λ,(/, g) has no deriva-

tives on/we have

n2

n.
The same holds for R2. This proves that

|Re β(Vy, V/) - (-1)" Re

as claimed. Moreover we have shown that

Re β(Vy, V/) - (-1)" Re β(/, V2"/)
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can be written as a sum of expressions VιQ(VJf, Vkf) and their conjugates
with 2 < i < n + 1, j < n - 1, k < n - 1, and expressions V'Λ^V y, V*/)
with 1 < i < Λ, j < n, k < n - 1, and expressions VΉ2(V

7/, V*/) with 1 < /
< n,j < n — \, k < n. We shall need the bounds on i later.

3.7. Elliptic regularization

Let &f = (Ef, pf, qf) be a self-adjoint elliptic boundary value problem
which satisfies a persuasive estimate

when/?/ = 0 and qf = 0. Then we have the main a-priori estimate of §5

It follows that if / G Ker S, then | |/ | | π < | |/ | | 0 for all n. Hence the unit ball
| |/ | | 0 < 1 is compact in Ker S, so Ker S is finite dimensional. We wish to
show that Im S is closed and has finite equal codimension. For the moment
we content ourselves with the following special case.

Theorem. // & is injective, then it is also surjective.
Proof. Let t>1? , vn be vector fields on X tangent to the boundary ΘΛ̂

such that every vector field tangent to the boundary is a linear combination
of the Vj (with β00 coefficients). Let Vy be an operator with symbol σv (ξ) =
ζ(Vj)I. The norm

Ill/Ill? β Σ II Vllo+ll/llo
is independent of the choice of Vj up to equivalence. Let n be a vector field on
X which points outward at dX, with n(v) — 1, and let d/dn be an operator
with symbol od/dn(ξ) = ξ(n)I. Thus d/dn is a normal derivative. When we
integrate by parts, we get

when qf = 0 and/?g = 0; and the form Q has the form

where the dots denote terms with at most one normal derivative. Since oE(v)
is hermitian symmetric and positive definite, we must have

+||£ ?|^| | | £ | in/in, + HI/HI?,

which implies

Re β ( / , / ) +Ill/Ill?,
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since 11/11, < ||df/dn|| + |||/|||,. Then

11/11? <Re«2?/,/» + HI/HI?,

when/?/ = 0 and qf = 0. It follows that S is coercive if we have

when/?/ = 0 and qf = 0. Let Vj* be the adjoint of V,, and put C = -Σ Vjf V,.
+ /. Then «C/,/» = Σ||V/|β + ||/||g = |||/|||?. Moreover σc(ξ) = Σ £(^)2/,
so σ c 0) = 0 and Dσc(v\ η) = 0 for all η, because p(ϋy.) = 0 since the Vj are
tangent to the boundary.

Therefore for any ε with 0 < ε < 1

&J=(Ef+εCf,pf,qf)

is a self-adjoint elliptic boundary value problem satisfying (l)-(5) of §1. If S
satisfies a persuasive estimate

(when/?/ = 0 and qf = 0), then the persuasive estimate

(when pf = 0 and qf = 0) holds uniformly in 0 < ε < 1, i.e., with constants
independent of ε. Consequently the main a-priori estimate

H/IL < \\Ef+ εC/||π + \pf\n+2 + \qf\n+i

will also hold uniformly for 0 < ε < 1.
However, for any ε > 0 we have

when/?/ = 0 and qf = 0. Thus S ε is a coercive problem for ε > 0.
Suppose now that S is injective and satisfies a persuasive estimate. We

claim that Sε will also be injective for all ε sufficiently small. For suppose
not. Then we can find a sequence εk -^0 and fk G Ker &Bk with | | ^ | | 0 = 1.
From the uniform main a-priori estimate we have | |Λl lπ^C|IΛIIo = C w i t n

a constant independent of A:. By passing to a subsequence we may assume
fk ->/. Then by continuity / E Ker S, and | |/ | | 0 = 1 so fφ 0, which is a
contradiction. Therefore &ε is injective for ε sufficiently small.

But &ε is coercive, so by §4 it is also surjective. Let εk -+ 0 be a sequence
and let/t be the unique solution of

pfk = A, on dX,

qfk = j , on dX,
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for any given g, h,j. From the uniform main estimate

IIΛIIπ < c(\\g\\H + \h\n+2 + \j\H+x + HΛiio)

with a constant independent of k.
We claim ||.4||0 is bounded. For if not, by passing to a subsequence we

would have | | ^ | | 0 —> oo. Then put^ = Λ/IIΛIIo We would have

IIΛIL < c(\\g\\n + \h\n+2 + l UO/HΛHo + c,
s o

 IIΛIIΛ ^ C- Then by passing to another subsequence we would have.4 —>/.
Then Ef = lim Efk + ε̂ C/* = l img/ | | /J 0 = 0, and likewise /?/ = 0 and qf =
0. But IÎ Ho = 1 so | |/ | | 0 = 1. This contradicts the hypothesis that S is
injective. Therefore the \\fk\\0 are bounded.

Inserting this in the uniform main estimate, we have ||/Λ | |Λ < C for all n,
independent of h. Therefore, by passing to a subsequence, we have/£—»/.
Then by continuity

£ / = £>/>/= h,qf = j .

This proves S is also surjective.

3.8. Spectral theory

Let &f=(Ef9pf,qf) be a self-adjoint elliptic boundary value problem.
Then for every complex number λ E C so is S λ / = (/ + λ/, pf9 qf). We say
that λ belongs to the spectrum Σ of & if S λ is not invertible.

Theorem. If & satisfies a persuasive estimate

I/IS S « # > / » + 11/115
when pf = 0 and qf = 0, then its spectrum Σ consists of a set of isolated points.

Proof. First note that if Re λ is sufficiently large, then when pf = 0 and
qf=O,

Thus S λ is injective if Re λ is large. Hence the spectrum Σ lies in a half plane
Re λ < μ.

Since S λ is always invertible for some λ, it suffices to prove that Σ is a set
of isolated points when S is invertible. Write if = (/, 0, 0). Then S λ = S +
λί . Let Γλ = S"1 o g λ, and T = &'ι9. Then

Γλ = S"1 o (S + λ$) = 5 + λΓ.

Notice that Γg = / is the unique solution of Ef = g, pf = 0, qf' = 0. The
operator Γ is a map Γ: β 0 0 ^ ; F)-> β 0 0 ^ ; F) which by (the more precise
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version of) the main a-priori estimate satisfies

Vε > 0, 3Ce, VG

rain <*||sL + cβ||s||o.
Fix any suitably large value of n, and let L£(X; F) denote the completion of
&°°(X; F) in the norm || | |π. By the previous estimate, T extends to a
continuous linear map

f: L?(X; F) -> L?(X; F),

and in fact T is compact. Therefore by the classical Riesz theory, the operator
Tλ = / + λΓ is invertible for all but a discrete set Σ of numbers λ E C. Note
that Σ c l For if S λ is not invertible, then it is not injective, and if/λ lies in
the kernel of S λ, then /λ is smooth (by definition since 0X>(X; F) is the
domain of Sλ) and hence/λ E L£(X; F) all the more; and

so fx also lies in the kernel of fλ and Γλ is not invertible either. This proves
that the spectrum Σ of S is discrete.

The harmonic space Hλ is defined as Hλ = ker S λ, or

Hλ = {h: Eh+λh= 0,ph = 0, qh = 0}.

We define the eigenspace i/λ as the smallest subspace such that

Eh+λh<Ξ Hλ9pf =0,qf=0=*hGHλ.

Theorem. If & satisfies a persuasive estimate, then each Hλ is finite
dimensional.

Proof. Again by a translation we may assume & is invertible, and set
Γλ = / + λΓ = S"1 S λ with T = S"1 ί. Recall that T extends to a compact
linear map f: L${X\ F) -+ L$(X\ F). By the Riesz theory, each eigenspace

Kλ = {/ e L2(X; F): 7 ^ = 0 for some k)

is finite dimensional. Let

Kλ = {/ e e°°(X; F): Tft = 0 for some k).

Then clearly Kλ C ^ λ and hence is also finite dimensional. We claim i/λ C
Kλ. For HEf+λf e Kλ,pf= 0, qf = 0, then &J=(Ef+λfpf qf) E SKλ,
so &-ι&λf E &-χiKλ or TJ E TKλ. But Γ(£λ) c Kλ so TJ E Kλ, which
implies / E Kλ. Thus Kλ has the property for which Hλ is minimal, so
Hλ Q Kλ. Thus Hλ is also finite dimensional.

The complement of the spectrum Σ is called the resolvent set Σc = C — Σ.
It is open and omits a discrete set of points. S λ is invertible for all λ E Σc.
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Lemma. If & is invertible, then for all n sufficiently large

Proof. We already know

ll/LS||£/||n +
Therefore it suffices to show that

for some k. If not, we can find a sequence fj with ||j£||0 = 1, but Efj->0,
pfj -> 0 and qfj -^ 0. Then ||jζ.||π < C for all «, so by passing to a subsequence
we have fj —>/ for some /. Then Ef = 0, pf = 0, qf = 0, so / E ker S. But
| |/ | | 0 = 1, so/ φ 0. This contradicts the hypothesis that S is invertible.

Theorem. The resolvent

R: Σc X {e°°(ΛΓ; F) θ e°{dX\ P) θ e°°(dX; Q)} -> β 0 0 ^ ; F)

defined by

is complex-analytic in λ and linear in (g, Λ, k).
Proof. First we claim that R is continuous. It is sufficient to prove that if

0 e Σc, then R is continuous in a neighborhood of 0. By the previous Lemma

Therefore

II/IL < c(\\Ef + λ/||n + |/>/L+2 + | ^ Ί Π + 1 ) + cλ| |/ | | r t .

When |λ| < ε with ε = \ C,

11/11,, < c(\\Ef + λ/||π + |/>/U2 + |«f|n+1)

with a constant independent of λ. Then

||Λ(λ)(g, h, k)\\n < C(\\g\\n + |Λ|n+2 + \k\n+ι)

with a constant independent of λ for all n sufficiently large. Now

&λ{R(λ) - R(μ)}&μ = &μ - S λ = (μ - λ)ί,

where ί (/) = (/, 0, 0). Thus

R(λ) - R(μ) = (μ - λ)R(λ)ίR(μ),

which together with the previous estimate proves R is continuous. Moreover

R(λ + θ) - R(λ) = -ΘR(λ + θ)$R(λ).

Therefore

DR(λ) = lim [Λ(λ + θ) - R(λ)]/Θ, DR(λ) = -R(λ)$R(λ).

Hence R is continuously differentiable in the complex sense, so surely R is
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analytic. (All these formulas are to be understood as being applied to a fixed

(g, h, k) which we omit from the notation for simplicity.)

Now assume & is not invertible, and let γ be any path in the resolvent set

Σc enclosing the origin. Let

f *(λ)-^, σ = J R(λ) dλ.N

Lemma. We have the following relations:

N& + σί = /, N&N = N,

&N + ίσ = /, σίσ = σ,
σ$N = 0, σ&N = 0,
Wίσ = 0, N&σ = 0.

As a consequence if π = σί and p = ίσ, then IT and p are projections

IT2 = π, p 2 = p,

.swc/* /Λύtf Ker S C Im π and Ker p C l m S .

Proof. The first two are trivial. For example

dλ
= f R(λ)S - ^ + ί

^γ λ Jy

ι^=Γ^=/.
The others follow from the identity

Let γ r be a curve close to γ but inside, let λ E γ and μ E γ'. Then for

example

σ ί σ = Γ f R(λ)$R(μ) dμ dλ
JyJy

= f [ γ±-{R(μ) - R(λ)} dμdλ= f R(μ) dμ = σ,
J'yj' y Λ μ Jy'

since / dλ/(λ — μ) = 1 and /γ, dμ/(λ — μ) = 0. The others are proved in

the same way.

Lemma. If y is a path in the resolvent set enclosing the origin, then

pN(g, h, k) = h, qN{g,h,k) = k.

