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CIRCLES INVARIANT UNDER
DIFFEOMORPHISMS OF FINITE ORDER

WILLIAM H. MEEKS III

1. Introduction

If a compact surface M in R3 is rotated into itself, then we prove that there
is always an embedded circle on the surface which is invariant under the
rotation. A natural question to ask is whether this result can be generalized to
prove that every isometry of a compact surface has an invariant circle.

In this paper we shall prove a general structure theorem on the existence
and topological properties of invariant circles. Except for a recent result on
representing one-dimensional homology classes by embedded circles, our
techniques of proof will be classical. These techniques are based on the theory
of branched covering spaces.

We follow the proof of our structure theorem with some special results on
the existence of invariant circles. This latter work leads us to make the
following conjecture: for an infinite number of compact surfaces, every
diffeomorphism of finite order has an invariant circle.

Throughout the paper, M will be a compact orientable surface, and /:
M —» M will denote an orientation-preserving diffeomorphism of finite order.
If the order of / is n, and Mf denotes th orbit space of / with the quotient
topology, then the natural projection P: M —» Mf is a cyclic branched
covering space of the orientable surface Mf. The structure of the branched
covering space P: M -^ Mf is the key to proving our results. The structure of
P: M —• Mf can be analyzed by various representation theorems which we
shall now recall for the reader.

Given a finite subset B c M and an onto representation p: πx(M — B) —»
ZΛ, there is an associated cyclic Λ-sheeted branched covering space P:
M —»M, where cyclic means that the group of covering transformations of
the unbranched covering space P: M — P~X{B) -+ M — B is generated by a
diffeomorphism /: M — P~ι(B) -+ M — P~ι(B). By the Riemann extension
theorem,/ extends to a diffeomorphism/: M -» M of order n. With respect to
/: M -» M, P: M -> M is the same branched covering space as the natural
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projection P: M —> Mf. Also recall that when /: M -* Λf has order n, the

branched covering space P: M —» Mf can be constructed abstractly from a

canonical representation p: πx(M — B)^> Zn where B is the branch locus of

P.

1. Since local perturbations of one invariant circle gives rise to new

invariant circles, we shall consider two invariant circles to be equivalent if

they are isotopic through invariant circles. When we talk about an invariant

circle, we shall frequently be referring to the equivalence class of an em-

bedded circle invariant under some diffeomorphism.

Structure theorem. Suppose M has positive genus andf: M —» M.

1. There exists an infinite number of distinct homology classes representable

by invariant circles if and only iff2 = id or Mf¥= S2.

2. Iff2 φ id and Mj = S2, then each invariant circle disconnects M.

We will prove the structure theorem by a series of lemmas. The proof of the

first lemma is an elementary proof in covering space theory and we leave it to

the reader to verify. We shall use the phrase " γ ' lifts to γ" to mean that γ is

the inverse image of γ' under the projection P: M —» Mf.

Lemma 1. Suppose f: M —> M, and p: πx(Mf — 2?) —» Zn is the representa-

tion for the branched cover P: M —> Mj . Then y c M — P~ι(B) is an invariant

circle if and only if γ is the lift of an embedded circle γ' c Mf — B with p(γr) a

generator of Zn.

Lemma 2. If f: M —> M and Mf=£S2, then there exists an infinite number

of distinct homology classes which can be represented by invariant circles not

passing through branchpoints of P: M -> Mf.

Proof. Since Zn is abelian, the representation for P: Λ/ -> My factors

through the first homology group by

πx(Mf - B) -> Hx(Mf - B)

Let B denote the branch locus for P: M —> Mf9 i: Mf — B ^> Mf be the

inclusion map, and /„,: Hλ{Mf — B) —> Hx(Mj) be the induced map on homol-

ogy.

We will call a class ω G HX(M) primitive if ω = 0 or if ω is not a nontrivial

multiple of any other integer homology class. Rank arguments from linear

algebra imply the existence of an infinite number of homology classes

iωj}?=ι C Hx(Mf - B) such that
(1) p(ωj) = 1 for all 7,
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(2) the elements of S = {/*(ω/)}^=1 c Hx(Mf) are distinct primitive ho-
mology classes.

By results in [4], each ωy can be represented by an embedded circle y'j. By
Lemma 1, the circles y'j have lifts γy which are circles invariant under /:
M —> M. Since P*([yj]) = nωj G Hλ(Mj) and the classes ωy are distinct on
Mp the homology classes represented by the invariant circles γy must repre-
sent distinct homology classes on M. This completes the proof of Lemma 2.
q.e.d.

The following lemma together with Lemma 2 completes the forward
implication in part 1 of Theorem 1.

