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A RIGIDITY THEOREM FOR
THREE-DIMENSIONAL

SUBMANIFOLDS IN EUCLIDEAN SIX-SPACE

KETI TENENBLAT

1. Introduction

In the classical theory of a surface in Euclidean three-space, the asymptotic
curves play a special role in the rigidity problems. In this paper, we prove a
rigidity theorem for a three-dimensional manifold in the Euclidean six-space
E6, using the asymptotic hyperplanes.

Let Mn be an ^-dimensional C0 0 submanifold of EN

9 N =\n(n + 1), with
the induced metric and such that the inclusion i: Mn -» EN is nondegenerate.
Let/? G Mn, and denote the second fundamental form by s. A ^-dimensional,
0 < q < n, linear subspace L of the tangent space TpM is called asymptotic if
there exists a vector ξ normal to TpM such that (s(X, Y), 0 = 0 V*, Y G L,
where < , ) denotes the Euclidean metric. If L is of codimension one, we have
an asymptotic hyperplane at/?. A ^-dimensional submanifold Uq of Λ/Λ, q < n,
is said to be asymptotic at/? G £/ if 7], £/ is asymptotic, and asymptotic if this is
true for each p G U. It is not difficult to see that U is an asymptotic
hypersurf ace of M if and only if there exists a normal to the osculating space
of £/, which is also normal to M. The notion of asymptotic surface in a more
general context can be found in [4].

We characterize the set Qp of all asymptotic hyperplanes at a point/? G M
as follows: choose an orthonormal frame eλ, , eN defined on a neighbor-
hood of p such that el9 , en are tangent to M and en+ι, , eN are
normal to M. Let ω1, , ω^ be the dual frame. We adopt the following
indices convention

ij, k = 1, , n; μ, λ, α, β = n + 1, , N; A, By C = 1, , N

and the summation convention with regard to repeated indices. Denote by

Hx the second fundamental forms with respect to this frame, i.e., s(X, Y) =

HX(X, Y)eλ. From the theory of a submanifold of a Euclidean space, it

follows that ωλ = 0 on M and Hλ = h}y ® d, Λ£. = λj. A n (" ~ ι>

dimensional linear subspace of TpM given by uiω
i = 0 is asymptotic if there
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exists aλ E R, λ = n + 1, , N not all zero, such that aλH
λ = 0 when

restricted to the hyperplane uiω
i = 0. This is equivalent to saying that there

exist aλ, bt E R not all zero, such that

aλH
λ = w,.ω' ® bjω>.

This reduces to an N X N determinant equal to zero, which gives us a
homogeneous equation in w, of degree n.

From now on we restrict ourselves to the case M3 c E6. The set Qp of all
asymptotic hyperplanes at/7 E M is given by the planes

uλω
ι + u2ω

2 + u3ω
3 = 0

such that
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Hence &p is a homogeneous cubic surface in the cotangent space TfM, which
can be considered as a cubic curve in a projective plane. We remark that the
above characterization can be similarly done for a nonorthonormal frame,
keeping et and ex respectively tangent and normal to M. Moreover, we
observe that (*) does not depend on the choice of the normal frame eλ. In
fact, if we choose another normal frame eλ, keeping et fixed, the second
fundamental forms Hλ — aλβH

β

9 where the determinant \aχβ\ Φ 0, and we
get (*) multiplied by |a^ | .

Let M3 and M3 be two C°° submanifolds in E6, and φ: Λf-»Λf an
isometry which is the restriction of a rigid motion in E6. Then a necessary
condition is that φ*(S) = β. In our theorem we prove that locally this
condition is also sufficient; when we restrict to the case in which 6 is a
nonsingular cubic. More precisely, we have

Theorem 1. Let M3 and M3 be submanifolds in E6, and φ: M -* M an

isometry. Suppose that at p0 E M there is a neighborhood V in M such that

V/7 E V, Qp and βψ^) are nonsingular cubics and Φ*(βψ(^)

a Euclidean motion which restricted to V coincides with φ.

The main difficulty in proving this theorem is to deal with (*) which
determines the cubic curve. Although there are several ways of obtaining
standard equations for a nonsingular cubic, these are not of too much help in

Qp. Then there is
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our case, where we want to simultaneously reduce the second fundamental

forms to canonical types. This is done in the following.

