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HOLONOMY AND AVERAGING IN FOLIATED
SETS

S. E. GOODMAN & J. F. PLANTE

Introduction

In the present note we formulate a general averaging condition which
guarantees the existence of a holonomy invariant measure (in the sense of [7])
for a foliation of a compact set. This condition is more general than
non-exponential growth and may be related to the condition "closed at
infinity" introduced by D. Sullivan [10]. In § 2 we show that a nonproper leaf
with trivial holonomy satisfies this averaging condition if its first cohomology
with compact supports is nontrivial but finitely generated. Finally, applica-
tions are made of this result using the observation that for certain foliated sets
(e.g., compact minimal sets containing more than one leaf) the conditions
"nonproper" and "trivial holonomy" are generic in the sense of Baire cate-
gory. Since we use terminology and notation from [7], some familiarity with
[7] would be helpful to the reader.

1. Averaging sequences

Throughout this section X will be a metric space and Γ will be a pseudo-
group of homeomorphisms of X generated by a fixed symmetric generating
set Γo. (To say Γo is symmetric means that γ G Γ 0 implies γ"1 E Γo.) We refer
the reader to [7] for further definitions and background.

If A is a subset of X, then for each γ G Γ we define the difference set Δγ(Λ)
by

Δγ(Λ) = {x G X\x e ^ a n d γ x ί ^ } u { ^ E X\x £ A and γ c S A)

with the convention that yx £ A holds if yx is not defined. We denote the
cardinality of a set A by \A\. The following notion is analogous to the Fθlner
condition for amenability in discrete groups [3].
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Definition. An averaging sequence for (X, Γo) is a sequence {An} of finite

subsets of X such that for every γ £ Γ 0

Kl
0 as n —» oo.

If X is compact and Γo is finite, we will say that the pair (X, Γo) is compact.

The following result tells us that when (X, Γo) is compact, the existence of an

averaging sequence implies the existence of a finite Γ-invariant Borel measure

on X. If {An} is a sequence of subsets of X, the set of limit points of {An},

denoted lim{Λn}, is the set of points of the form lim,^^ xn with xn E An.

1.1. Proposition. If (X, Γo) is compact, and {An} is an averaging sequence,

then there is a (nontrivial) finite Γ-invariant Borel measure on X with support

contained in lim{^ίn}.

Proof. We simply construct a sequence of functionals by averaging. If

C(X) is the space of continuous real-valued functions on X, we define

functionals In: C(X) -> R by

/,ω = m Σ /w
I n\ xE:An

Passing to a subsequence, if necessary, the In converge in the weak* topology

to a nonnegative functional / which determines the desired measure μ by the

representation theorem of Riesz. The averaging sequence condition implies

that / and μ are Γ-invariant since for γ E Γo a n d / E C(X) such t h a t / = 0

outside the range of γ we have

\i(f ° γ) - /(/)l < sup |/(*)| lim ^4r~= °
χ<ΞX "^°° \Λn\

It is clear from this construction that μ(X) = 1 and support(μ) c

l i m ^ ^ l ^ } . This proves Proposition 1.1.

The existence of an averaging sequence is a very natural condition to

impose to get an invariant measure. We now formulate a related condition

which has a more geometric flavor.

Definition. The Γo- boundary of a set A a X is the set A defined by

dA = {x E A\yx E X - A for some γ E Γo}.

1.2. Proposition. // {An} is a sequence of finite subsets of X such that

\7\Λ I
• 0 as n —» oo,

IΛI
then {An} is an averaging sequence.
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Proof. Evidently

\(An) c dAn u γ

SO

|Δ γK)| < 2\tAn\,

and the result follows.

Remarks. Orbits of Γ which have nonexponential growth in the sense of

[7] determine an averaging sequence by setting Λn = Tn(x) (in notation of [7])

for some fixed x E X. This follows since nonexponential growth implies

• 0 a s n —> oo

and dAn c Λn + X — Λn_λ. Another special case of an averaging sequence

occurs when \ΰAn\ remains bounded as n —» oo but \An\ —» oo. This situation

arises in the study of foliations which have a "vanishing cycle" in the sense of

Novikov. It should be noted that averaging sequences are more general than

either of these examples since none of the sets An has to be contained in a

single Γ-orbit. For this reason it is conceivable that the averaging sequence

criterion is more general than D. Sullivan's notion [10] of "closed at infinity"

for a single leaf of a foliation.

2. Foliated sets

The terminology in this section is the same as in [7]. We suppose M is a

paracompact manifold, and ^ is a continuous foliation of M of arbitrary

dimension and codimension. A subset S <z M is said to be ^-saturated if it is

a union of leaves of S7. A set such as S will be called simply & foliated set. Let

% be a countable covering of S by regular distinguished neighborhoods, and

let X be the space of plaques corresponding to Gll. Thus X is a countable

disjoint union of closed disks whose dimension equals the codimension of <3r.