Consequently

= 0, qNί =0.
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Also

pσ = 0, qσ = 0.

Proof. Observe that from the definition of R(λ)

pR(λ)(g, h, k) = h, qR(λ)(g, h, k) = k.

Now N = /γ R(λ)dλ/λ and σ = /γ Λ(λ) rfλ. The result is immediate.

L ILemma. i/0 C Im π.
/. Recall that Ho is the smallest subspace such that

EfGH0, pf=0, qf=0=*f<ΞHo.

Suppose/is such that

£/Elmτr, pf=0, qf = 0.

Then &f = ίg where g = Ef, so πg = g. Then using the previous relations

N&f= N$g = Nίπg = Nίoίg = 0, f = N&f + irf = irf,

so / E Im 7r also. Hence Im 77 has the property for which Ho is minimal, so
Ho C Im TΓ.

Theorem. If γ contains no eigenvalue other than 0, /λen ̂ 0 = Im TΓ.

P/ΌO/. Choose a subspace 5 complementary to Ho; this is surely possible
since dim Ho < 00. Then e°°(X; F) = S ® Ho. We write / G β°°(^; F) as
f = s + h with 5 E S and Λ E if0. The quotient semi-norm ||A/SΊ|Λ = inf{||^
+ A | |^ :^E5}is in fact a norm, and all norms on a finite dimensional space
are equivalent, so \\h\\k < \\s + h\\k. Then also | | j | | Λ < \\s + A||Λ.

Lemma. For some m and all λ sufficiently small, ifhG Ho, then

Proof. E takes the finite dimensional space Ho into itself. Therefore the
above estimate holds for all λ sufficiently small, i.e., if m = dim Ho since

From the main a-priori inequality

Il/L S P/L + lΛίl,+2 + Iβ l̂.+i + ll
This implies that for all λ sufficiently small

H/L < \\Ef+ λ/IL + Ip/I^j + |^ | π + 1

with a constant independent of λ.
Lemma. For all λ sufficiently small and n sufficiently large,

\\s\\n < \\Es + λj | |n + |/w|ll+2 + | ^ | n + 1 ,

when s E S, with a constant independent of λ.
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Proof. By the previous estimate it is only necessary to show that for some

then the Lemma will hold for n > k. If this were false, we could find

sequences Sj E S and λ, -* 0 with ||^.||0 = 1, Esj + λjSj -> 0, psj -> 0 and qsj ->

0. By the previous estimate we would have \\Sj\\n < C for all n. Hence passing

to a subsequence we would have Sj^>s E S. Then by continuity \Es = 0,

ps = 0, qs = 0 so s E Ho also. But S Π Ho = {0} so s = 0. But || j . | | 0 = 1 so

|| J Ί | 0 = 1. This is a contradiction. Hence the lemma must be true.

Lemma. For all λ sufficiently small and for some k,

for all s E 5 αw*/ A E i/0, w/7A a constant independent of λ.

Proof. Suppose not. Then we could find sequences λy -> 0, Sj E S, Ay E 7/0

w i t h | | ^ | | 0 + ||A,.||0= l a n d

Esj 4- λ7^ + Ay —> 0, /7̂ y ̂  0, qsj —> 0.

Since ^ 0 is finite dimensional and ||A, | |0 < 1, by passing to a subsequence we

may assume hjf -> h E ^ 0 . Then isly, 4- λ̂ ^ -> A also, so Esj + XsJ9 psj9 qsj are

all bounded. By the previous Lemma we have ||jy||Λ < C for all n. Then by

passing to another subsequence we may assume Sj —»s E S. By continuity

Es = h,ps = 0, qs = 0. Since A E i/0, this implies s E: Ho from its definition.

But S Π Ho= {0}, so s = 0. Then A = 0 also. But | | ^ | | 0 + ||A,.||0 = 1, so

\\s\\o + ll^llo = l ^ n ^ s ̂ s a contradiction. Hence the Lemma must be true.

We apply this Lemma not with s and A but with s and Eh + λA, for if

A E i/0, then Eh + λA E i/ 0 also. Thus for all λ sufficiently small and for

some k,

\\s\\0 + \\Eh + λA||0 < | | β + ^A + λA||, + \ps\k+2 + | ^ | Λ + 1 .

Now given / E 6°°(X; F) write f=s + h with ^ E 5 and A E //0. We saw

before that \\s\\k < | | / | | Λ . Since A E Ho, we have /?A = 0 and qh = 0, so

pj = pS and qf = qs. Also Es + Eh + λh = Ef + λf - λs. Therefore for all λ

sufficiently small and for some k,

\\s\\0 + \\Eh + λA||0 < | | £ / + λ/||Λ + λ | |/ |U + \pf\k+2 + I ^ U + i

||/L < \\Ef + λ/L + \pf\n+2 + | ^ | n + 1 -

and | | / | | 0 < | |s | | 0 + || A||o. Combining these, when λ is sufficiently small (so we

can ignore Cλ | | / | | Λ by subtraction when Cλ < 1/2) and n is sufficiently large
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(i.e., n > k) we have

Let us write

Then we have shown the following.

Lemma. For all λ sufficiently small, all n sufficiently large and some m we

have

11/11,, < cχ-m\\&j\\n.

Recall that R(λ) = &χl. The above estimate shows that

for all λ sufficiently small. Therefore when m is large enough, λmR(λ) is

continuous at λ = 0. Hence by the removable singularities theorem it is

analytic at 0. This proves the following result.

Theorem. R(λ) has only poles for singularities. If m is large enough, then

λmR(λ) is analytic at 0, and if γ is a curve enclosing no point in the spectrum

except 0, then

f λmR(λ) dλ = 0.

This accomplished, we return to the proof that Ho = Im π. Let

σm = [ λmR(λ)dλ.

By the previous theorem, σ m = 0 when m is large enough. Also σ° = σ

defined before. Let πm = σ m ί . Then πm = 0 when m is large enough and

77-° = 7r defined before.

Lemma. Eπm + πm+ι = Ofor all m.

Proof.

Eπm + πm+ι = Γ EλmR(λ)$dλ + f λm+ιR(λ)ί dλ
Jy Jy

= ί λm(E + λ/)tf(λ)ί dλ = ( λm dλ = 0,
Jy Jy

since (E + λ/)/?(λ)ί = /.

Corollary. Emπ = (-l)"Vm for all m.

Lemma. For all m

pEmπ = 0, qEm = 0.
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Proof. We have

pR{λ)i = 0, qR{λ)ί = 0

from the definition of R(λ) and ί. Therefore

pητ

m = f λ^Rίλ)^ dλ = 0,
Jy

qm™ = Γ λmqR(λ)$ dλ = 0.
y

But Emττ = (-l)mτ7m, so the result follows.

From the results we see that if h G Im 77, then pEmh = 0 and qEmh = 0 for

all m, and Emh = 0 for some m sufficiently large. Therefore h G Ho. This

proves Ho = Im 77.

Now we characterize Im p.

Lemma. The map ί defines by restriction an isomorphism

5 : Im 77 —> Im p.

Thus Im p = {(A, 0, 0): A G 7/0}.

TVΌO/. Since 577 = p i , we have ί (Im 77) C Im p. Since ί is one-to-one, so

is its restriction. Since p = ίσ, if (g, A, k) G Im p, then (g, A, /c) G Im ί so

A = 0 and k = 0. Moreover (g, 0, 0) = p(g, 0, 0) = pig = 5τ7g so Im p C

5 (Im 77). Thus ί : Im 77 -^ Im p is an isomorphism as claimed. It follows that

Im p is finite-dimensional, and in fact has the same dimension as Im 77 = Ho.

Corollary. If & is a self-adjoint elliptic boundary value problem which

satisfies a persuasive estimate, then & has closed range with finite codimension.

We stated this result back in §7. Since &N + p = /, we can solve S/ =

(g, h, k) by / = N(g, h, k) if p(g, A, k) = 0. Since Im p has finite dimension,

Ker p is closed with finite codimension, and Im S D Ker p (it may be larger).

Moreover E(H0) C Ho so E(lm 77) C Im 77. Therefore Eπ = πEπ and

which shows & maps Im TΓ into Im p:

δ : Im 77 —> Im p.

Moreover Ker S C Im TΓ and Im & D Ker p. Therefore

index S : β 0 0 ^ ; F) ^ β 0 0 ^ ; F) θ e°°(aX; P) θ e°°(3^; (?)

must be the same as the index of

& : Im 77 —> Im p.

But this index is 0 since Im T7 and Im p have the same dimension, being

isomorphic under ί. Therefore we have shown the last part of the theorem in

§7.
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Corollary. S has index 0, i.e.,

dim Ker S = codim Im &.

We have a decomposition of Q°°(X; F) as a direct sum

&°{X\ F) = Im TΓ θ Ker 77.

We have already seen that Im TΓ = Ho is the smallest subspace such that

Ef E Ho,pf=0,qf=0=*f E # 0 .

We define £ 0 to be the largest subspace such that

gGK0=>3ftE Ko with Ef=g,pf= 0 , ^ = 0 .

Theorem. Ker TΓ = Ko.
Proof. Ker TΓ = Im N & which is the complementary projection. More-

over

so

Let g E Ker TΓ. Then g = TVSg, so ίg = ίΛ^Sg = SiVίg. Put / =
Then π/ = 0 and &f = ίg. Hence g E Ker TΓ => 3/ E Ker TΓ with Ef = g,
Z7/ = 0, qf = 0. This shows Ker TΓ has the property for which Ko is maximal, so
Ker TΓ C Ko.

Unless Ker TΓ = Ko we would have a nonzero f° E //0 n ^ 0 Then we can
solve for an fι E Ko with JS/"1 = /°, pfλ = 0, qf1 = 0, and then fι E ^ 0 as
well, by the definition of Ho, so fι E: Ho π Ko. Continuing in this way we
find a sequence fm E Ho n Ko with Efm = Z"1"1. Then Emf = /°. But £ takes
Ho into itself, and the restriction E: Ho -^ Ho is nilpotent, i.e., £""1^0 = 0 for
large m. Thus/0 = 0.

Since there is nothing special about the eigenvalue 0, we have the following
general result.

Corollary. Let Hλ be the smallest subspace such that

Ef + λf e Hλ,pf = 0,qf = 0 =*/ e Hχ,

and let Kx be the largest subspace such that

g£Kλ=*3f(ΞKλ with Ef+λf=g9pf=0,qf=0.

Then e°°(X; F)= Hλ® Kλ and dim Hλ < 00.
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PART 4. FAMILIES OF ELLIPTIC BOUNDARY VALUE PROBLEMS

4.1. Definition

Let M be another vector bundle over X9 and m E 6°°(X; M). We consider

families of linear partial differential operators whose coefficients depend

smoothly but nonlinearly on w, and if we wish also on its derivatives of

degree up to some number r. Let

£ : U C &°{X\ M) X e°°(X; F) -> e°°(X; F) θ e°°(dX; P) φ e°°(dX; Q)

be a family of elliptic self-adjoint boundary value problems; thus

&(m)f = (E(m)f,p(m)f, q(m)f),

where E(m)f is a linear partial differential operator of degree 2 in/on X, and

p(m)f and q(m)f are linear partial differential operators of degrees 0 and 1 in

/ on dX, whose coefficients depend smoothly on m and its derivatives up to

some degree /*. We assume that E(m), p(m), q(m) satisfy the conditions

(l)-(5) of §2.1. Thus we can find a family of hermitian metrics < , >m on F, P

and Q whose coefficients depend smoothly on m and its derivatives up to

degree r, such that for all real cotangent vectors £ and η and any positive

normal cotangent vector v,

(1) <<>E<m0f> Dm > 0 if / Φ 0 and ξΦ 0,

(3) <^ ( m ) (^)/, g}m = <op(m)f, σpim)g}m + (σq(m)(p)f9 σq(m)(v)g>m,
(4) If σp(m)f = 0 and σp(m)g = 0, then

(DσE{m)(v; η)/, g> w = ζσq(m)(η)f, σq(m)(ι>)g)m

(5) dim F = dim P + dim Q.