Basic Lemma. Let M3 be a submanifold of E6 such that at p0 G Λf, QPo is

nonsingular. Then there is a frame at p0 and eA, A = 1, , 6, (not necessarily

orthonormal), where et are tangent and eλ are normal to A/, and a real number

σ φ 2, 3, -6, such that with respect to this frame the second fundamental forms

are

1
0
0

0
0
0

0
0

-1

0
0
0

0
1
0

0
0

-1
9

0 1
1 0
1 1

and Qpo is given byQpo

u\ — u2u2 — u2u3 — u\ux — u\ — u\ux — u\uu\ux
\u2 σuxu2u3

0.

The proof of Theorem 1 is based on the choice of a moving frame obtained

by the above lemma and the following.

Proposition 1. Consider the nonsingular cubics

Γ: x3 + y3 + z 3 — x^y — x2z — y2x — y2z — z2x - z ^ + σxyz = 0,

Γ: x3 + y3 + z3 — x^y — x2z —y2x —y2z — z2x — z^y + σxyz = 0.

If Γ and Γ are projectiυely equivalent, then the only real linear transformations,

which will take Γ into Γ, are permutations of x, y, z multiplied by a nonzero

constant. Therefore σ = σ.

In §2, assuming the Basic Lemma and the proposition above, we prove

Theorem 1, using the theory of a nonorthonormal moving frame and the

fundamental theorem for submanifolds of Euclidean space.

In §3, we consider a family ξF = {Σ/= 1 \φ/, \ E R} generated by three

linearly independent quadratic forms φ, in three variables with real coeffi-

cients, such that any pair of quadratic forms among φ, may not be expressed

in less than three linearly independent variables (this last condition is sug-

gested by Proposition 3 in §4). Under nonsingular linear transformations on

the variables and also such transformations of the \ , we obtain a complete

classification of canonical generators for the family 5'.

In §4, we first prove Proposition 3, which asserts that if the cubic Qp is

nonsingular, then the second fundamental forms Hλ at/7 generate a family ίF,

as described in the preceding paragraph. The Basic Lemma is proved using

the classification obtained in §3. Another result obtained in this section

asserts that if the sectional curvatures at/? G M are zero, then Qp is reducible

to the product of three lines. This is a first step in the classification of β

according to the sectional curvature. Finally we prove Proposition 1.
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2. Proof of main result

In this section we prove Theorem 1, assuming the Basic Lemma and
Proposition 1 stated in the introduction. The proof is based on the choice of a
special moving frame, obtained from the Basic Lemma. Since this frame is
not necessarily orthonormal, we first recall the theory of a nonorthonormal
moving frame, defined locally on a submanifold of a Euclidean space.

Let U be an open subset of EN, and ev , eN differentiable vector fields
on U. We consider the differential forms ω1, , ωN such that ωA(eB) = δ£,
A, B = 1, , N, and the connection forms ωA

B defined by

d*A = ωA%

We get the structure equations in EN

dωA =ωB A ωB

A, dωA

B = ωA

c Λ V , A, B, C = 1, , N.

We remark that the matrix ωA

B is not necessarily skew-symmetric, since we
are not assuming ev , eN to be orthonormal.

Now we consider an n-dimensional C™ submanifold Mn in EN, N = n +
p. We choose el9 , en, en+v , eN locally defined in such a way that
ev , en are tangent to M and en+ι, , eN are normal to M. With the
following indices convention,

ij, k = 1, , n; μ, λ, α, β = n + 1, , # ; A, B, C = 1, , N,

when we restrict to M, we get

ωλ = 0, dωι = J Λ ω/, dωλ = ωi Λ ωz

λ = 0.

Hence there exist hfj such that

(1) ω,λ = Λ,y,Λ£ = Λ*.

The second structure equation restricted to M is decomposed as follows:

(2)

(3)

(4)

where

(5)

dω/ = ω#- Λ

dω* = ωk Λ ω*λ

dωλ' = ωλ

k Λ Vk

V +
+ «,-

λ

Ω/,

Λωα

λ,

Λ ««',
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Next we will relate ωA

B with ωB

A. We denote the inner product gAB =

(eA, eB) and remark that giλ = g^ = 0. Taking exterior derivative we get

<*ACgcB + 8AC«>BC = dgΛB.

