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UMBILICAL SUBMANIFOLDS OF
SASAKIAN SPACE FORMS

DAVID E. BLAIR & LIEVEN VANHECKE

1. The purpose of this note is to prove the following theorem:
Theorem. Let Nn, n > 3, be an umbilical submanίfold of a Sasakian space

form M2n+1(c). If the mean curvature vector is parallel in the normal bundle, then
Nn is one of the following:

( i ) Nn is a real space form immersed as an integral submanifold of the con-
tact distribution, and Nn is totally geodesic when n = m.

(ii) The characteristic vector field of the contact structure is tangent to Nn,
Nn is totally geodesic and Nn is a Sasakian space form with the same φ-sectional
curvature.

(iii) c = 1 and Nn is a real space form.
If the mean curvature vector is not parallel, then

(iv) Nn is an anti-invariant submanίfold, and if Nn has constant mean cur-
vature, then c < — 3 and Nn admits a codίmensίon 1 foliation by umbilical
submanifolds of type (i).

The four cases of the theorem do occur. In fact, the first three can occur in
the odd-dimensional sphere S2m+1(l); for example *S2m+1(l) admits a great m-
sphere which is an integral submanifold of the usual contact structure [1] and
a codimension 2 great sphere such that the characteristic vector field is tan-
gent and the sphere inherits the contact structure of S2m+ι. Sasakian submani-
folds of Sasakian manifolds have been studied quite extensively; see e.g. [2], [4].
In i? 2 m + 1 with coordinates (x\ y\ z), the usual contact form η = \{dz — Σ yίdxί)
together with the Riemannian metric G = η(£)η + ^ Σ ((dx1)2 + (dy1)2) is a
Sasakian structure with constant ^-sectional curvature equal to —3. The vector
fields djdy1 span an integrable distribution whose leaves are integral submani-
folds of the contact distribution η = 0. Moreover these submanifolds are totally
geodesic (see e.g. [1]) and G restricted to these submanifolds is just the Eucli-
dean metric. Hence taking an (n — l)-sphere J] (y1)2 = constant we have an
umbilical submanifold in R2m+ι(—3). We devote § 5 to an example of type (iv).

2. Let M be a (2m + l)-dimensional contact manifold with contact form η9

i.e., Ύ] Λ (dη)m Φ 0. It is well known that a contact manifold admits a vector
field ξ, called the characteristic vector field, such that η(ξ) = 1 and dη(ξ, X) = 0.
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Moreover M admits a Riemannian metric G and a tensor field φ of type (1,1)
such that

φ2 = -1+ ξ ®η , G(φX,φY) = G(X, Y) - η{X)η(Y) ,
def

Φ(X, Y) ΞΞΞ G(X, φY) = dV(X, Y) .

We then say that (φ, ξ, η, G) is a contact metric structure.
Let V denote the Riemannian connection of G. Then M is a normal contact

metric (Sasakian) manifold if

(Fxφ)Y=G(X,Y)ξ-η(Y)X,

in which case we have

Fxξ = -φX.

A plane section of the tangent space TmM at m <= M is called a φ-section if it
is spanned by vectors X and φX orthogonal to ξ.

The sectional curvature K(X, φX) of a ̂ -section is called a φ-sectίonal cur-
vature. A Sasakian manifold is called a Sasakian space form, and denoted M(c)
if it has constant ^-sectional curvature equal to c; in this case the curvature
transformation Rχγ = [Fx, Fγ] — FIX)YΛ is given by

RXYZ = i(c + 3){G(Y, Z)X - G(X, Z)Y] + \{c - 1){V(X)V(Z)Y

(2.1) - η(Y)η(Z)X + G(X, Z)η(Y)ξ- G(Y, Z)v(X)ξ

+ Φ(Z, Y)φX - Φ(Z, X)φY + 2Φ(X, Y)φZ} .

Let c: N —> M be an immersed submanifold, and g the induced metric. The
Gauss equation for the induced connection F and the second fundamental
form σ(X, Y) is

, Y) .