Suppose that dVm is a volume element which may also depend smoothly on

m and its derivatives up to degree r. Form the inner product,

Jχ

We say S satisfies a uniform persuasive estimate if for all m e £/,

when/?(m)/ = 0 and q(m)f = 0, with constants independent of m and/.

We suppose 0 6 ί / and think of U as a small neighborhood of 0. We write

H(m) = [h: E(m)h = 0,p(m)h = 0, q{m)h = 0}.
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Since E(m)f p(m)fi q(m)f are nonlinear partial differential operators, the

map & is a smooth tame map in the sense of [2].

Theorem. Suppose & satisfies a uniform persuasive estimate, and H(0) = 0.

Then H(m) = 0 for all m in a (possibly smaller) neighborhood U of 0, and

hence each linear operator &(m) is invertible; moreover if we define

S-1: (U C e°°(ΛΓ; M)) X (e°°(X; F) ® e°°(dX; P) Θ e°°(3ΛΓ; Q))

-» e°°(X; F)

by letting &~ι(m)(g, h, k) = f be the solution of &(m)f = (g, h, k), then the

family of inverses S"1 is a smooth tame map.

4.2. Moser estimates

We derive estimates for nonlinear partial differential operators. These were

first proved by Moser and are crucial for the Nash-Moser inverse function

theorem. They are proved using interpolation inequalities and a close ex-

amination of the chain rule. These inequalities motivate the abstract defini-

tion of a tame map in [2],

We let | | / | | π denote the L2 norm of/and its derivatives up to degree n. We

let [[m]]n denote the supremum of/ and its derivatives up to degree n. Thus

|| || n is the norm on the Sobolev space L%(X), and [[ ]]n is the norm on the

classical space Qn(X). However our results are all for β°° functions. The

following interpolation inequalities are standard.

Interpolation theorem. If k < / < n, then

For simplicity we discuss estimates for m in a neighborhood of 0, of the

form [[m]]r < ε. Of course the same will be true in a neighborhood of any mQ.

Moser estimate 1. Let P(m) be a nonlinear partial differential operator of

degree r in m. Then for all m in a neighborhood [[m]]r < ε of zero we have

estimates

Proof. For simplicity we take m and P(m) to be real-valued; the same

argument works in a vector bundle. We have

P(m) = φ(m, , D V ), \a\ < r,

where φ is a smooth function

φ(y, >>>α> )
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defined in a neighborhood of some compact set K = {|>>α| < εα}. On K every

derivative of φ is uniformly bounded. Moreover we can find an ε > 0 such

that if [[m]]r < ε, then \Dam\ < εa for \a\ < r.

We are required to estimate the supremum of derivatives of P(m) of degree

up to n. By the chain rule each such derivative is a product of a derivative of

φ (with respect to thej>α) times derivatives Dβ of the arguments Dam. As

remarked before, the derivatives of φ are uniformly bounded for [[m]]r < ε.

Moreover any product of derivatives of m which occurs is of the form

with |α, | < r and \βx\ + \β2\ + + \βk\ < n. The supremum of the prod-

uct is the product of the suprema. Therefore we must estimate the products

with max Oj < r and Σ bj < n. By interpolation if a + b > r, then

and always [[m]]r < ε is bounded. Therefore each product is bounded by

[[m]]n+r + 1> since Σ(α, + bj - r)/n < 1.

Moser estimate 2. Let L(m)f be a partial differential operator, nonlinear of

degree r in m and linear of degree s in f. Then for all m in a neighborhood

[[m]]r < ε of zero we have estimates

\mrn)f\\n^\\f\\n+s ^[[m]]n+r\\f\\s.

Proof We can write L(m)f as L{m) *jsf where7y is the ^th jet extension

of /, L(m) is a nonlinear partial differential operator of degree r in m with

values in a bundle of linear maps of the jet bundle into another bundle, and *

denotes a bilinear bundle product. (This is to say in local coordinates

L(m)f= Σ La{m)D%
\a\<s

where La(m) is a nonlinear operator of degree r in m which is the coefficient

of a derivative of/.) Then by the product rule

\\L{m)f\\n1s Σ
i+j-n

By Moser estimate 1,

and by interpolation

ii f\\ < ii f\\j/a.
\\J \\j + s — ' I I - ' l l / i + j
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and [[m]]r < ε is bounded, so

\\L(m)f\\n<\\f\\n+s+[[m]]n+r\\f\\s.

Moser estimate 3. Let P(m) be a nonlinear partial differential operator of

degree r in m. Suppose P(0) = 0. Then for all m in a neighborhood [[m]]r < ε of

zero, we have estimates

Proof. The derivative DP(m)f is again a partial differential operator,
nonlinear in m and linear in /, of degree r in each. By the fundamental
theorem of calculus

P(m) = P(0) + C DP(tm)m dt.

By Moser estimate 2 we have

(that is, we have [[m]]rt+Γ + [[^]]Λ+Γ[[m]]Γ but [[m]]r < ε is bounded and
0 < t < 1). Integrating this gives

Moser estimate 4. Let L(m)f be a partial differential operator, nonlinear of

degree r in m and linear of degree s in f Suppose L(Q)f = 0 for all f. Then for

all m in a neighborhood [[m]]r < ε of zero we have estimates

\\L{m)f\\n<[[m]}r\\f\\n+s+[[m}]nJ\f\\s.

Proof. Again write L(m)f = L(m) * jsf. Then L(0) = 0. Using Moser
estimate 3 and the product rule, we obtain

\\L(m)f\\n< Σ [[L(m)]l\\f\\J+t^ Σ [ML+ rll/H,+ ί
i +y ~n i +j = n

Using the previous interpolation inequalities and since n — i = j and n — j
= i, this is
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43. Coercive families
The theorem of §1 is particularly easy to prove for coercive families.

Moreover we need the uniform Garding inequality even for the persuasive
case (when we argue from the Dirichlet problem). Therefore we argue first for
the coercive case. We consider equations of degree 2 to preserve continuity in
the notation, but these results are completely general.

Let & (m)f = (E(m)f p(m)f q(m)f) be a family of boundary value prob-
lems:

S : (£/ C e°°(*; M)) X e°°(X; F)

where E(m)f is a linear partial differential operator of degree 2 in/, andp(m)f
and q(m)f are linear partial differential boundary operators of degrees 0 and
1, all of which have coefficients which are smooth functions of m and its
derivatives up to degree r. Suppose that S (0)/ = (E(0)f, p(0)f, q(0)f) is a
coercive elliptic boundary value problem (in the sense of Agmon, Douglis and
Nirenberg). Then so is S (m)f = (E(m)f p(m)f, q(m)f) for all m in a neigh-
borhood U of 0, since coercivity is equivalent to a certain matrix formed from
the coefficients being invertible. We prove a generalization of Garding's
estimate which gives the dependence of the constants on m.

Garding-Moser estimate. Let & (m)f = (E(m)f, p(m)f, q(m)f) be a family
of coercive elliptic boundary value problems of degree 2, whose coefficients
depend smoothly on m of degree r. Then for all m in a neighborhood [[m]]r < ε
of zero we have estimates

Proof. By Garding's inequality for m = 0

II/II2 55 I|£(θ)/Ho + l/>(0)/|3/2 +

By Moser estimate 4

\\E(m)f- E(0)f\\0<[[m]]r\\f\\2.

We can find an operator P(m) on X with/>(m)/ = P(m)f\dX. Then

\p(m)f - p(0)f\3/2 < \\P(m)f - P(0)f\\2

Likewise if q(m)f = Q(m)f\dX then

\q{m)f - q(0)f\l/2 < \\Q(m)f -
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By interpolation if 0 < j < n

Therefore we have the estimate

< \\E(m)f\\0 + \p(m)f\3/2 + \q(m)f\ι/2

If [[m]]Γ < ε with ε sufficiently small, we can subtract the term [[/w]]Γ||/||2
from the other side. This proves the estimate for n = 2.

We proceed by induction on n. Suppose the estimate holds for n as written.
Choose operators Vy as in §3.7 on the bundles F, P and Q. For simplicity we
include Vo = /. Then by the induction hypothesis

\n < \\E{m)Vjf\\n_2 + \p(m)Vjf\n_ι/2 + \q(m)V/\H_3/2

The commutator [E(m\ Vj]f involves only second derivatives of / with
coefficients depending non-linearly on r derivatives of m and linearly on the
(r + l)st derivatives of m. Hence we can estimate it by

Since Vy involves only derivatives parallel to the boundary, [p(m), Vy]/
[/»(«), V,]/|9 and [q(m), V,]/ = [Q(m), Vy]/|3. Therefore

Thus we have the estimate

)/||π_, + \p(m)f\n+ι/2 + \q(m)f\n_ι/2

We can solve the equation E(m)f for the second normal derivative d2f/dn2.
Thus we can write

where the Aj(m) are linear operators of degree 1 with coefficients depending
nonlinearly on m and its derivatives of degree r or less. Since \\E(m)f\\0^

, we have

dn2 „_!
J n + r _ i l l . / l l 2



DEFORMATION OF COMPLEX STRUCTURES 443

Then II/IU, SSΣHVL + ||θ2//θ«2||Λ_1 so we have

ll/L+i

By inteφolation, for every δ > 0 we can find a constant Q with

Since [[w]]r < ε, if we take δ sufficiently small we may subtract the term

involving Cδ([[w]]r + l ) | | / | | π + 1 from the left hand side. Then

ll/L+i £ ||£(»0/L-, + \p(m)f\n+ι/2 + \q(m)f\n_ι/2

This completes the induction.

Lemma. Suppose S(0) is inυertible. Then so is S(w) for all m in a

neighborhood [[m]]r+2 <
 ε Moreover

. From the standard coercive theory, if & (0) is invertible, then

Again we have

\\E(m)f- E(0)f\\o<[[m]]r\\f\\29

\p(m)f - p(0)f\3/2

\\Q(m)f - Q(O)f\\x

The sum of all these is < [[m]] r + 2 | | / | | 2 . Hence if [[w]] r + 2 < ε with ε suffi-

ciently small, we have

II/II2 S \\E(m)f\\0 + \p(m)f\3/2 + k(m)/| 1 / 2 .

This shows S(w) is injective if [[w]]Γ + 2 < ε. But S(0) is an isomorphism, so

its index is zero. By Fredholm theory S(m) also has index 0, so if it is

injective then it is surjective as well.

Write ||(g, A, k)\\n = \\g\\n-2 + |A|n_ I / 2 + \k\n_3/2. Combining the lemma

with the Garding-Moser estimate, we see that if S (0) is invertible, then for all

m in a neighborhood U of 0 we have the estimate

This proves the following.
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Corollary. Let S be a family of coercive elliptic boundary value problems. If
S(0) is invertible, so is &(m) for all m in a neighborhood of the form
[[/w]]Γ+2 < ε UofO, and the family of inverses

S"1: (R c e°°(X; M)) X (e°°(X; F) θ G^idX; P) θ e°°(dX; Q))

is a smooth tame map, where &~ι(m)(g, h, k) = f is the unique solution of
E(m)f=g,p(m)f=h,g(m)f=k.

Proof. That S"1 is tame is guaranteed by the estimate. That S"1 is smooth
and all its derivatives are tame follows automatically; see [2, Theorems 5 and
6].

This done, we turn our attention to the non-coercive case.

4.4. Normalizing the first boundary condition

The first step in the proof of the theorem in § 1 is to simplify the problem to
the case where the boundary condition p(m) is independent of m. We do this
as follows.