In particular we have

ω/gy + &*ω/ = dgip

- 0,

It follows from (6) and (1) that

(8) ω λ ' - -h£ιgμλg
liωk,

where gij is the inverse matrix of gtj. Hence using (5), (1) and (8) we have

(9) Ω/=^VΛω*.
On the other hand we know that

(10) Ω / = i * Λ r ; t g ' 4 / Λ < Λ

where Rlirk is the Riemannian curvature tensor. Therefore from (9) and (10)

we get that V/, i, k φr

and hence V/, /, k φ r

RJirk = {hμl - h;khϊ)gμλ.

The second fundamental forms with respect to this frame will be denoted by

Hλ = hϊ ω iωj.

After these preliminaries we restrict ourselves to 3-dimensional submani-

folds in E6 such that the inclusions are nondegenerate. Let Λf3 and M 3 be

C°° submanifolds in E6 and let φ: M -» M be an isometry. We choose frames

eA and eA locally defined such that et is tangent to M, et = Φ^ί^), eλ and eλ

are respectively normal to M and M. We prove the following.

Proposition 2. Let M3 and M3 be submanifolds in E6 and let φ: M -> M be

an isometry. Suppose there is a neighborhood V of p0 E. M such that for each

p E V, the cubic Qp is nonsingular and φ*Hλ is a linear combination of Hμ.

Then there is a Euclidean motion which coincides with φ in V.

Proof. We want to define a normal bundle isomorphism φ: V1- -* F x

covering φ: K-» V such that φ preserves inner products, second fundamental

forms and normal connections. Then it will follow from the fundamental

theorem for submanifolds of Euclidean space, that there is a Euclidean

motion which, restricted to V, coincides with φ.
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For each p E V, Qp is nonsingular, therefore we can apply the Basic

Lemma. Using the fact that there are only a finite number of linear transfor-

mations which reduce the quadratic forms as in the lemma and the smooth-

ness of Hλ, we get a differentiable frame eA and a differentiate real function

σ on V such that the quadratic forms Hλ, with respect to this frame, are

respectively

(12)

We remark also that σ does not assume the real values 2, 3, -6. We consider

eέ = Φ*(et), and since φ*Hλ is a linear combination of Hμ, we can obtain eλ

normal to V = φ(V) such that the quadratic forms Hλ with respect to the

frame eA are also as in (12).

Now we define a bundle isomorphism φ: V1- -^ F x covering φ by taking

φ(eλ) = eλ and extending linearly.

Let ωA be the dual frame of eA, ωA

B the connection forms and similarly,

ωA, ωA

B for eA. Then identifying e. with ei and using the fact that φ is an

isometry we have

ω
λ __ —λ 0, ω'«ω',

ωJ = 5 / , ω , λ = - ^ = ω,λ

where Ay = Â  is now the {/-element of / ί λ in (12).

We want to prove that g^ = 5^. Since M and M are isometric, we have

that

Therefore from (11) we get

g μ λ
0, ViJ,

Using the notation ZμX = g^- g^ and substituting λ£ for its value in (12),

we obtain

Z44 + Z 4 5 — σZ^ + Z^ = 0,
Z55 + Z 4 5 ~ σ Z 5 6 + Z66 = 0>

Z46

Z46

+ (1 - σ) o,
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The determinant of the coefficients is equal to σ — 3 φ 0. Hence Z ^ = g^ —
£μλ = 0, Vμ, λ. As a consequence, we get from (8) that

ωλ' = ωλ' V/, λ.

It remains to prove that ωμ

λ = ωμ

λ. In order to do so, we use (3) and (7).
Since cof

λ = ωf

λ and ω/ = ω/ it follows from (3) that

«/" Λ (ωμ

λ - ωμ

λ) = 0,

i.e.,

ΛyΛ«-ω μ

λ ) = 0, V/,λ.

Adopting the notation Dμ

λ = ωμ

λ - ωμ

λ and applying the above equality to
the pair of vectors (el9 e2), (ev e3) (e2, e3) we have

ex) = 0,

μ μeλ) = 0,

Ί&Oμ\e3) - h*Dμ\e2) = 0, Vi, λ.