Lemma 3. If f: M -» M has order 2 and Mf = S2, then there exists an

infinite number of distinct homology classes represented by invariant circles

passing through the branch points of P: M —» Mp

Proof. There is a "canonical" automorphism H: M —> M of a surface of
genus g having order two and with MH = S2. This automorphism is accom-
plished geometrically by rotating a standard g holed surface along its central
axis by 180°. H is classically known as the hyperelliptic automorphism.

From this geometric representation of H: M —> M, it is easy to see that
there is an infinite number of invariant circles representing distinct homology
classes. Also it is elementary to show that any other diffeomorphism /:
M -» M of order 2 with Mf = S2 is conjugate to H: M —> M. Hence such an
/: M —» M has an infinite number of homology classes representable by
invariant circles.

Lemma 4. If f: M -» M, and y is an invariant circle passing through a

branchpoint of P: M —» Mp then the order of f is 2.

Proof. If q G γ is a branch point of P: M -* Mp then for some K less
than the order of/we have/*^) = q. Since K is less than the order of/, and
an isometry of M is determined by its values on an infinite subset, we have
fκ\y φ idγ. Thus/* restricts to an isometry of a circle with a fixed point, and
fκ is not the identity map on the circle. The Lefschetz theorem implies that
fκ\y is orientation-reversing on γ, and hence/|γ is orientation-reversing on γ.
Another application of the Lefschetz theorem shows that/|γ: γ -> γ has order
2. This in turn implies that/: M —> M has order 2. q.e.d.

The next lemma completes the proof of the structure theorem for invariant
circles.

Lemma 5. If f: M —> M with Mf = S2 and f2 φ idM, then each invariant

circle disconnects M.

Proof. Let γ be an invariant circle, and suppose B is the branch locus of
the natural projection P: M -^ Mp Lemma 4 implies that γ c M - P~\B).
If the homology class [γ] is not the zero homology class, then the arguments
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in the proof of Lemma 4 imply /+[γ] = [γ]. But a nontrivial invariant
homology class on M descends to a nontrivial homology class on Mf = S2

which is absurd. Therefore [γ] = 0 which implies γ disconnects M.
2. While the structure theorem gives a fairly complete description of the

number and topological structure of invariant circles, it does not prove that
every f\M-*M has an invariant circle. In fact, there are f:M-*M with no
invariant circles.

Proposition 1. There exists anf: M -^ M of order 30 on a surface of genus
11 with the foίlowngproperties:

(1) fhas no invariant circle.
(2) If g: M -> M has no invariant circles, then g is conjugate to f for some r

relatively prime to 30.
Proof. Let yv γ2 and γ3 be small circles centered at some theree points pl9

p2, and p3 on S2. Orient these circles counter-clockwise with respect to the
usual orientation on S2. Let P: M -^ S2 be the cyclic branched covering
space associated to the representation p: TΓ^S2 — {P\,p2,p3})-* ^30 defined
on the generators by p(yι) = 2 and p(γ2) = 3. Let /: M —» M be the diffeo-
morphism of order 30 which is associated to P: M -^ S2. Note that none of
the three embedded circles in S2 — {pl9p2,p3} lift to circles invariant under
/. By Lemmas 1 and 4,/has no invariant circle.

Suppose g: M —> Λf, and g has no invariant circle. Then by the argument
found in the proof of part 2 of the next theorem, g has order 30 and the
branch locus of the corresponding P: M -* S2 has 3 points qx, q2, qy Let γ,,
γ2 and γ3 be circles centered at ql9 q2, and q3 respectively, and oriented
counter-clockwise with respect to the orientation on S2. Let p': TΓ^S2 —
{QV a2> #3})~~* ̂ 3o b e t n e representation for P'. We may assume that the
orders of p'(γx), p'(γ2) and p'(γ3) are 15, 10 and 6 because other possible
orders give rise to invariant circles.

If L: S2 —> S2 is a diffeomorphism with L(px) = ql9 Lζp^ = q2 and
L(p3) = q3, then L lifts to L: M —» M in the following diagram:

M-^> M

Ί I''
s2—>s2

L

It is straightforward to verify that g = LfL~ι for some r relatively prime to
30. q.e.d.

Although a general f:M-^M may not have an invariant circle, there are
interesting conditions one can place on Morfto assure that invariant circles
do exist. Some of these conditions are outlined in the next theorem.
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Theorem 2. (1) Iff: M —> M has order n = p'q* with p and q primes, then f

has an invariant circle.

(2) If the genus of M is less than 11, then every f:M-+M has an invariant

circle.

(3) // M ψ S2, M c R3 andf: M -> M is induced by an isometry of M in R3,

then f has at least 4 invariant circles.