Fix a smooth normal cotangent vector field v. The map

is an isomorphism by condition (3). Therefore we can choose a family of
vector bundle maps φ(m): F\dX -^ F\dX such that

Moreover φ(m) will be an isomorphism and will depend smoothly on the
values of m and its derivatives up to order r at each point. We can extend
φ(m) to such a family of isomorphisms over all of X. Thus

φ(m): F-+F

induces an operator of degree zero:

Then we can regard φ as a nonlinear partial differential operator

φ: (U C e°°(X; M)) X &°{X\ F) -+ G^X; F)

of degree r in m, and linear of degree zero in/. Moreover for each m the map
φ(m) is invertible; and writing φ~ι(m)g = φ(m)~ιg, we can regard φ"1 as
another nonlinear partial differential operator

φ"1: (U C e°°(X; M)) X &°{X\ F) -+ &°{X\ F)

of degree r in m, and linear of degree zero in g. Clearly both φ and φ~ι are
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smooth tame maps. Moreover by the choice of φ, p(m) ° φ(m) = p(0) since
p(m) = op{jή) (becausep has degree zero in/).

We now define a new family of elliptic boundary value problems:

S(m)f = (E(m)ίp(m)f,q(m)f),

where

E(m)f= ψ(m)-ιE(m)ψ(m)f,

p{m)f = p(m)φ(m)f,

q{m)f= q(m)φ(m)f.

Then the new system S will still satisfy condition (l)-(5) in the pull-back
hermitian metric

</, g>m~= <φ(m)l φ(^)g>m.

Also if the old system satisfies a uniform persuasive estimate, then so will the
new system, at least on a neighborhood U of 0, since |φ(w)/|0 < C|/ | o and
llφ(w)/llo ^ CΊI/Ho uniformly in m, once m and its first r derivatives are
uniformly bounded; for if we write / = φ(m)/, then p(m)f = p(m)f, so if
p(m)f = 0 then p(m)f = 0 and

\f\l ^ l/β S Re«£(m)/,/»m +

)φ(m)/, φ(nι)/»m

Suppose that the new system S has a smooth tame inverse. Then so does
£ , namely

, A, k) = φ(m)S-1(m)(φ(m)-1g, A, fc),

since a composition of smooth tame maps is a smooth tame map.
Now in the system S the boundary condition p(m) = p(m)φ(m) = p(0) is

independent of m. Therefore we now drop the ~ and assume that p(m) = p
is independent of m.

Next we repeat the derivation of the estimates in the previous section,
paying attention to the influence of m on the coefficients in the estimates.
Integrating by parts as before (using conditions (3)-(5) to transfer derivatives)
we can find a smooth essentially hermitian symmetric bilinear form
Q(m)(f, g) whose coefficients are smooth nonlinear functions of m and its
first r + 1 derivatives (since we may transfer a derivative onto a term
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involving ml) such that

Q(m)(f, g) = «£(«)/, g» m

when q(m)f = 0 and pg = 0. Then we will have a uniform persuasive estimate

when/?/ = 0. At first we seem to need q(m)f = 0 also; but arguing as before,
if pf = 0 we can find a sequence fk with pfk = 0 and q(m)fk = 0 such that
H.4 — /ll!—>0as&—>oo, and applying the estimate to/^ and taking the limit,
we see that the estimate holds for/also, with the same constants.

Now we let V be a simple operator as before. Since p is independent of m9

we can choose V so that/?/ = 0 =Φ/?V/ = 0, independently of m. Applying the
uniform Money inequality to Vπ/, we have

IVyβ < Re Q(m)(VJ, V"/) + ||V/||2

when pf = 0. Now we must consider how to estimate the error term

Re β(m)(V"/, V/) - (-1)" Re β(m)(/, V2"/).

4.5. The uniform Kohn-Nirenberg lemma

In this section we derive an estimate on the error in replacing

Re β(m)(Vy, V"/) by Re Q(m)(f, V2"/)

paying careful attention to the growth in terms of the coefficient m. This is
done by applying the methods used in the Moser estimates to the Kohn-
Nirenberg lemma.

Consider the bilinear form

Vβ(m)(/,«) = Q(m)(Vf,g) + β(«)(/, Vg).

The form VQ(m) is again of degree 1 in/ and g and its coefficients are found
by differentiating the coefficients of Q(m) by V. If the coefficients of Q(m)
depend smoothly on m and its derivatives up to some degree r + 1, then the
coefficients of Vg(m) will depend smoothly on m and its derivatives up to
degree n + r + 1. Therefore we can estimate

| v " e ( " 0 ( / , g ) i < ( [ [ m ] L + r + 1 + i)ιι/ιι,ιι«ιι,.
Recall that we can write

Re β(m)(V"/, V/) - (- l) w Re β(m)(/, V2J)

as a sum of terms ΨQ(m){^jf9 V*/) with 2 < / < n + 1 and/, Λ < /i - 1 and
i + j + A: = 2Λ, and terms ΨRx(m)(yJf9 Vkf) with 1 < i < n and/ < n, k < n
- 1 and / + / + A: = In, and terms ViR2(m)(VJf, Vkf) with 1 < / < n and
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j < n — 1, k < n and / + j + k = 2n, by the argument of part 2 §6. Here
^(w)(/> g) = Q(m)(f> g) ~ Q(m)(g>f) involves no product of first deriva-
tives, and R(m)(f, g) — Rλ(m){f, g) + R2(m)(f, g) where Rx involves R{ in-
volves no /-derivatives and R2 involves no g derivatives. Hence the coeffi-
cients of /?! and R2 will also be smooth functions of m and its derivatives of
degree up to r + 1.

We have

By interpolation

Choose U small enough that [[w]]Γ+3 < C. Since j + k — 2n — i, 2 < i < n
+ \,j < n - \, k < n - 1,

Therefore each term

|Vβ(m)(v;/, ψf)\ ^([[™]]-+Γ+2ιι/ιι, + II/IL)2.

Similarly

\ΨRλ{m){VJf, V Λ / ) | < ( [ [ m ] ] ; + r + I + l) | |/ | | , | | / |L + 1 .

By inteφolation, sincey + k = 2n — /, 1 < i < n,y < Λ, fc < Λ — 1,

If U is small enough that [[w]]Γ+2 < C,

Therefore for each term

) 2\v%(ψf, v*/)| <([[H]n + r + 1H/ll. + Il/L)2

The same estimate holds for R2. This proves the following result.
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Uniform Kohn-Nirenberg lemma. Let Q(m)(f, g) be a family of essentially
hermitian symmetric bilinear forms whose coefficients depend smoothly on m and
its derivatives of degree up to r + 1. Let V be a linear partial differential
operator of degree 1 with symbol σ V(£) = ί-(v)I where v is a vector field tangent
to the boundary. Then there is a neighborhood U of 0 of the form [[/w]]Γ+3 < ε
such that for all m in U and all n

|Re β(«)(V"/, V/) - (-1)" Re Q(m)(f,

with a constant independent of m and f.

4.6. The uniform a-priori estimate

We can now derive the a-priori estimate uniformly in m. Arguing as before
(in 3.6) from where we left off in §4.2,

|V"/β<Re Q(m)(f, Ψj) + {[[m]]n + r+2\\f\\λ + \\f\\H)2.

If pf = 0, q{m)f = 0, and V is adapted to the boundary condition p, which
has been made independent of m, then pV2nf = 0. Thus by the choice of
Q(m) we have

Q(m)(f, V2"/) = «E(m)f, V2«/»m.

The operator V will have an adjoint V£ such that for all/ and g

In general V£ will depend on the metric < , >m on F and the volume dVm on
X, both of which may depend on m. However we will have V£ = V + a(m)
where a(m) is a linear partial differential operator of degree 0 (i.e., a
multiplication operator) whose coefficients depend on m and its derivatives
up to degree r + 1, (since in performing the integration by parts the differen-
tial operator V may land on a coefficient involving m).

Lemma. For all m in a sufficiently small neighborhood of 0, the estimate

holds for all n and k.
Proof. We have

from a previous lemma. The formula is clearly true for k = 0; we proceed by
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induction. Suppose the formula holds for some value k. Then

N o w | | V ^ | | 0 < | | / | | 0 a n d

k Ξ IIVVIU* + \\a(m)f\\m+k

Therefore

which proves the formula for k + 1 and hence the formula holds for all k by
induction.

Returning to the main argument, we have

«E(m)f, V2«/»m -iyχE(m)

KV*m»E(m)f, V/»J < \\V*m"E(m)f\\0\\f\\n

By the previous lemma

\\V*m"E(m)f\\0<\\E(m)f\\n+[[m]]n+r\\f\\0.

Combining these facts

For a suitable choice of V1? , V^,

\f\l < Σ Σ
1 = 1 7 = 1

Therefore

I/I, ^ \\E{m)f\\n + 11/11,, + [ [ « ] ] - + r + 2 | |

for all m in some fixed neighborhood of 0 (independent of ή) and all / with
pf = 0 and q(m)f = 0.

We remark that now it is no longer necessary to assume the boundary
condition p(jή)f is independent of m. For given any general system & =
(E(m)f, p(m)f, q(m)f) we showed in §2 how to construct another system
S = (E(m)f, β(m)f, q(m)f) such that p(m)f is independent of m, and if
/ = ¥jn)f then E{m)f = φ(m)E(m)f, p(m)f = β(m)f, q(m)f = q(m)f, where
ψ(m) is a multiplication operator involving m and its derivatives up to degree
r, and so is φ~\m). Then

Ξ H/IL + [[«]L+rll/Ίlo> Il/L ^ II/IL + [[«]]π +Jl/Ho
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The previous estimate will hold for &:

III S \\E(m)f\\n + II/IU +[[m]]n+r+2\\f\\v

We have (using the argument on dX)

\\E{m)f\\n ΪS \\E(m)f\\n + [ [ m ] ] π + r

\\E(m)f\\0 < II/HJ, | |/ | | 0 < | |/| |0, and |/ | 0 < | / | 0

independently of m. Therefore iip(m)f = 0, then

I/I«^II^(«)/IU +11/11,+[[«]]-+r+2ll/lli
Hence the estimate is completely general.

The operator E(m) is elliptic, and the Dirichlet boundary conditions f\dX
are coercive for every elliptic operator. Therefore we can appeal to the
Garding-Moser estimate of §3, and write that for all m i n a neighborhood U
of 0 (of the form [[w]]Γ+2 < ε) we have

Il/L Ξ \\E(m)f\\n_2 + | / | n _ 1 / 2 + ([[

Again we have Vε > 0, 3Cε

l/L-i/2<e|/L + α/Ί
Combining this with the previous estimate

||/L < C(||£(m)/||n_2+[[m]]nJ|

+ εC(\\E(m)f\\n + II/IU + [ [

We take εC < 1/2; this eliminates | |/ | |π from the right. Also Ve > 0, 3Ce

with

\\E(m)f\\n_2 < ε\\E(m)J\\π +

Note Ce does not involve m. Now for all w i n a neighborhood of zero

\\E(m)f\\0 < C\\f\\2

with a constant independent of m. Thus Vε > 0, 3Ce with

| |/ | | n < e\\E(m)f\\n + [ [m]] π + r + 2 | | / | | 1 + Ce(||/||2 + |/ | 0).

But Vη > 0, 3Cη with

II/II2 + l/lo < vWfL + c,||/||o.

Take η with ηCε < 1/2. Then η depends on ε, so we can write Cη as Cε, which
is still independent of m. This proves the following.