We substitute the values of hfi from (12), and we get

D4\e2) = DΛ\e3) = D5\et) = D5\e3) = D6\eλ)

= D6\e2) = D6\e%) = αλ,

DΛ\eλ) = (σ - 2)αλ, Z)5

λ(e2) = (σ - 2)a\

Now we prove that aλ = 0 Vλ. In fact, since g^ = g^ it follows from (7)
that

^ Λ * + S,uAα = 0, Vμ,λ.

In particular, for μ = λ we get

Dμ

agaμ = 0, Vμ,

which applied to e3 gives the system of equations

βχ-0, μ = 4,5,6.

Since det(gαμ) 7̂= 0, we conclude that aa = 0, Vα and hence Dμ\e^) = 0,
Vi, μ, λ. Therefore ω/i

λ = ώμ\ and this concludes the proof of Proposition 2.
We can now prove our main result as a consequence of Propositions 1 and

2.
Proof of Theorem 1. For each/? e V, Qp is nonsingular, hence applying

Basic Lemma we get a differentiable frame eA, A = 1, , 6 and a differen-
tiate real function σ on V such that with respect to this frame the quadratic
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forms Hλ are as in (12), and the cubic β is given by

w? + wf + wf - u\u2 - u\u3 - u\ux - u\u3 - u\u\ - u\u2 + σuλu2u3 = 0.

Similarly for φ(K)_we get a frame eA,σ such that with respect to this frame the
quadratic forms Hλ are as in (12), and the cubic β is given by

ΰ? + ΰ\ + ΰ\ - ΰ\ΰ2 - ΰ\U3 - ΰ\ΰx - ΰ\ΰ3 - u\Ux - u\u2 + σΰ2ΰ3 = 0.

Since φ*(β) = β, it follows from Proposition 1 that the tangent frame et is
a permutation of the frame φ^e, multiplied by real valued function h φ 0.
Moreover φ(σ) = σ. Now we consider a new frame on φ(V) defined as
follows:

With respect to thisjrame the quadratic forms Hλ will be linear combinations

of h2Hμ, and φ*Hx are linear combinations of Hμ since φ(σ) = σ. We

conclude the proof using Proposition 2.

3. Reduction of a family of three quadratic forms in three variables

Consider a family

where φ, are linearly independent quadratic forms in three variables xl9 x2, x3

with real coefficients. Moreover, we suppose that any pair of quadratic forms
among φ; may not be expressed in less than three variables under a linear
transformation on the variables. In this section, we want to find canonical
generators for ^ by linear transformations with real coefficients on the
variables and also by such transformations on the \ . Each linear transforma-
tion on the \ amounts to consider new generators for 5", which are linear
combinations of the initial quadratic forms. Where we say a linear transfor-
mation we mean a nonsingular linear transformation with real coefficients.

3.1 We start by considering two quadratic forms ψλ and φ2 which may not
be expressed in less than three variables. If we consider only linear transfor-
mations on the variables, we have a complete classification of types, to which
φ, and φ2 can be reduced (see [2]). According as the determinant |λφ, + μκρ2\
is or is not identically zero, the case is said to be singular or nonsingular.

In the nonsingular case, if \ψλ\ φ 0 we have the following classification
according to the different types of elementary divisors of [λcpj — ψ2\:
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I

II

III

IV

V

VI

VII

Type of elementary divisors

cχ = a 4- bi, c2 = a - bi,

b Φ 0, a, b, c3 G R

(λ-c1),(λ-c2),(λ-c3)

cxΦc2Φ cv ct G R

(λ - cχ), (λ - cχ) (λ - c3)

cx Φ c3, ct e R

cxeκ

(λ-cχ)\(k-c3)

cx Φ c3, ct G R

(λ~ClζtκCl)

(λ- C l )
3

v2

^ 2

^ 2

^ 2

Φ 0, (/>j and

— (x1 — x^\

= ^JCJXJ + k

= AΓ^JXJ +

= ^ 1 (c 1 2x 1 x 2

= ^(2x^2 4
— IT \n (^Ύ v— l\,χ [Ci^ZΛiΛ

ψ2 are reduced

- 2^XjX2 + kxί

Y v "̂  "4- Jt" o γΛ

2 2 ' 3 3

•4- v ι "4~ &• /^' A2>^ Λ 2 C 3

k X2

_1_ v^Λ 4- lr n i

to

2
3'

>

C3,

C3,

S *.