Let Xs be the subspace of X consisting of those plaques which lie in S. As in

[7] we construct a pseudogroup Γ (generated by a countable symmetric

generating set Γo) of homeomorphisms of Xs determined by intersections of

plaques. A leaf L in S is said to have trivial holonomy in S if every element γ

of Γ which fixes a plaque/? in L is the identity on some neighborhood of p in

the domain of γ. A leaf L c S is said to be proper in S if its leaf topology

agrees with its topology as a subset of S. Otherwise it is nonproper in S. We

will say that a leaf L c S contains an averaging sequence if for some covering

% the corresponding pair (Xs, Γo) contains an averaging sequence each set of
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which contains only plaques from L. We say S contains an averaging sequence

if (Xs, Γo) does.

The following result gives a condition on a leaf L involving its first

cohomology with compact supports which guarantees that L contains an

averaging sequence. We will always assume cohomology groups to have

integer coefficients.

2.1. Theorem. Let L be a leaf in a foliated set S which is nonproper in S and

has trivial holonomy in S. If H^(L) ψ 0 is finitely generated, then L contains an

averaging sequence.

Proof. Let £ be the nerve of the covering of L by plaques which

correspond to interior points of X. Choosing the original covering % suffi-

ciently fine we have //<!(£) = H±{L). Since H£(£) = lim H\£, £ - 9 0 (as

% runs over finite closed subcomplexes of £) is finitely generated, we can

choose a finite closed subcomplex % such that //*(£, £ - %) -+ # c ( £ ) is

surjective. Thus any element of Hς{£) is represented by a continuous map ξ:

£ —> Sι which has support in 9C, i.e., £ — % is sent to the basepoint of Sι [9,

p. 428].

We assume that L contains no averaging sequence and show //<i(£) = 0.

Since L is nonproper and has trivial holonomy, we can (Reeb Stability

Theorem) find a sequence of disjoint isomorphic (to %) complexes %n c £

which converge to % in the sense that corresponding vertices (plaques) of the

%n converge in X to a vertex (plaque) of %. Let ζ: £ —> Sι have support in

% and represent an element [ξ] of H<l(£). We claim [ζ] = 0. Since the

complexes %n are isomorphic to % we can "lift" ζ to get a map ζn: £ -> Sι

with support in %n. We will show that for n sufficiently large, [ξn] = 0.

Because of the way % was chosen there are maps ηn: £ —» S! with support in

% such that [ζn] = [ η j . Letting ξn =_ ξn - ηn we have [ξn] = 0 and support(£J

C % U 9CΛ Thus ζn lifts to a map ξΛ: £ —»R which has compact support. If

ξn has nonempty support, then changing the sign of ξn if necessary we may

assume there is a t0 > 0 which is in the interior of the interval £„(£) and does

not project to the basepoint in Sι. Let An be the (finite) set of vertices

(plaques) p such that ζn(p) > t0. Note that dAn c % U 9Crt (3 in the sense of

the previous section). To see this let/? be a vertex in dAn. This means there is

a point x G £ lying in an edge of which p is one of the endpoints such that

ξn(x) = t0. Since /0 does not project to the basepoint in Sι the edge (and, in

particular, the endpoint/?) lies in % u 9CΛ. Now |9ΛJ is bounded above for

all n by twice the number of vertices in %. Since we are assuming that {An}

is not an averaging sequence, this means that \An\ is also bounded because of

(1.2). If [ζn] 7̂  0, the compact set l~\[t0, oo)) has a connected component
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intersecting both %n and %. (Otherwise, redefine ζn by letting ξn be zero on

connected components of the support of ξn which do not intersect %n.) On

the other hand, the distance in £ from %n to % (i.e., the minimum number of

edges it takes to connect % and %n) goes to infinity as n does. Hence for n

sufficiently large we may take ηn to be trivial, i.e., [ξn] = 0.

By renumbering we may assume [ζn] = 0 for all n. Let TV be an upper

bound for \An\, and let 91 c £ be the subcomplex spanned by all vertices

(plaques) which can be reached from a plaque in % by a plaque chain [7] of

length < N. Again since L has trivial holonomy 91 lifts to a sequence of

complexes ?fin D %n (n sufficiently large) which converge to 91. Thus ζn can

be projected back down to ζ for n sufficiently large, and we conclude that

[ζ] = 0. This completes the proof of Theorem 2.1.

2.2. Corollary. Let S be a compact foliated set, and L c S a nonproper leaf

with trivial holonomy such that H^(L) φ 0 is. finitely generated. Then there

exists a nontriυial holonomy invariant measure in the sense of [7].

Proof. Corollary 2.2 follows immediately from (1.1), (2.1) and results of

[7]

Remark. By lifting intersecting cycles in the same manner in which the %n

were obtained for % in the proof of Theorem 2.1, it can be shown that for a

leaf L satisfying the hypotheses of (2.1) the homomorphism Hς(L) —> Hι(L)

is trivial. This says that L has no codimension-one handles and at least 2

ends. For example, if L is an oriented surface it is homeomorphic to the plane

with a finite (nonzero) number of points removed. For codimension-one

foliations of 3-manifolds one can show, using Novikov's compact leaf theo-

rem, that L has at most 2 ends and, hence, must be a cylinder.