Theorem. Let S (m)f = (E(m)f, p(m)f, q(m)f) be a family of self-adjoint
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elliptic boundary value problems. Suppose & satisfies a uniform persuasive

estimate

For all m in a neighborhood of zero we have the uniform a-priori estimate

II/IL S \\E{m)f\\n + ( [ [ m ] ] π + r + 2 + 1)11/11,,

when p(m)f = 0 and q(m)f = 0. More precisely we can write Vε > 0, ΞCC with

II/IL < e\\E(m)f\\n + ([[™]]π + r + 2 + C.)ll/lli.

when p(m)f = 0 and q(m)f = 0.
As before we can deduce an estimate for inhomogeneous boundary condi-

tions. We mimic the argument at the end of §2.5. Let/?'(ra) and q\m) be the
complementary families of boundary partial differential operators for p(m)
and q{m). We can find two families of partial differential operators φ(w)(/i, /)
and ψ(m)(Λ,7, k, I) operating on dX such that if f\dX = φ(m)(Λ, /) and
df/dn = 4im)(hJ9 k9 I) then p(m)f = h, p\m)f = j , q{m)f = k9 q\m)f = /.
Moreover the coefficients of φ and ψ are smooth functions of m and its
derivatives up to degree r + 1, as in clear from the construction. Then if we
apply the continuous linear extension T so that

/' = T(φ(m)(p(m)f 0), χp(m)(p(m)f 0, q(m)f 0)),

we have p(m)f = p(m)f and q(m)f = q{m)f. Write h = p(m)f and k =
q(m)f By the choice of T (and giving up half a derivative at that, to simplify
the argument) we have (when n > 2)

Thus

II/ΊL S IΦ(»0(*, O)L + |ΨM(*, o, *, o)\H_v

Now φ and ψ are families of linear partial differential operators on dX, so we
can apply Moser estimate 2 on ΘΛ" to obtain

|φ(«)(A.0)|,,<|A| I I+[[«]] ι i + r + 1 |A|o,

recalling that ψ(h, I) has degree 0 in h and /, while ψ(Λ,y, k, I) has degree 1 in
h and / and degree 0 iny and k. Now

\p(rn)f\x + \q(m)f\0<\f\x < | |/| |2.

Thus
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and so

ll/ΊL+2 Ξ \p(m)f\n+2 + \q(m)f\n + 1 + [[m]]n+r+3\\f\\2.

Now by Moser estimate 2

\\E(m)f\\n < | | / ' | | π + 2 + ([[m]]π +

II/ΊI2 S \p(m)f\2 + \q{m)f\λ

when [[/M]]Γ+3 is bounded. Thus

Let/ = / ' + /". Then/?(m)/" = 0 and ?(m)/" = 0. Thus we have a uniform
a-priori estimate for /":

||/"L < P(«)/ΊL + ([["OL.,+2 + Oll/Ίli
Now 11/11,, < II/'L + H/'ΊL and

\\E{m)f"\\n < ||£(/n)/L + \\E(m)f'\\n.

Combining these we have

Il/L < ||£(m)/||Λ + |/>(m)/|n+2 + \q(m)f\n+ι + ([[nt]]n+r+3

which holds without restriction on/.Now by interpolation

[ [ m] ] - + r + , | | / | | , δ ([ [ m] ]r+6H/IL)3/π([ Ml
On a neighborhood of zero, [[m]]Γ+6 < ε is bounded. Therefore Vε > 0, 3Ce

with

Taking ε > 0 small enough we have

II/IL ̂  II£(^)/IL + l/'(«)/l»+2 + k(«)/L+i + ( [ [ w ] ] n + r + 6 + Oll/Ho
(Of course 6 is not the best possible.)

Uniform main a-priori estimate. Let & (m)f = (E(m)f, p(m)f, q(m)f) be a
family of self-adjoint elliptic boundary value problems which satisfy a uni-
form persuasive estimate

I/IS <Re<£(m)/,/»m+ H/II5,

when p(m)f — 0 and q(m)f = 0. Then for all AW in a neighborhood U of 0 we
have

II/IL Ξ \\E(m)f\\n + \p(m)f\n+2 + \q(m)f\n+ι + ( [ [ « ] ] - + r + 6
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4.7. Tame families of solutions

Theorem. Let &(m)f = (E(m)fp(m)f q(m)f) be a family of self-adjoint
elliptic boundary value problems. Suppose & satisfies a uniform persuasive
estimate

If & (0) is invertible, then & (m) is invertible for all m in a neighborhood of 0,
and the family of solutions

S-1: (U c e°°(X; M)) X (e°°(X; F) Θ e°°(dX; P) θ &°(dX\ Q))

-»e»(x, F)
is a smooth tame map, where &~ι(m)(g, h, k) = / is the unique solution of
E(m)f=g,p(m)f=h,q(m)f=k.

Proof. All we need is the following.
Lemma. Under the above hypotheses we can find a neighborhood UofO and

a number I such that for all m G U

S \\E{m)f\\, + \p(m)f\ι+2 + \q(m)f\l+ί.

Proof. Suppose not. Then we could find sequences my —»0 and fj with
= 1, E(mj)fj^>0, pim^fj-^O and qimJfj^O. By the Uniform main

a-priori estimate we must prove that we would have ||jζ | |n < C for all n. Then
by passing to a subsequence we could assume jζ —>/. In this case we would
have ||/Ho = 1 and £(0)/ = 0, p(0)f = 0, q(0)f = 0. This would make / a
nonzero element in Ker S(0). But 6(0) was assumed invertible.This would
give a contradiction. Therefore the Lemma holds.

From the lemma we see that S (m) is injective for Urn 6 U. But since all
the &{m) satisfy persuasive estimates, if they are injective then they are
surjective as well. Thus S (m) is invertible for all m E U.

Let us write

Then combining the Uniform main a-priori estimate with the lemma we have

Thus with s = r + 6 and / fixed, for all n

\\&-\m){g9 h, k)\\n < (g, A, k)\\n +[[m]]Λ+J|(g, A, Λ)||/.

This proves that the family of solutions S"1 is tame. That S"1 is smooth and
all its derivatives are tame follows from general considerations; see [2,
Theorems 5 and 6].



454 RICHARD S. HAMILTON

4.8. Spectral families

Let & (m)f = (E(m)f p(m)f, q(ni)f) be a family of self-adjoint elliptic
boundary value problems which satisfies a uniform persuasive estimate. We
consider the family & (λ, m)f = (E(m)f + λf p(m)f q(m)f) of self-adjoint
elliptic boundary value problems for λ E C and m E U.

Lemma. We can find a neighborhood U of 0 and ε > 0 such that if m EL U
and |λ| < ε then for all n

Il/L Ξ \\E(m)f+ VIL + \p(™)f\n+i + k(«)/L+i

Proof From the uniform a-priori estimate we have

Il/L ίS \\E{m)f\\n + \p(m)f\n+2 + \q{m)f\n+x + ( [ [ « ] ] - + r + 6

for all w i n a neighborhood U of 0. If |λ| < ε with ε sufficiently small, the
lemma follows.

Lemma. Suppose & (0, 0) is inυertible. Then we can find a neighborhood U
of 0, ε > 0 and a number I such that if |λ| < ε and m E U, then S (λ, m) is
inυertible and

| | / | |o< \\E(m)f+ λ/||, + |/>(»i)/|l+2 + k("0/l/+i

Proof If not, we could find sequences λj -> 0, my —> 0, and^ with || fj\\0 =
1 and E(mj)fj + λ^ -> 0, p(mj)fj —»0 and q(nij)fj -^ 0. From the previous
lemma we would have \\fj\\n < C for all n. Then by passing to a subsequence,
f. -+f Now | |/ | | 0 = 1, E(0)f = 0, />(0)/ = 0 and q(0)f = 0. This contradicts
the assumption that S (0, 0) is invertible. Therefore the estimate holds. This
shows that S (λ, m) is injective, which implies that it is also surjective.

Let ||(g, A, k)\\n = \\g\\n + |Λ|n+2 + |fc|Λ + 1. Then we have shown that if
|λ| < ε and m E U, then for all n and some k and 5 = r + 6,

L e t Σ c C x ( ί / c β ° ° ( I ; M)) denote the set of all (λ, m) for which S (λ, w)
is not invertible; Σ is called the spectrum of the family. Its complement Σc is
called the resolvent set; by the previous lemma it is open. Let R(λ, m) =
S (λ, m)~ι be the family of resolvents.

Theorem. The family of resolvents R(λ9 m) is a smooth tame map

R: Σc X (e°°(X; F) θ e°°(dX; P) θ e°°(dX; Q)) -» e°°(X; F).

Proof. Recall that C is graded Frechet space in the trivial way (||λ||π = |λ|
for all n). The previous estimate shows R is tame; that it is smooth and all its
derivatives are tame follows from general considerations [2, Theorems 5 and
6].
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Let γ be a closed curve in C. The set Σ^ of all m such that (λ, m) G Σ c for

all λ G γ is an open set in U C C°°(X; M). We define families of operators

N, σ: Σ; X (e°°(*; F) Θ e°°(3X, P) θ &°{dX\ Q)) -» &°(X; F\

N(m) = j R(λ, rn)^r-, o(m) = J R(λ, m) dλ.

Theorem. N and σ are smooth tame maps.

Proof. We have tame estimates for R(λ, m) or any of its derivatives in a

neighborhood of each point (XQ, m0). Since γ is compact, for any m 0 G Σy we

can find a neighborhood U such that the same estimate holds on γ X U.

Integrating over γ produces tame estimates for TV and σ or any of their

derivatives.

We let π(m) = σ(w)ί and ρ(m) = ίσ(w). Then π and p are smooth tame

families of projections. We write Hy(m) = Im iτ(rri). By the theory for a single

operator we see that

Hy(m) = Σ Hλ(m)

with the sum ranging over all λ inside γ with (λ, m) G Σ. However even if γ

contains only one point in the spectrum of S (0), it may contain many points

in the spectrum of & {m\ and the nilpotency rank may be higher. Neverthe-

less we have the following result.

Theorem. The spaces Hγ(m) have constant dimension independent of m.

Proof. One direction is easy.

Lemma. For all m in a neighborhood of 0

dim Hy(m) > dim Hy(0).

Proof. Let/j, ,fn be a basis of //γ(0). Then π(0)fj = fp so by continu-

ity the π(m)fj will be linearly independent for all m in a neighborhood of 0.

Thus dim Hγ(m) > dim Hy(0).

The other way is a little harder. Let H{(m) denote the set of all solutions /

of the equations

[E(m) + λl]jf = 0,

p(m)[E(m) + λl]kf = 0 , for 0 < k < j - 1,

q{m)[E{m) + λ/]*/=0, for 0 < k <j - 1.

Then Hl(m) = Ker &(m) + λί and Hλ(m) = U *.j H{(m). Moreover we

have H{(m) C H{+\m) and H{(m) = Hλ(m) fory large enough. Also H{(m)

m) => //{(m) = Hλ(m). Thus the sequences of spaces is stable as
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soon as it ceases to increase. Let

) = Σ H{{m)

with the sum over all λ inside γ with (λ, m) E Σ. Then the same properties

hold for the spaces HJ

y\m). In particular we have the following essential fact.

Lemma, //dim HJ

y(m) <j, then HJ

y(m) = Hy(m).

Proof. Unless the dimension increases by at least one each time j in-

creases by 1, the spaces become stable.

Now to prove the theorem it is enough to show that dim Hy{m) is constant

in a neighborhood of m = 0. Moreover we can also assume, without loss of

generality, that γ contains only one eigenvalue for m = 0 and that that

eigenvalue is λ = 0. In this case, if (λ,, ny) E Σ with λy inside γ and ny —» 0,

then we must have λ, -> 0 also, since Σ is closed. In particular for any ε > 0

we can find a neighborhood U of 0 such that if m 6 (/, (λ, m) E Σ, and λ is

inside γ, then |λ| < ε.

By the first lemma in this section, we can choose ε > 0 and U as above so

that we also have

\\E(m)f+λf\\. + \p(m)f\n+2 + \<l{m)f\n+ i

when |λ| < ε and m E U. Iterating this estimate./ times we get

II/IL ^ \\[E{m) + λl]jf\\n + 2 \p{m)[E{m) + λ/]*/|Λ

λ:=0

+ ' S \q(m)[E(m) + λl]kf\n+ι
k 0

A: = 0

Note that for all m in a neighborhood U of zero depending ony we have

) + λI]kf\\0<\\f\\2J_2.J

Let S be a closed subspace of G°°(X; F) complementary to HJ

y(0\ which

surely exists by the Hahn-Banach theorem since HJ

y(0) is finite dimensional.

Lemma. We can find a neighborhood Uj of zero such that for all m E Uj

H'(m) Π S = {0}.