* , =

* , =

»! =

*/ =

= ±1

±1

±1

: ± 1

= ± 1

= ± 1

TABLE 1

In the singular case, φx and φ 2 are reduced to

VIII φχ =2xχx2, φ2 =2x2x3

For the reduction of a family of three quadratic forms, we need to remove
the restriction \φx\ ^ 0, i.e., in the nonsingular case if \φx\ = |φ2 | = 0, then we
can obtain a pair of forms φ l s φ2, to which the preceding classifications can
be applied. Let g, A, g', hf be fixed real numbers for which | gφx + hφ2\ Φ 0
andgΛ' - g'h = l.Then

Ψι = gψ\ + hψ2, ψ2 = g'φj + h'φ2

can be reduced to one of the types in Table 1. After this reduction we obtain

<Pi = h'ψ\ - ΛΦ2> Ψ2 = SΨ2 - g'Ψi

In the above conditions, it follows from the choice of g, A, g', h! that ^ and
φ2 can only be reduced to types II, III and V.

We conclude that if \φx\ = |φ 2 | = 0, then under a linear transformation on
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the variables, φx and φ2 are reduced to one of the following types:

(IF) φ, = kλx\ 4- k3(h' - hc3)xl φ2 = k2x\ + k3(gc3 - g')x

/TTTΛ rr> — k τr2 m — k r 2 4- k v 2

0 0 Φi = *i2x!^2 ~ kxhx\, ψ2 = /:,gx| + k2xj,

(VIII) φx = 2xxx2, φ2 = 2Λ:2X3 (singular case),

where kt is 1 or - 1 , and g, A, g', A' are fixed as above.

3.2. We now consider the reduction of a family

as described at the beginning of this section. To each triple of values for \ , it

corresponds an element of ?F, which represents a conic to be called the conic

of the point P = (λ^ λ2, λ3); its determinant Δ is homogeneous of order three

in λj, λ2, λ3. Hence the points P whose conic is decomposable in two lines is a

cubic Δ = 0.

Let Pι and P2 be any two points of the protective plane of \ , and let ψj and

ψ2 be the corresponding conies. To each point of the line /, determined by Pl9

P2, will correspond the conies of the family ^' generated by ψj and ψ2. Now

the points of intersection of the line / with the cubic Δ will correspond to the

forms of Φ' whose determinant is zero. This condition is expressed by an

homogeneous equation of order three in λv λ2.

After these preliminaries, we consider as the sides λv λ2, λ3 for the triangle

of reference and specially for λ3, lines which have an invariant relation with

the cubic Δ. For an irreducible cubic curve we have the following classifica-

tion: since the cubic cannot have more than one double point, it is called a

nonsingular cubic if it has no double point, otherwise it is called an acnodal,

crunodal or cuspidal cubic according to the type of singularity of the double

point (see [3]).

(a) If Δ is irreducible and is a nonsingular or an acnodal cubic, then

there are exactly three collinear real inflexion points. We consider this line as

λ3 and for λj and λ2 we choose the tangents at two of these points of

inflexion. Moreover we choose homogeneous coordinates such that the tan-

gent to the third point of inflexion is λx + λ2 4- pλ3 = 0 where p = 0 if the

three tangent lines are concurrent.

(b) If Δ is irreducible and is a crunodal or cuspidal cubic, then there is

exactly one real point of inflexion. We choose λ3 to be the line determined by

the point of inflexion and the double point.



A RIGIDITY THEOREM 197

(b.l) If Δ is a crunodal cubic, we choose λ, to be the tangent line at the

point of inflexion and λ2 the polar harmonic of the point of inflexion.

(b.2) If Δ is a cuspidal cubic, we choose λι to be the tangent line at the

cusp and λ2 the tangent at the point of inflexion.

(c) If Δ is reducible, then we choose λ3 to be any linear factor of Δ.

Let us examine each case:

(a) By the choice of the sides for the triangle of reference, we get

Σ /> \ e R J, Δ = aλl + λιλ2(bλι + bλ2 + cλ3).

The line λ3 intersects the cubic Δ in three real distinct points, i.e., there exist

three distinct pairs of real numbers λx, λ2 such that the determinant

Iλjψj + λ2ψ2| = 0.