Proof. (1) Suppose B = {pvp2, * * * >Pκ) * s t n e branch locus for P:

M —»Mp and γ,, γ2, * , γ^ are circles on Mf centered at the respective

points and oriented counter-clockwise with respect to the point and the

orientation of Mf. If Mf=£S2, then the structure theorem implies the ex-

istence of many invariant circles. Therefore we shall assume Mf= S2.

Now consider the integers {mi = p(yf )|i = 1, 2, , K) where p: πλ(Mj —

2?)—» Zn is the representation for P: M —> Mf. If there is an integer mt not

divisible by p or q, then Lemma 1 implies that the loop 7,7, will lift to an

invariant circle. Suppose that no such mt exists. Since p is onto, there do exist

integers mr and ms which are respectively, relatively prime to p and q but not

to both. Thus p(γr) + p(γ5) is a generator for Zn. Hence by Lemma 1, the

connected sum of γΓ and ys lifts to an invariant circle for/: M ^>M.

(2) Suppose that M is a surface of least genus which admits an /: M -» M

with no invariant circle. By the structure theorem we may assume that

Mf = S2. Let yl9 γ2, , yκ be circles centered at the respective branch

points B = {ql9 q2, , qκ] for P: M -> Mf. Let p: ττx{Mj — B) -> ZN be

the representation giving rise to P.

The total branching order for P~λ{q^) can be calculated to be

N(O; — 1)/ Ot where 0, is order of p(γ,) in ZN. For convenience, we reorder

the branch points so that the Oi appear in nonincreasing order. By the

Riemann Hurwitz formula, the genus of M can be calculated to be

L 1=1 ui

If more than two of the orders Ot equal 2, then there is a natural onto

representation p': π}(S2 — {qv q2, * * , ^-2}) —> ZN induced by the original

representation p. It is easy to check that p' gives rise to a g: M' -> M' with no

invariant circle, and the genus of M' is less than the genus of M. Since this

contradicts the minimality assumption on M, 0, equals 2 for at most two

points. Hence (Of — 1)/O, > 2/3 except at possibly two points. Plugging this

information into the above formula yields
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Since N > 30, by part 1 of Theorem 2, g > 11 when k > 5. When k = 3
and N = 30 or TV = 42, a case by case argument shows g > 11. If 0 3 = 2,
then O, and O2 must be divisible by two distinct primes. This is because TV is
divisible by three distinct primes and because any two of ( p ^ ) , piy^ P(ϊ3)}
generate ZN. Hence Oλ > O2 > 15. This result gives the estimate g > 1 +
11/607V. Part 1 of Theorem 2 implies that N = 30 or N = 42. By a similar
argument, we get N = 30 or N = 42 when O3 > 2. Hence g > 11 when
k = 3. The proof of the case A: = 4 is similar to the above argument for
k = 3, and we leave it to the reader to verify the details of this case.

(3) Suppose M is contained in R3, and F: R3 -» R3 is an isometry of R3

inducing/: M -» M. Since M is compact, F is a rotation about some line L. If
L π Λ/ is empty, then every orbit of / contains the same number of points.
This implies that P: M —» Mf is a covering space, and hence Mf^ S2. By the
structure theorem, / would have an infinite number of invariant circles.

Suppose now that Mf = S2. Since every branched cover of S2 with two
branch points is again S2, P: M —> Mf must have more than 2 branch points.
Note that in our geometric situation, the branch points of P: M —»Mf are
precisely the fixed points of/: M —» M, or equivalently, they are the points in
L π M. Hence the size of L π Λf is at least 3. If we consider L as a circle in
S 3 and M as a surface in S3, then intersection theory implies that L π Mis
even and hence at least 4. Therefore P: M ^> S2 has at least four branches.
Clearly, small circles around these branch points yield distinct circles in-
variant under/: M —> M.

Corollary. Suppose M is a compact embedded surface in R3 and /: M —» M

is induced by an isometry I: R3 —»R3 with possibly infinite order. Then /:

M —» M has an invariant circle.

Proof. If /: M -» M has finite order and M is not S2, the result follows
from part 3 of Theorem 2. If M is S2, then/has two fixed points by Lefschetz
theorem for isometries of a compact surface. Hence /: S2-* S2 has an
invariant circle.

If/: M ^> M has infinite order, then /: R3 -• R3 is given by rotation by an
irrational angle around some line in R3. This observation shows that closure
of the orbit of any nonfixed point of/: M —» M is an invariant circle.

Remark. There is an isometry of a surface of genus 3 in R3 with precisely
4 invariant circles. However, every isometry of a surface of genus 2 in R3 has
an infinite number of invariant circles.

In conclusion we make the following conjecture: For an infinite number of
compact surfaces every diffeomorphism of finite order has an invariant circle.
We believe that a proof or a counterexample to this conjecture could be
obtained by the methods of proof in Theorem 2.
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