For simplicity we shall henceforth not distinguish notationally between X and
t^X. Let R denote the curvature of F. Then the Gauss equation for the cur-
vature of N is

g(RxγZ, W) = G(RXYZ, W) + G(σ(X9 W\ σ(Y, Z)) - G(σ(X, Z), σ(Y, W)) .

We denote by FL the connection in the normal bundle, and for the second
fundamental form σ we define the covariant derivative Ψ with respect to the
connection in the (tangent bundle) 0 (normal bundle), by

, Z) = Fx(σ(Y, Z)) - σ(FxY, Z) - σ(Y, FXZ) .
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Finally, the tangential and normal parts of a tensor field will be denoted by the
superscripts t and _L respectively.

For a contact manifold M it is well known that the (tangent) subbundle D
defined by η = 0 admits integral submanifolds up to and including dimension
n but of no higher dimension. D is generally referred to as the contact distribu-
tion of the contact structure η. A more general class of submanifolds than the
integral submanifolds of D are those which satisfy dη(X, Y) = 0; these are
called anti-invariant submanifolds [3] since φ maps the tangent space into the
normal space.

3. We now consider an umbilical submanifold TV with n = dim TV > 3 im-
mersed in a Sasakian space form M(c) of dimension 2m + 1. The second fun-
damental form σ is then given by σ(X, Y) = g(X, Y)H where H is the mean
curvature vector and the Codazzi equation becomes

, Z) - (Ψγσ)(X, Z) = g(Y, Z)VXH - g(X, Z)VYH.

Since n > 3, for any X tangent to TV we can choose a unit tangent vector field
Y such that Y is orthogonal to X and φX. Then

but from (2.1)

RχγY = i(c

and hence

(3.1) P±H= -\{c-

Thus if H is parallel in the normal bundle, we have either (i) TV is an integral
submanifold of the Sasakian space form, (ii) ξ is tangent to TV, or (iii) c = 1.

Case (i). From the Gauss equation we see that for an integral submanifold
of M(c) and an orthonormal pair {X, Y}

where μ is the mean curvature, and hence that TV is a real space form.
If ζx and ζ2 are normal vector fields, and A1 and A2 the corresponding Wein-

garten maps, then the equation of Ricci-Kiihn is

ζl9 ζ2) = G{R±γζl9 ζ2) - g([Al9 A2]X, Y) .

Since TV is umbilical, [Au A2] = 0 and since VLH = 0 we have

G(RxγH,φY) = 0.

(2.1) then gives
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G(H, φY)G(φX, φY)- G(H, φX)G(φY, φY) = 0 .

Choosing Y orthogonal to X, we have

G(H, φX) = 0.

Thus either m > n or H is in the direction of ξ. But if N is not totally geodesic,
H cannot be in the direction of ξ, for if σ(X, Y) = g(X, Y)μξ, μ Φ 0, then

g(X, Y)μ = G(FXY, ξ) = -G(Y, Fxξ) = G(Y, φX) = 0 .

Therefore if m = n, N is totally geodesic.
Case (ii). If ξ is tangent to N, Fξξ = 0 implies Fξξ + H = 0 and hence

H = 0. Now since N is totally geodesic

that is, 0X is tangent to N. Setting φf — φ \N,

g(X, Y)ξ - η(Y)X = (Fxφ)Y = VxφY - φVxY

= Fxφ'Y-φ'FxY=(Fxφ')Y,

and therefore N is Sasakian. Now by the Gauss equation we see that N is a
Sasakian space form with constant ^-sectional curvature equal to c.

Case (iii). If c = 1, M is a real space form and hence its umbilical submani-
folds are space forms of constant curvature 1 + μ2.

4. Let a = G(ξ, H), and let μ be the mean curvature. Then by (3.1)

(4.1) Xμ2 = XG(H, H) = -2G(\(c - l)η(X)ξ\ H) = -\(c - l)aV(X) .