Clearly |ψ,| = |ψ2| = 0 and by a linear transformation on the variables, ψj

and ψ2 can only be reduced to type IΓ in §3.1. Hence we have

ψj = kλx\ + k3(h! — hc3)xj,

ψ 2 = k2x\+ k3(gc3 - g')xl

Since the coefficients of λxλ2 and λfλj in Δ are equal, we get

W - hc3 - gc3 -ΪΦO,

Hence we can reduce ψj and ψ2 to

ψj = kλxx 4- k3x3,

ψ2 = k2x\ 4- k3xj, i

j-iOtjXiXpOij = aβ9 then

1*1 + λ3*ll

= 1 or - 1 .

Now let ψ3

λ3al2
λ 3α 1 3

λ 3α 1 3

λ2/c2 + λ 3α 2 2 λ 3α 2 3

λ 3α 2 3 λxk3 + λ2/c3 + λ3Λ

λ1λ2(6λ1 + bλ2 + cλ3).

I and λ2λj are zero, itFrom the fact that the coefficients of λxλ3, λ|λ3, λ

follows that

au = a22 = 0, kxa\3 = k2a\3 = -k3a\2.
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Since Δ is irreducible, we get

(13) a

2

l2=a2

ϊ3 = al3^09 kx = k2 = -k3,

i.e.,

ψ3 = 2{al2xλx2 + aX3xxx3 + a23x2x3) + oa33x\,

where α12, tf13, <Z23 may differ by a sign. But we can reduce them to the same

sign by multiplying xx, x2, x3 and ψ3 by 1 or -1 conveniently, without

changing ψx and ψ2. Now let d φ 0 be the common value of aX2, aX3 and a23.

By changing ψ3 by ^ψ3, we get

ψ3 = 2{xxx2 + A:,JC3 + Λ:2Λ:3) + σxf,

where σ = a33/d. Using (13) we conclude that when Δ is a nonsingular or

acnodal cubic, the canonical generators are

(14)
ψ3 = 2(xxx2

where σ is an invariant. We remark that now we have

Δ = (2 - σ)λ3

3 + λxλ2(-λx - λ2 + σλ3),

and for σ = 2, Δ is reducible (this case will be examined later), hence we will

consider σ φ 2.

Some special values for σ are the followng: σ = 0 corresponds to the case

in which Δ is a nonsingular cubic with concurrent inflexional tangents; it Δ is

an acnodal cubic, then σ = 3 or σ = -6.

A final remark has to be done on the above method of obtaining the

generators (14). One would expect to find as many different values for the

invariant σ, as there are couples of real points of inflexion on Δ. But it is not

difficult to see that σ is unique.

(b.l) Δ is a crunodal cubic, λ3 is the line determined by the real point of

inflexion and the crunode, λx is the tangent line at the point of inflexion and

the crunode, λ, is the tangent line at the point of inflexion, and λ2 is the polar

harmonic of the point of inflexion. Then ®ί = {Σ/ β l \Ψi , \ £ R} and

Δ = bλ3

3 + cλ,(λ2

2 - λf).

The intersection of λ3 with Δ consists of the point of inflexion and two

coincident points at the crunode, i.e., |ψ,| = |ψ2| = 0, and ψ,, ψ2 can only be

reduced to ΠΓ and Vr in §3.1.
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(b.1.1) If ψ, and ψ2 are reduced to ΠΓ with a similar argument as in case

(a), we get the generators

Ψi = xh Ψ2 = A ~ xh
ψ3 = au(x\ + xl) + 2(aX2xxx2 + aX3xxx3 + kxal3x2x3).

(b.1.2) If \px and ψ2 are reduced to V, we get

Ψi = kxx\ + fc2xf, ψ2 = 2x,.x2 - xf,

f 2(α 1 3x 1x 3 + a23x2x3).

(b.2) Δ is a cuspidal cubic, λ3 is the line determined by the real point of

inflexion and the cusp, λ2 is the tangent at the point of inflexion, and \x is the

tangent line at the cusp. Then

9 = j Σ \Ψ, > \ e R | , Δ = Z>λ3

3 + cXxXl

The intersection of λ3 with Δ consists of the point of inflexion and two

coincident points at the cusp. Therefore ψj and ψ2 can only be reduced to ΠΓ

and V in §3.1.

(b.2.1) If ψj and ψ2 are reduced to ΠΓ, we get

Ψi = xl> Ψ2 = A - xh
ψ3 = au(x] + x | ) + 2(fc1α11x1Λ:2 + aX3xxx3 + k2aX3x2x3).