3. Generic leaves in foliated sets

In the previous section we considered a leaf which was nonproper and had

trivial holonomy. In this section we observe that under reasonable conditions

such leaves are plentiful.

Given a foliated set S and a covering % by distinguished neighborhoods

we consider the pair (Xs, Γo) as described in the previous section. A subset of

Xs is residual if it contans a countable intersection of open dense sets.

According to the Baire category theorem a residual subset of Xs must be

dense in Xs and, in particular, be nonempty. We denote by T the subset of S

which is the union of all leaves which have trivial holonomy in S. The

following fact [2], [4] was pointed out by us by D. Epstein. It says that trivial

holonomy is a generic property for leaves of S.
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3.1. Proposition. T is residual in S.

Proof. It suffices to show Xτ is residual in Xs. The set Γo is countable, and

we denote by Γ* those elements of the pseudogroup generated by Γo which

have maximal domain and are determined by a word in the elements of Γo. A

plaquep E Xs is in Xτ if for every γ E Γ* one of the following is true:

(i) y{p) φp (this includes the case y{p) undefined).

(ii) y(p) = p, and γ is the identity on a neighborhood of p in the domain

of γ.

For each γ, the set of/? satisfying (i) and (ii) is open and dense in Xs. Since

the set of words in Γo is countable we conclude that Xτ is residual in Xs.

The following result is essentially an old observation of G. D. Birkhoff. Let

D c S be the union of leaves which are dense in S.

3.2. Proposition. If D is nonempty, then it is residual in S.

Proof. Let { Ut\i E Z+) be a countable neighborhood base for Xs. A leaf

L is in D if and only if L contains a plaque in Ui for every /. Let St be the

union of leaves of S which contain a plaque in Ur St is an open set for each /.

If some leaf is dense in S, then Sf is also dense. Hence D = Γ) . S, is a

residual set.

3.3. Corollary. If some leaf is dense in S, then D n T is residual in S.

The foliated set S is perfect if every plaque p contained in S is a limit of a

sequence of plaques {pn} in S such that/?,, φp for all n. When S is perfect it

is clear that any leaf which is dense in S must be nonproper. If x E S we

denote by Lx the leaf through x.

3.4. Corollary. If S is a perfect foliated set which contains a dense leaf, then

for a residual {in particular nonempty) set of points x E S, Lx is nonproper and

has trivial holonomy.

The following results follow from Theorem 2.1 and Corollary 3.4.

3.5. Theorem. Let S be a perfect foliated set which contains a dense leaf but

does not contain an averaging sequence. Then for a residual set of points x E S,

Hς(Lx Z) is either trivial or infinitely generated.

3.6. Corollary. If S is a compact perfect foliated set which contains a dense

leaf but does not support an invariant measure {in the sense of [7]), then for a

residual set of points x E S, HQ{LX\ Z) is trivial or infinitely generated.

4. Applications and examples

Both extremes stated in the conclusion of Corollary 3.6 do occur. For

example if ίF is the stable manifold foliation of a transitive Anosov flow [1]

on a compact manifold, then every leaf is dense and all but countably many

of them are homeomorphic to Rk {k = leaf dimension). The other extreme is
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illustrated, for example, by a construction of M. Hirsch [5]. In his examples

the leaves all have infinitely many ends.

Let M be a compact manifold, and ^ a (2° foliation of arbitrary dimension

and codimension. Since an ^-minimal set which is not a single compact leaf

is an example of a perfect foliated set, Corollary 3.6 yields

4.1. Corollary. // 911 is an ^-minimal set such that H^(L; Z) is nontriυial

and finitely generated for every leaf L in 91L, then there is a nontriυial

%-invariant measure whose support is 91L.

If ®i is β 2 and has codimension one, and 9H is an exceptional minimal set,

then 911 cannot support an ^-invariant measure [6]. Thus we have the

following.

4.2. Corollary. If ^ is a minimal set of a Q2 codimension-one foliation, and

Hc(L; Z) is nontrivial and finitely generated for every leaf L in 911, then either

9IL is a single compact leaf or 9H = M,

Remarks, (a) In the case 91L = M of Corollary 4.2 much more can be

said about the structure of 5'. The manifold M fibers over Sι and the leaves

of 5" are pairwise diffeomorphic. If L is a leaf of (3:, then L has precisely two

ends, and the homomorphism H^(L; Z) —» Hι(L; Z) is trivial. For example,

if L is an oriented surface, it must be a cylinder.

(b) The special case of Corollary 4.2, when dim M = 3 and all leaves are

2-dimensional cylinders, has also been proved by G. Hector [4].
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