Differentiating a twice we have

(4.2) Xa = -G(φX, H) - G(ξ, μ2X + \{c - \)η{X)ξ1-) ,

YXa - (FYX)a = -a(l + μ2 + \{c - 1) |

\{c - l)(V(Y)G(φX, f J-) + 2aV(X)V(Y)

Interchanging X and Y and subtracting (c Φ 1) we have

V(X)G(φY, f-L) - η(Y)G(φX, f-L) + 2G(φX,

= 0 .

Taking X and Y orthogonal to ξι we see that for ξ not tangent to N, G(φX, Y)
= 0. y = £', and Z orthogonal to ξ* yields

(4.3) If
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On the other hand,

XG(ξ\ £0 = 2G(-φX - Fxξ\ f0 = 2(G(φξ\ X) + G(ξ\

Comparing this with (4.3) we have for X orthogonal to ξ*

ξt, X) ,

and hence G(φξι, X) = 0 or \ξι\2 = 2/3 which also implies by virtue of (4.3)
that G{φξ\ X) = 0. Therefore, G(φX, Y) = 0 for all tangent vectors X and 7,
i.e., N is an anti-invariant submanifold of M.

Now if JVhas constant mean curvature, then (4.1) gives a — 0, that is, σ(X, Y)
= g(X, Y)H is orthogonal to ξ and hence the Weingarten map for the normal
ξ1 vanishes. Therefore Vxξ

L = F^f-1, but

Vxξ
L - Vx{ξ - ξ0 = -φX - Vx? - g(X, ξ*)H .

Since φX is normal, we see that Vxξ
t = 0 and hence g(RXζtξι

9 X) = 0. Taking
X to be unit and orthogonal to ξ*, the Gauss equation yields

= \{c + 3) |? ί | 2 + \{c - lX-lf ' l 4) +

or assuming ξt Φ 0, in particular assuming VLH Φ 0,

(4.4) i + / / + i ( c _ 1 ) ( 1 _ | f ί | 2 ) =

Clearly c < 1 and writing (4.4) as

we see that c + 3 < (c - l ) | f ί | 2 < 0 o r c < - 3 . Moreover Fxξ* = 0 implies
that the distribution or subbundle on N orthogonal to fί is integrable with to-
tally geodesic leaves giving the foliation of N.

5. First let us continue the analysis of the previous section. Since a = 0,
(4.2) gives G(φX, H) = 0 for X orthogonal to ξ\ and comparison with (4.4)
yields G(φξ\ H) = \ξt|2. Thus if n = m, H and φξι must be collinear so taking

the inner product of — = -$$— with φξ1 we see that H = 0£7(1 - |<f |2) and

μ 10?'I

Substituting this into (4.4) we have
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KΊ - ' - V Ϊ I T
Consequently the mean curvature of an umbilical submanifold Nm of type (iv)
of constant mean curvature is determined exactly by c. Moreover note that

w l ) V fiίC = ! ! φc .

We now review the notion of a C-loxodromic transformation [6]. By a C-
loxodrome we mean a curve γ with unit tangent γ^ in an almost contact metric
manifold satisfying Prj* = aη{γ^)φγ^ a = constant. Note that such a curve
makes a constant angle with the characteristic vector field ξ. Since ξt has con-
stant length, (5.1) shows that the integral curves of ξι are C-loxodromes. A
local diffeomorphism/: M —* M' is a C-loxodromic transformation if it maps C-
loxodromes to C-loxodromes. The main result of [6] is that a Sasakian mani-
fold M is locally C-loxodromically equivalent to Euclidean space if and only if
M is a Sasakian space form. In this case the respective connections V and Vf

are related by

V'XY=VΣY + (Xp)Y + (Yp)X - i(c - l)(η(X)φY + η(Y)φX)

for some function p. In particular, we see that an umbilical submanifold of type
(i) is mapped to an umbilical submanifold of M.

Now since an umbilical submanifold Nm of type (iv) of M2m+1(c) admits a
foliation by umbilical submanifolds of type (i) with a normal field ξt of C-
loxodromes, it is determined by a locus of (m — l)-spheres and a C-loxodrome
of the appropriate curvature in Euclidean space E2m+1.
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