(b.2.2) If ψ, and ψ2 are reduced to V, we get Δ = cλjλf, which is reducible

and will be examined in the next case.

(c) Δ is reducible, and λ3 is any fixed linear factor of Δ. Then

Δ = X3(Aλj + BX\ + Cλf 4- DXXX3 + EX2X3 + FXXX2).

The intersection of λ3 with Δ is identically zero Vλ1? λ2, hence \Xx\px + λ2ψ2|

= 0, i.e., ψj and ψ2 are in the singular case. Therefore

ψ, = 2xxx2, ψ2 = 2x2x3, ψ3 = 2 ^I/^I-^' aU

We summarize the above discussion in the following.
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0 ) <J

(Π) 4

απ) 4

(IV) </

(V) 4

Ί = * 3 <

/ = X 2 - JC2

'2=χ\-χ\

'2 = 2xχx2 -

' 2 = * ? ~ * 2

/2 = 2x2x3

ψ3=2(XiX2+x1JC3+x2Λr3)

+ σ^, σΦ2

^3 = a n ( * i •*"*!) +2(a12Jf1x2

+ al 3*1*3+ M l 3*2*3)

+ ^23*2*3)

4,3=an(x2+x2) + 2(kιanxιx2

+ al 3*1*3+ M l 3*2*3)

3

^3= Σ W/' «ί/=a/ί
t/=l

where ^ is 1 or - 1 .

TABLE 2

We conclude observing that the method used in this section to reduce a
family of three quadratic forms is essentially due to C. Jordan [5].

4. Proof of Basic Lemma, Proposition 1 and other results

Let M3 be a submanifold of E6 such that the inclusion is nondegenerate. In
a neighborhood of a point p0 E M we choose an orthonormal frame eAi

A = 1, , 6, such that 3, 1 = 1, 2, 3, are tangent to M and eλ, λ = 4, 5, 6,
are normal to M. Let ωA be the dual frame, and Hλ = λ^ ω'ω 7' the second
fundamental forms. The following result is needed for the proof of the Basic
Lemma.

Proposition 3. Suppose that at p0 G M there are two quadratic forms among
Hλ

9 which may be expressed in less than three linearly independent linear
differential forms. Then the cubic Q at p0 is reducible.

Proof. We may suppose without loss of generality that H4 and H5 may be
expressed in less than three linear differential forms, i.e., after a linear
transformation on ωi we get Hλ = hfjω'ω* where hf3 = hf3 = 0, V/ = 1, 2, 3.
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Then the cubic at/?0 is given by

" l

0

0

A?,

A?,

Af,

0

«2

0

A 2 2

A|2

A?2

0
0
M 3

0

0
1,6
A33

0
M 3

" 2

0

0

2A 2

6

3

" 3

0

",

0

0

2A?3

" 2

w,

0

2Af2

2A?2

12

0,

which is factorable by u3.

Remark. If all the second fundamental forms are expressable in less than
three linearly independent linear differential forms, by a similar argument we
can prove that β reduces to u\ = 0.

The following result gives the projective type of β at a point where the
curvature is zero.

Proposition 4. Suppose that at p0 E M all sectional curvatures are zero,

then β at p0 is reducible to the product of three lines.

Proof. It is an immediate consequence of a theorem of Cartan [1] on
exteriorly orthogonal quadratic forms. First we observe that from the above
remark it follows that it is sufficient to consider the case where the fundamen-
tal forms Hλ may not be expressed in less than three linear differential forms.
In this case, since all sectional curvatures at p0 are zero, Hλ are exteriorly
orthogonal and it follows from Cartan's theorem [1] that there exist a real
orthogonal matrix b* and three linearly independent linear differential forms
ω1 such that Hλ = b*ωιωι. Therefore, by an appropriate choice of the normal
vectors eλ, the fundamental forms Hλ with respect to the dual basis to ω1 will
be

H4 = ωV.
Hence the cubic at/?0 reduces to uλu2u3 = 0.

Before proving the Basic Lemma, we remark that for Λ-dimensional sub-
manifolds of EN, N = n{n + l)/2, the generalization of Proposition 3 and
the subsequent remark can be proved, using the same arguments when n > 2.