Proof. Suppose not. Then we can find sequences wf -> 0 and ft E HJ

y{mt)

Π S with f ¥= 0. Thus fg E Hifjn^ Π S for some \ inside γ. As remarked
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earlier we must have \ -^ 0. Also

\l]Jf,-0,

m,) + \/]V, =0, ioτO<k<j-l,

m,.) + V]*/, = 0 , for 0 < k < y - 1.

Therefore by the previous estimate

Since ffφO we can normalize with ||χ.||^_2 = 1. Then ||/.| |Λ < C so by

passing to a subsequence we may assume /•-*/ for some / e G°°(X; F).

Then by continuity

p(0)E(0)kf = 0, for 0 < k < j - 1,

q(0)E(0)kf = 0, for 0 < k < j - 1,

so / e 7/̂ (0). Also ^. G 5, and S is closed so / E S, and | | / | | ^_ 2 = 1 so

||/||2/_2 = 1. Thus/ G i^(0) n S a n d / ^ 0, which contradicts the choice of

S as a closed complement.

Corollary. On the neighborhood Uj of zero we have

dim HJ

y(m) < dim HJ

y\Q).

Now since Uj depends on j we must argue carefully. We choose j with

j > dim 7/γ(0). Then for all m G L̂

dim ^ ( w ) < dim iϊ^(0) < dim ^o(0) <j.

As we argued before, this implies H^(m) = Hy(m) for all m E ί̂  . Thus we

have found a neighborhood of zero on which dim Hy(m) = dim i/y(0). This

proves the theorem.

4.9. Tame Fredholm theory

We give a brief sketch of how to generalize classical Fredholm theory to

the category of graded Frechet spaces and smooth tame families of linear

maps. Let E, F, G, denote graded Frechet spaces. A family of linear

maps is a map

L: U C E X F-±G

such that L(m)f is linear i n / 6 F for each m E U C E. We take derivatives

of L only with respect to m (since L is linear in/, derivatives with respect to/
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produce no new information and mess up the notation). Thus

DL(m; n)f = \\m\ L{m + tή)f - L(m)f]/t.

We say L is smooth if all the derivatives

DkL: (U C E)X E X XE X F^G

exist and are continuous. Note that DkL is again a family of linear maps.

The family of linear maps L(m)f is tame if and only if for each m0 E U we
can find a neighborhood Uo and a number s such that for all n

The family L is a smooth tame family of linear maps if each DnL exists and is
tame. If L{m)f is any family of linear partial differential operators in / whose
coefficients are nonlinear partial differential operators in m, then L is a
smooth tame family of linear maps.

A linear map L: F-> G is said to be compact if there is an open set in F
whose image under L is compact in G. This is equivalent to the following
condition. We say the norm | | is compact if there exists some open set which
has compact closure in the | |-topology. On a Montel space like Θ^iX; F) the
topology can be defined by a basis of compact norms. A linear map L:
F -> G is compact if and only if there is a compact norm | | on G such that
for every norm || ||rt on F we have \\Lf\\n < |/|. Now we are ready for a new
definition.

Definition. The family of linear maps K(m)f is tamely compact if for
every m0 we can find a neighborhood Uo, a number s and a compact norm | |
such that for every n

We say A' is a smooth tamely compact family if K is smooth and all its
derivatives DnK are tamely compact.

Example. Let A" be a compact manifold with a smooth volume dx, and let
k: X X R X l - ^ / ? b e a smooth kernel. Define the family of linear integral
operators

K: Θ»(X) X &°{X) -> &°(X),

K(m)f(x) = Γ k(x9 m{x\y)f{y) dy.
Jx

Then AT is a smooth tamely compact family of linear maps.
Example. If G is finite dimensional, then every smooth family of linear

maps L: U Q E X F^> Gis a. smooth tamely compact family.
Theorem. The composition {either way) of a smooth tame family and a

smooth tamely compact family is a smooth tamely compact family.
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Proof. This follows immediately from the definition.
Theorem. Let π\ UQExF-^Fbea smooth tame family of linear

projections, so that π(m)π(m)f = π(m)f Then π is a smooth tamely compact

family of linear maps if and only if each space Im π(m) is finite dimensional and

the dimension is constant.

Proof First suppose that π is a smooth tamely compact family of linear
projections. Since

we see that if / E Im π(m) then

Therefore the unit ball |/ | < 1 is compact in Im π(m). This proves that each
space Im π(m) is finite dimensional. If fl9 ,fN are a basis for Im π(/w0),
then π(mo)fj = fp so by continuity the π(m)fj are linearly independent for all
m in a neighborhood of m0. Thus dim Im π(m) > dim Im ττ(m0) for all m in a
neighborhood of m0. In the other direction, let S be a closed complement for
Im π(m0), which exists by the Hahn-Banach theorem. We claim that π(m) n
S = {0} for all m in a neighborhood of m0. This will show that dim Im π(m)
< dim Im π(m0) for all m in a neighborhood of m0, and hence the dimension
of Im π{m) is constant. If the above fails, we can find sequences my —> m0 and
nonzero jζ E Im τr(my) n S. We normalize with \fj\ = 1. Since πζmβfj = j£ we
have

s o
 HJP« < C for all «. By passing to a subsequence we can assume fj-*f

Then by continuity π(mo)f = /, so / E Im ττ(m0) n S; and |/ | = 1 so / ^ 0.
This gives a contradiction.

In the other direction, suppose that 77 is a smooth tame family of projec-
tions whose images are finite dimensional and of constant dimension. For
simplicity take m0 = 0. Write H(m) = Im π(m). Then if A(m) = π(0)π(m),

A: U QE X //(0) -> if(0)

is a smooth family of linear automorphisms of a finite dimensional vector
space, and A(0) is the identity. Therefore for all m in a neighborhood of 0,
A(m) is invertible, and the family of inverses

A~ι: U QE X H(0)->H(0)

defined by A~\m)g = f if A(m)f= g, is also a smooth family of linear maps.
We can see this immediately by choosing a basis for H(0) and observing that
the entries are smooth functions of m, and hence the determinant is a smooth
nonzero function of m whose inverse is therefore smooth. Moreover A ~ι maps
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into a finite dimensional space, so A~ι is a smooth tamely compact family.
Now observe that if dim H(m) is constant, then when A(m) = τr(0)τr(w) is
invertible we must have both π(0): H(m) -> H(0) and π(m): H(m) -• 7/(0)
invertible; and therefore

π(m) = π(m)A~ι(m)π(0)π(m).

Hence π(m) is a composition of smooth tame families with a smooth tamely
compact family, so π(m) is a smooth tamely compact family, as claimed.

Question. Are there any smooth tame families of projections whose image
spaces are finite dimensional but not of constant dimension?

Corollary. The projections π(m) of §8 are smooth tamely compact families of

linear maps. So are the projections p(m).

Definition. Let L(m)f be a smooth tame family of linear maps. We say
that L is a smooth tame Fredholm family if there exists another smooth tame
family M(m)g such that

Kλ(m)g = L{m)M{m)g - g, K2{m)f = M(m)L(m)f - f

are smooth tamely compact families.
Example. From §8 we have

N(m)S(m)f+π(m)f = f,
&(m)N(m)(g9 h, k) + p(m)(g, h, k) = (g, A, k).

Therefore S (m)f is a smooth tame Fredholm family.
Theorem. The composition of two smooth tame Fredholm families is a

smooth tame Fredholm family.

Proof This follows directly from the definition.
Lemma. Let K: UQExF^Fbea smooth tamely compact family of

linear maps of F into itself, and suppose that for some m0 we have K(mo)f = 0
for all f Then for every k sufficiently large and for every ε > 0 we can find a
neighborhood Uo ofm0 such that if m E Uo andf E F, then

Proof Choose k so large that the unit ball Jβ = {| |/| |A :<1} has compact
closure in the topology of | |. For simplicity we can assume |/ | < | |/ | |Λ

without loss of generality. Then for any η > 0 we can cover B by a finite
number of open sets {|/ - ft\ < η] with/j, ,fN E B. Since K is continu-
ous and K(m0) = 0, the sets Us = {\\K{m)fi\\k < η) are all open in U C E;
hence so is their intersection Uo = Ux Π Π UN. For any/with | |/ | |Λ < 1
we have \f - ft\ < η for some /, so for all m E Uo

\\K(m)f\\k < \\K(m)Mk
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using the fact that since K is tamely compact

\\K(m)f\\k < C(\\m\\k+S + 1)|/|.

We further restrict Uo so that \\m\\k+s < 1. Then \\K(m)f\\k < Cη with a

constant C independent of η , when \\f\\k < 1. By linearity, H A ^ m ) / ^ <

Cη\\f\\k for all k. Choose η so small that Cη < ε. Then \\K(m)f\\k < ε\\f\\k.

This proves the lemma.
Theorem. Let K: U Q E X F —> F be a smooth tamely compact family of

linear maps of F into itself with K(mo)f = 0. Let P(m)f = / + K(m)f, so that

P: UQExF^Fisa smooth tame family of linear maps. Then on some

neighborhood Uo of m0 the maps P(m) are all invertible; and the family of

inverses P~ι: Uo C E X F-> F defined by P~\m)g = f if P(m)f = g, is a

smooth tame family.

Proof. By the previous lemma, if k is large and Uo small enough we have

\\K(m)f\\k < ε||/|U, \\P(m)f\\k = | | / + K(m)f\\k > (1 -

When ε < 1 we see that P(m) is invertible for all m E Uo. For by ordinary
Fredholm theory P(m) always has finite dimensional kernel and cokernel of
equal dimension; the estimate shows that P(m) is injective, and therefore it is
surjective also. Next

II/IL < I I W / L + \\K(m)f\\n9 \\K(m)f\\n < (||m|L+J + 1)|/|.

If k is large enough, |/ | < | |/ | | Λ . We saw before that | |/ | | Λ < C\\P(m)f\\k with
C = 1/(1 - ε).Thus

II/IL ^ \\P(m)f\\H + \\m\\n+s\\P(m)f\\k.

Letg = P(m)f so f = P~\m)g. Then

This proves P~ι is tame.
We claim P~ι is also continuous. It is enough to show that it is sequentially

continuous. Let mj —» m! and gj -+ g' be two converging sequences, and let
fj = P~\mj)gj. By the tame estimate we know at least that || j£||n < C for all n.
Let/' = P (m')g'. Unless fj —»/' we can find a subsequence fj which avoids
a neighborhood off. Then yet another subsequence^ will have the property
of being Cauchy in the compact norm | |. For all n

n - fjL < lift - gj\\n + II^K W - K^fjWn-

Define

K(m)f = K(m)f - K(m')f.

Then K(m')f = 0 for all/. By a previous lemma if n is large enough then for
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any ε > 0 we will have

\\K(m)f\\n<e\\f\\n

for all m in a neighborhood of πί. Thus

for all large j , since my —» m'. Write

/sΓ(m,)/. - K{mj)fj = *(«')(// ~ .£)

Then for all large / andy

U-fjWn < Ha - § L + c\f,-fj\ + ε(m ||Λ +

Here C depends only on m\ and ε > 0 is arbitrarily small if /, j are large
enough. Since gj -* g\ we have || & - gj\\n -» 0 for all n. Then | |/ - fj\\n -> 0
for all « also (recall jζ is Cauchy in | |). Then jζ ->/" for some /", and
P(m')f" = gr by continuity. Thus /" = P " 1 ^ ' ) ^ = /' which shows P~ι is
continuous.

Now from general considerations [2, Theorem 5] it follows that P~x is
smooth and all its derivatives are tame also.

Corollary. Let K: UQEXF->Fbea smooth tamely compact family of
linear maps, and let P(m)f = / + K(m)f Suppose P(m0) is inυertible. Then
P(m) is inυertible for all m in a neighborhood Uo of m0, and the family of
inverses P~ι: Uo C E X F —> F is a smooth tame family. Moreover P~x{m)f =
/ + L(m)f where L: Uo C E X F—> F is a smooth tamely compact family.