Proof of Basic Lemma. We start with an orthonormal frame as described
at the beginning of this section. Since we are assuming that the cubic β at/>0

is nonsingular, it follows from Proposition 3 that any pair of quadratic forms
among Hλ may not be expressed in less than three linearly independent linear
differential forms. Therefore, if we consider the family

= I Σ *χ
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by real linear transformations on the ωι and also by such transformations on

the αλ, the generators for 5" can be reduced to one of the types on Table 2 in

§3.2. In what follows, we prove that if β is nonsingular, then the generators

for <$ can only be reduced to type /. Let us consider each case.

(I) In this case the cubic β at/?0 is reduced to

r φ 2, i.e.,

»i+ui-

ux

0

0

1
0
0

u\u2-

0

«2

0

0
1
0

M f M 3

0

0

«3

-1
-1
σ

0

«3

" 2

0
0
2

— j

" 3

0

" l

0
0
2

<!«3

« 2

" l

0

0
0
2

= 0,

- M|M, - u\u2

where σ , ,

σuxu2u3 — 0.

Moreover, since β is nonsingular, σ φ 3 and σ ψ -6. In fact, if σ = 3, β has

a double point at (1, 1, 1), and if σ = -6 then β can be factored by
u\ + U2 + M3

An easy computation shows that in case (II) θ has a double at (0, 0, 1); in

case (III) β can be factored by ux\ in (IV) β can be factored by uλ - kxu2; in

(V) β can be factored by u2.

We conclude that if 6 at p0 is nonsingular, then there is a frame e^ at /?0,

where e, are tangent to M, and e λ are normal to M, and a real number σ =̂  2,

3, -6 such that the second fundamental forms at/>0 with respect to this frame

are

1
0
0

Moreover Q aXpQ is

0
0
0

0
0

-1

0
0
0

0
1
0

0
0

-1

0
1
1

1
0
1

1
1
σ

~~ W 3 M 1 ~~ M 3 MW 3 M 1 3 M 2

This completes the proof of the Basic Lemma, q.e.d.

We now prove Proposition 1. First we state some properties of nonsingular

cubics, which can be found in [3].

Nonsingular cubics can be classified into two main divisions: one circuited

cubics having a single odd circuit, and two-circuited cubics having an odd and

an even circuit. From a point P on the even circuit of a cubic, no real tangent

can be drawn other than the tangent at P. From a point P on the odd circuit

two real tangents can be drawn to the even circuit (if any). Moreover, two

real tangents can be drawn from P to the odd curcuit. The cubic has nine
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points of inflexion, of which exactly three are real and collinear and lie on the

odd circuit of the cubic.

We observe that from the above properties it follows that if L is a real

linear transformation which takes a nonsingular cubic Γ into Γ, then it takes

the odd circuit of Γ into the odd circuit of Γ, and the real points of inflexion

of Γ into those of Γ. Moreover, if P is a point on the odd circuit of Γ, let lλ be

the tangent at P, and l2 the other real tangent from P to the odd circuit. Then

L(/,) will be the tangent to Γ at L(P\ and L(/2) will be the other tangent from

L(P) to the odd circuit of Γ. Now we can prove Proposition 1.

Proof of Proposition 1. The nonsingular cubics Γ and Γ are given respec-

tively by

x3 + y3 + z3 - x^y - x2z - y2x - y2z - z2x - z^y + σxyz * 0,

x3 + y3 + z3 — x^y — x2z —y2x —y2z — z2x — z2^ + σxyz = 0.

It is not difficult to see that the real points of inflexion of Γ are Px = (0, 1, -

1), P2 = (1, 0, -1), P3 = (1, - 1 , 0). Moreover, the real tangents from P, to the

odd circuit of Γ are the tangent at Pt and x = 0,j>=0, z = 0 respectively for

ι = l, 2, 3. Similarly for Γ, the points of inflexion are Pλ = (0, 1 - 1),

p2 = (i, o, -1), P3 = (1, -1, 0), and the tangent from Pt to the odd circuit of

Γ which is not tangent at PiΓ is x = 0, y = 0, z = 0 respectively.

If Γ and Γ are projectively equivalent, it follows from the above considera-

tions that any real linear transformation taking Γ into Γ is a permutation of x,

y, z multiplied by a nonzero constant, and consequently σ = σ.
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