Proof. Since P(m0) is invertible, write P(mo)~ι = / + L(m0). Then

[/ + K(mo)][l + L(m0)] = /, L(m0) = -K(m0) - K(mo)L(mo).

Since K(m0) is compact, so is L(m0). Now let P(m) = P(mo)~ιP(m). Then
P(m) = I + K(m) where

K(m) = L(wo) + K(m) + L(mo)K(m).

Therefore K is a smooth tamely compact family of linear maps with K(m0) =
0. By the previous theorem we can find a neighborhood Uo of m0 on which
the P(m) are all invertible, and the family of inverses P~ι(m)f is a smooth
tame family of linear maps. Let

p-\m)f=P-\m)P(moy
λf.

Since P(m) = P(mo)P(m), we see that P(m) is invertible for all m in ί/0 and
P(m)~ι = p-\m). Finally write

p-\m) = / + L(w).

Then as before

L(m) = -#(m) - K(m)L(m),
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so L(m)f is a smooth tamely compact family of linear maps.
Corollary. Let L: UQEXF->Gbea smooth tame Fredholm family of

linear maps. If L(m0) is invertible, then L(m) is inυertible for all m in a
neighborhood Uo of m0, and the family of inverses L~λ: Uo C E X G -+ F is a
smooth tame family of linear maps.

Proof. We can find a smooth tame family M(m) such that L(m)M(m) = /
+ K(m) where K(m) is a smooth tamely compact family. Let M(m) = M(m)
— L~ι(m0)K(m0). Then M is also a smooth tame family, and L(m)M{m) = /
+ k{m) where K(m) = K(m) - L(m)L~\mo)K(mo) is also a smooth tamely
compact family with K(m0) = 0. By the previous theorem, P(m) = / + K(m)
is invertible for all m in a neighborhood Uo of m0, and the family of inverses
P" 1 is a smooth tame family. Then so is M(m)P~ι(m)f, and
L{m)M(m)P-\m)f = / so L(m) is invertible and L'\m)f = M(m)p-\m)f is
a smooth tame family.

Theorem. Let L: U<ZExF->Gbea smooth tame Fredholm family of
linear maps. Then the index

i{m) = dim Ker L(m) — codim Im L(m)

is constant.
Proof. Fix m0 e U. Write E = Ef Θ £ " and F = F' Θ F" such that £"

and Ff are finite dimensional and the composition

jE ( θ ) F
ΣΓ ff TT f ST\ T? ff 7 7 / ST\ T7>ff 17 ff

ΊTp ° L(m0) ° /̂  is an isomorphism. Let L(m) = π£ ° L(m) ° i'Jr. Then L(m) is
also a smooth tame Fredholm family. For suppose that M(m)f is another
smooth tame family such that L(m)M(m)f — f = Kx(m)f and M(m)L(m)f —
f = K2(f) are smooth tamely compact families. Let M{m) = π£ ° M(m) ° /£.
Then /̂ 77 £ = I — ρ'F and /^π^ = I — p'E where p^ and p^ are the projections
on the finite dimensional spaces E' and F'. We have

L(m)M(m) - I = A\(/n) + < o L(m) ° p^ o M(m) ° /;,

M(m)L(m) - I = K2(m) + < ° M(m) ° pΌ L(m) o / .̂

Thus L is also a smooth tame Fredholm family. Moreover L(WQ) is invertible,
so L(m) is invertible for all m in a neighborhood C/o of m0. It follows easily
that i(m) = dim Ef — dim F' is constant on Uo.

PART 5. ELLIPTIC COMPLEXES

5.1. Definition
Let X be a compact manifold with smooth boundary dX, and let E, F, G

be vector bundles over X. An elliptic complex of degree one consists of two
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linear partial differential operators A and B of degree 1 with BA = 0:

^ ^ ; G)

such that for all nonzero real cotangent vectors ξ the sequence of symbols

is exact, i.e., Im σA(ξ) = Ker σB(ξ).
We wish to construct a splitting of the complex; this means to find two

continuous linear maps K and L

( \ ) ( ; G )
K L

such that AK + LB = I. This is equivalent to asserting (1) Im A = Ker B9 (2)
Im 2? is closed (3) Ker A, Im A = Ker 5, Im 5 are all split, i.e., are direct
summands. More generally we may have only that AK + LB + // = /,
where H is a projection on a finite dimensional subspace representing the
cohomology group Ker 2?/Im A.

Choose hermitian metrics < , > on E, F, G and a volume element dV on X.
Form the inner product

«/,£»= f (<f,g>dVJXJ

Let v be any nonzero normal cotangent vector field. There exists an adjoint
linear partial differential operator A * such that

«Λe,/» + «*,Λ •/»=(),

if oA(v)e = 0 or if σA*(v)f = 0 on dX.
Since Im σA (ξ) = Ker σB(ξ) when £ φ 0, and since the dimensions of

images and kernels are semi-continuous, one above and one below, it follows
that dim Im σA(ξ) = dim Ker σB(ξ) is constant, and hence dim Ker σ^ί ) and

d) are constant also; the same holds for the adjoints. Therefore
is a subbundle of E\dX. Let P be isomorphic to the quotient

bundle, and let a: E\dX -> P be surjective with Ker a = Ker σA(v). We give P
the quotient hermitian metric; thus a: Im oA(v)* —»P is an isometry since
Im σA(v)* = Ker a^v)^. Define a*: F\dX -+P by a* = aσA(r)*. Then α* is
surjective and Ker a* = Ker σA(v)*\ also

<*•/, a*g> = <σA(v)*f, σA(v)*g), (ae, a*f) = <e, σ » * / >

Let JS be the volume on ΘX with dV = dS /\P, and write
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By Green's formula

«Λe,/» + «e, Λ*/» = <ae, a*f}

for all e and/.
Similarly we have an adjoint operator B such that

«Bf, g» + «/, B*g)) = 0

if σB(p)f = 0 or if oB*(v)g = 0. Ker σ5#(r) is a subbundle of G\dX. Let ζ? be
isomorphic to the quotient bundle, and let b*: G\dX^> Q be surjective with
Ker b* = Ker σB.(v). We give Q the quotient hermitian metric; thus b*:
Im σ (̂>) —> β is an isometry. Define b: F\dX -+ Qby b = b*σB(v). Then b is
surjective and Ker b = Ker σs(>); also

<bf, bg) = <σB(^)/, σB

By Green's formula

/, g» +

5.2. The associated elliptic boundary value problem

To each elliptic complex there is a natural way to associate a self-adjoint
elliptic boundary value problem (in the sense of 2.1). We choose metrics and
adjoints as before, and let

Ef=AA*f+B*Bf, on*,

Pf=a*f, on 9*,

qf = b*Bf, on dX.

Lemma. & = (E,p,q) is a self-adjoint elliptic boundary value problem.

Proof. First note that

°Λ (Q = <>A(S)*> and σB.(ξ) = σB(ξ)*. Then

<σε(ξ)/J> = <^(0V, ^(€)V> + <σB(m oB(ξ)f>

Since the complex AB is elliptic, Ker σA(ξ)* n Ker σB(ξ) = {0} for all non-
zero real cotangent vectors ξ. Thus

<»*({)/. /> > 0 if / ^ 0 and I ̂ . 0.

Also σE(ξ)* = σ£(©, so
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Next we have

<σE(*)f, g> = < σ » 7 , oA(v)*g) + <σ»/, σ » g >

= <a*f, a*g) + (bf, bg}

since σ̂  = α* and σ^O) = 6 * ^ 0 ) = b. Now σ^(|) = σA(ξ)σA(ξ)* +
σΛ(β σΛ(Q, so

^ ( " ί η) = oA(η)σA(p)* + σ^(^)σ^(η)* + σΛ(η)*σΛ(y) + σB(r)*σB(η).

Suppose Opf = 0 and σ̂ g = 0. Then α*/ = 0 and a*g = 0, so σA{v)*f = 0 and

°A(P)*8
 = 0. Therefore

<Z)σ^( ;̂ η)f, g) = <σΛ(ir)/, σ^ί^g) + <σB(η)f, σB(p)g}.

Now Z?* is an isometry on Im oB(v) and is zero on its orthogonal complement.
Thus

</, g> = <b*f, b*g),

iff G Im σB(v) or g e Im σ5(^). Therefore

(b*σB(η)f, b*σB(r)g).

But σ,(θ = ft σ^©. Thus

<Z)σ^( ;̂ η)f, g> = <σ9(r)/, σ^(η)g> + (aq(η)f, σq(v)g>.

Therefore & = (E,p, q) satisfies all the conditions (l)-(5) of §2.1. This is not
surprising, for conditions (l)-(5) are just those required to integrate by parts
to transform «£/, g> into an essentially hermitian symmetric bilinear form.
But if qf = b*Bf = 0 and^pg = a*g = 0, then

«£/, g» = «AA*f, g» + <(B*Bg, g» = «^ / ^ί*g» + «*/, Λg»,

which is (truly) hermitian symmetric. For general / and g the boundary
integrals are

<σA(p)A*f, g> = (aA% α*g>, <σB(^)*5/, g> = <Z>*2?/,

Thus the adjoint boundary conditions are

p'f=aA*f9 q'g = bg.

Recall that Ho = Ker & is the set

# 0 = {h: AA*h + £*5/ι = 0, a*h = 0, b*Bh = 0}.

Lemma.

^ 0 = {A: Λ*A = 0, a*h = 0, 5A = 0}.
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Proof. If h e //0, then

= ((AA*h + 5*5Λ, A» = 0,

soΛ*Λ = 0and5Λ = 0.

5.3. Splitting the complex

The importance of the associated self-adjoint elliptic boundary value prob-
lem is revealed by the next result.

Splitting theorem. Suppose that the associated self-adjoint elliptic boundary
value problem

&f = (AA*f + B*Bf a*f b*Bf)

is an isomorphism. Then the complex AB splits. The splitting is given by two
maps K and L:

Kf= A*S-'G/ , 0,0), Lg = &-\B*g, 0, b*g), AK+LB-L

Proof. We begin with the following observation.

Lemma. Ifb*g = 0, then a*B*g = 0.

Proof If b*g = 0, then for all/

«2?*g, 4/» = «g, BAf)} = 0 = «Λ*2?*g,/»,

so we must have a*B*g = 0.

Now let h = &-\f 0, 0). Then Kf = A*h. From the definition of S

AA*h + B*Bh=f on*,

α*Λ = 0, on 3*,
b*Bh = 0, on 3*.

Therefore BB*Bh = 5/. Also by the previous Lemma we have a*B*Bh = 0.
Therefore

AA*(B*Bh) + B*B(B*Bh) = 5*5/, o n * ,

a*(B*Bh) = 0, on 3*,

b*B(B*Bh) = £>*£/, on 3X.

This shows that

B*Bh = &\B*Bf 0, b*Bf) =

Therefore AKf + L5/ = /or AK + LB = I.

5.4. Nonzero cohomology

We say that the complex AB satisfies a persuasive estimate (or subelliptic

estimate) if

I/IS S IMVIIo + P/llo + ll/llo when a * / = o.
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Since «£/,/» = ||Λ*/llo + ||Bf\\2

Q when a*f = 0 and b*Bf=O, this is
clearly equivalent to saying that the associated self-adjoint elliptic boundary
value problem &f = (AA*f + B*Bf a*f, b*Bf) satisfies a persuasive esti-
mate:

\f\l < Re«£y,/» + | |/ |β when a*f = 0 and £*/?/ = 0.

Let γ be a curve in the complex plane avoiding the eigenvalues of S. Then
we have the operators N and σ of §3.8 and the projections m and p. Recall
that we defined S λ = S + λS and

Hλ = Ker S λ = {h: Eh + λλ = 0,ph = 0, <?λ = 0},

i/λ = the smallest subspace such that

Eh+λh(Ξ Hλ,ph = 0 , ^ = 0 = > Λ G 4

We say that & is totally self-adjoint (and not just on the symbol level) if

when/?/ = 0, qf = 0,/?g = 0, qg = 0.
Lemma. Suppose & is totally self-adjoint and satisfies a persuasive estimate.

Then all the eigenvalues are real. Moreover Hx = Hλ for each λ, the projection
π is an orthogonal projection and Im σ = Im π.

Proof. First we claim that

ί/ElmS^/G^.

For if &xg = if, then Eg + λg = /, pg = 0 and ?g = 0. If h e # λ , then
Eh + λh = 0,ph = 0, qh = 0. Since £ is totally self-adjoint,

«/, Λ» = «£g + λg, A» = «g, £A + λΛ» = 0.

Therefore / E i/^. But we know that dim Ker S λ = codim Im S λ . There-
fore there can be no more relations, so the reverse implication holds also.
Next we claim that

Eh + λh <Ξ Hλ9 Ph = 0, qh = 0 =» h G # λ .

For given any / G // -1, we can find g with Eg + λg = /, pg = 0, qg = 0 by
the preceding argument. Moreover we can modify g by an arbitrary element
in Ker S λ = //λ, so we may assume g G 7/^. Then, if Eh + λh G //λ,
/?/ι = 0, qh = 0, we have

«*,/» = «A, ̂  + λg» = «^Λ + λλ, g» = 0.

Thus h ± Hλ

±, so h G Hλ. But this shows Hλ has the property for which Hλ is
minimal; hence Hλ = Hλ.

Now we must show that π is an orthogonal projection and Im π = Im σ.
Any closed curve γ contains only finitely many eigenvalues. Therefore it is
sufficient to prove the result when γ contains only one eigenvalue λ (since the
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general case is just a sum of such special cases), and we may also assume
λ = 0 (by translation). Then Im π = Ho. Let/ G Ker TΓ SO that πf — 0.

Since N& + m = / we have N&f = f Then ί/ = l/Vg/ = &N$f so
if G Im So. By the above ί / 6 l m S 0 = » / 6 H^. Therefore Ker π_LIm π.
This shows π is an orthogonal projection.

We saw in §3.8 that pσ = 0 and qσ = 0, so a*gs = 0 and b*Bσ = 0. We
claim that also Eσ = 0. For N&σ = 0, so

Im δσCKeriV = I m p = ί(Im <π).

But

Sσ = (Eσ,pσ, qσ) = {Eσ, 0, 0) = $Eσ,

so Im isσ C Im TΓ. Hence for any/we have Eσf E H0,pσf = 0, ̂ σ/ = 0. Thus
σf G 7/0 = i/0, so £σ/ = 0. We also see that Im σ C Im π, so Im σ = Im m
because π = σί. This proves the lemma.

Lemma.

α*σ = 0, 6*5σ = 0, a*N(g, h, k) = h, b*BN(g, h, k) = k.

Proof. We saw in §3.8 that

pσ = 0, qσ = 0, pN(g,h,k) = h, qN(g, h, k) = k.

But now/? = α* and ̂  = b*B.
Corollary.

a*N$f=0, b*BN<Sf=0.

The operator S associated to an elliptic complex AB is always totally
self-adjoint, so the preceding applies. Moreover we have the following result.

Lemma. /// G Im π, then AA*f G Im π and B*Bf G Im TΓ.
Proof Recall that if b*g = 0, then a*B*g = 0. It is sufficient to prove the

lemma in the case where γ contains only one eigenvalue λ, in which case π is
orthogonal projection on

Hλ = [h: AA*h + B*Bh + λλ = 0, a*h = 0, b*Bh = 0).

Suppose h G Hλ. Then a*AA*h = a*(λh - B*Bh) = λa*h - a*B*Bh9 but
a*h = 0 and b*Bh = 0 which by the previous argument implies a*B*Bh = 0.
Thus a*AA*h = 0. Also b*BAA*h = 0. Moreover

(ΛΛ* + B*B + λI)AA*h = AA*(AA* + 5*5 + λ/)Λ = 0.

This proves h G Hλ^> AA*h E Hλ. Thus (/ - π)ΛΛ*π = 0. Likewise
a*B*Bh = 0 (as shown already) and b*BB*Bh = b*B(λh - AA*h) = λb*Bh
= 0. (AA* + B*B 4- λI)B*Bh = B*B(AA* + 5*5 + λl)h = 0. Thus h G
i/λ =» 5*5Λ G //λ, so (1 — π)B*Bπ = 0 as well. This proves the lemma.

Lemma. // πf = 0 and a*f = 0, then πAA */ = 0.
Proof. Consider any h G Im TΓ. Since α*7r = 0 we have a*h = tf*πA = 0.
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Therefore

«ΛΛ /,*» = «A*f,A*h)} = «/,X4*A».

Since h E Im π, we have AA*h E Im TΓ by the previous lemma. If πf = 0,
then f±lm TΓ, so «/, AA*h^ = 0. Thus «ΛΛ*/ Λ» = 0 for all A E Im TΓ.
This shows that AA *f± Im TΓ, so ΊTAA */ = 0.

Corollary. TTAA *N$f=0for all f.
Proof. πN = 0 so πN$f = 0. Also pN$f= 0. Thus α*Λ^ί/= 0. Then

<πAA*N<Sf = 0 by the lemma.
Lemma. Suppose 0 /to i/wwfe γ. ΓAίyj £/ E Im *r, α*/ = 0, b*Bf = 0 =»/

E Im 7r.
/. Let 0, λ,, , λ^ be the eigenvalues lying inside γ. Then

Im ΊT = MQ Φ Hχ Φ * * Hχ .

Therefore we can write

EF = h0 + hλ +

where h0 E ^ 0 , /?! E /7λi, , hN E ^ . Then α•*.*,. = 0 and Z?*^. = 0
for 0 < j < N. Also Eh0 = 0 and Ehj = λjhj for 1 < j < N. Let / = / -
Λ i / λ i - -hN/λN. Then Ef = Ef - hγ - -hN = Λo and α*/= 0,
b*Bf=0. This implies that 5/i0 E Im S which by a previous argument
implies Λo E //o

x. But Λo E //0 so h0 = 0. Then Ef = 0, α*/ = 0, b*Bf = 0, so
/ E i/0. Thus

/ = / + A^λ! + + hN/λN E Im 77,

since/ E //0 and A, /λ7 E //>.
Theorem. Lei ^45 6e an elliptic complex which satisfies a persuasive esti-

mate

l/lo S \\A*f\\l + ||i?/||S + ||/H2 whenα*/= 0.

/̂ brw //ze associated self-adjoint elliptic boundary value problem

&f = (AA*f + 5*5/, α*/, 6*Λ/).

Let γ £e any closed curve in the complex plane containing 0 and avoiding the
eigenvalues of & . Form the associated operators

R(λ) =[S +λί ] "\

dλr UK r

N = / tf(λ) — , σ = R(λ)dλ, τr = σί, p = ίσ.γ /V ^ γ

7r w /Λe orthogonal projection onto the finite dimensional subspace spanned

by the eigenvectors of S wι7λ eigenvalues insides y.
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Define operators K and L by

Kf = A*N(f, 0, 0), Lg = N(B*g, 0, b*g).

Then AK + LB + π = I. Also Kπ = 0 and iτL = 0.

Proof. Since TV 5 77 = 0 we have KIT = 0, and since πN = 0 we have

<πL = 0. Let

h= N(f,0,0) = NSf.

Then Kf= A*h and AKf = AA*h. We know that &N + ίσ = /. Therefore

SΛ + ί σ ί / = ( / , 0 , 0 ) .

Now ίσ5/ = ίτ3/ = (TΓ/, 0, 0). Thus

AA*h + 5*5A + TΓ/ = /, on * ,

α*Λ = 0, on ax,
b*Bh = 0, on ΘX.

Recall that b*g = 0 => α*5*g = 0. Thus a*B*Bh = 0. By recent lemmas

(1 - π)B*Bπ = 0, Z>*5τr = 0,

so £*5π/ = <πB*B*πf and ^*5ττ/ = 0. Then

AA*(B*Bh) + B*B{B*Bh) = 5*5/ - πB*Bπf9 on* .

a*{B*Bh) = 0, on 3*,

b*B(B*Bh) = 6*5/, on 3X.

Next let

& = L5/ = N(B*Bf, 0, 6*5/).

Again since S7V+ίσ = /we have

gfc + ίσ/ = (5*5/, 0, 6*5/)

with / = (5*5/ 0, 6*5/). Thus

ΛΛ*A: + 5*5A: + ol = B*Bf, o n l ,

α*A: = 0, on dX,

b*Bk = b*Bf, on dX.

Recall that Im σ = Im π. Put

m = B*Bh - k.

Then from these equations and the previous set we see that

Em G Im TΓ, α*m = 0, b*Bm = 0.

By a recent lemma we conclude that m Glmπ. Then we have m = ?rm and

B*Bh = k + πm. From ΛΛ*λ + B*Bh + πf = / we conclude

L5/ + mm + 77/ = /.
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Now we claim that mAKf= 0. For h = Nif, and a recent lemma implies
that πAA *h = 0. Thus πAKf = 0. Now we see that mm + mf = πf so mm = 0.
Then we have AKf + LBf = /, which proves the theorem.

5.5. Families of elliptic complexes

A family of elliptic complexes consists of two partial differential operators
A(m)f and B(m)g

A: U C &°{X; M) X e°{X\ E) -+ &°{X\ F),

B:U Q e°°(X; M) X β
00
^; F) -» &°{X\ G),

nonlinear of some degree r in m and linear of degree 1 in / and g, such that
B(m)A(m)f = 0 and the sequence of symbols

is exact for each m E U and each nonzero real cotangent vector ξ.

We choose hermitian metrics < , >m on the bundles E, F, G and a volume
element dVm on X, all of which may depend smoothly on m and its
derivatives up to degree r, and form the adjoint operators A*(m) and B*(m).
We also choose bundles P and Q with hermitian metrics < , >m and surjective
bundles maps a*(m): F\dX —» P and b*(m): G\dX-> Q representing the
boundary conditions as before, all of which depend smoothly on m and its
derivatives up to degree r. We then form the associated family of self-adjoint
elliptic boundary value problems

S(m)f= (A(m)A*(m)f+ B*(m)B(m)f, a*(m)f, b*(m)B(m)f).

We say that the complex AB satisfies a uniform persuasive estimate if

when a*(m)f = 0 with a constant independent of m E U. In this case the
eigenspaces

Hλ(m) = {/: E(m)f + λf = 0,p(m)f = 0, q(m)f = 0}

are all finite dimensional. Note that

H0(m) = {h: A*(m)h = 0, a*(m)h = 0, B(m)h = 0}.

Theorem. Suppose that the family of elliptic complexes AB satisfies a
uniform persuasive estimate, and that H0(0) = 0. Then we can find a smaller
neighborhood U of 0 and smooth tame families of linear maps K(m)f and L(m)f
which split the complex, i.e.,

A(m)K(m)f+ L(m)B(m)f = f.

Proof. By the hypotheses, S (m)f is invertible for all m in a neighborhood
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U of 0, and the family of inverses &~\m)f is a smooth tame family of linear

maps. We apply the previous construction uniformly in m. Thus

L(m)g = S-ι(m)(B*(m)g, 0, b*(m)g).

Since a composition of smooth tame maps is a smooth tame map, it follows

that K and L are smooth tame maps. That AK + LB = / follows from the

previous argument.

In case //0(0) ^ O w e still have an approximate splitting.

Theorem. Let ΛB be a family of elliptic complexes which satisfies a uniform

persuasive estimate. Choose a path γ which contains 0 but no other eigenvalue

of & (0). Let N(m) and π(m) be the families of operators obtained by integrating

around γ. Then Im π(0) = Ho(0) while Im π(m) = Σ Hλ(m) for λ inside γ.

Define

K(m)f=A*(m)N(m)(f, 0,0),

L(m)g = N(m)(B*(m)g, 0, b*(m)g).

Then K and L are smooth tame families of linear maps and

A(m)K(m)f+ L(m)B{m)f+ π(m)f = f.

Proof. K and L are smooth tame maps since N and π are. The above

identity follows as before.
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