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COMFORMALITY AND ISOMETRY OF RIEMANNIAN
MANIFOLDS TO SPHERES. II

KRISHNA AMUR & S. S. PUJAR

1. Introduction

Let M be an ^-dimensional (n > 2) connected smooth Riemannian manifold
with positive definite metric g. If a vector field v on M defines an infinitesimal
conformal transformation on (M, g), then v satisfies ££ υg = 2ρg where £?v de-
notes the Lie derivative with respect to v, and p is a function on M. v defines
an infinitesimal homothetic transformation or infinitesimal isometry according
as p is constant or zero.

In the last decade or so several authors (for exhaustive lists see [7], [9]) have
studied conditions for a Riemannian manifold of dimension n > 2 with con-
stant scalar curvature k to be either conformal or isometric to a sphere. Re-
cently Ackerman and Hsiung [1], Yano and Hiramatu [7], [8] and Amur and
Pujar [2] have studied the conditions without putting restrictions on the scalar
curvature k such as &υk = 0, ^Dp^vk = 0 or [v, Dp]k = 0, etc. where Dp is
the vector field on M associated with the differential 1-form dp.

In this paper we consider a metric semi-symmetric connection V on M in-
duced by a smooth function p on M, and obtain conditions for M to be con-
formal or isometric to a sphere. It is shown in § 5 that our results include some
results of Yano and Obata [9] and some of Hsiung and Mugridge [3] as special
cases.

2. Notation and formulas

Let V denote a Riemannian connection on M. If x\ i = 1,2, , n, are local
coordinates in a neighborhood of a point x of M9 then the Christoffel symbols

associated with F are denoted by < .ι A, and the components of g by gijm The

raising and lowering of the indices are as usual carried out respectively with
gίJ and gij. Let p be a smooth function of M. Then π = dp is a smooth closed
differential 1-form on M. The local components of π will be denoted by pt. A
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connection V on M, whose Christoffel symbols are denoted by Γjk, is defined
by

(2-1) Γ% = { h^ + δ)Pk - gkjP

h ,

where ph — ghipι. Since Vigkj = 0 holds and Γfk is not symmetric, the connec-

tion V is called a metric semi-symmetric connection on M, [6].

The components Kkji

h of the curvature tensor K of V and ^ΓΛi/ί

Λ of the cur-
vature tensor K of V are related by

(2.2) £„* = ^ , /

where

are components of a tensor field of type (0, 2) on Λf and A) = ghiaij. (2.2)

shows that we can regard K as a tensor field on the Riemannian space (Λf, g).

Setting Jt f c j ^ = g ^ f c J / we have

Since 7r is a closed 1-form on M, it follows that an is symmetric in / and j ,
consequently K satisfies Bianchi first identity. Hence we obtain [4]

(2.5) Kihkj — Kkjih

Contracting (2.2) with respect to the indices h and k we have

(2.6) Kn = Kμ — (n — 2)aji — agυ ,

where

(2.7) a = g>*ait = VJ + ^ ^ P ^ •

Transvection of (2.6) with gjί yields

(2.8) k = k - 2(n - \)a ,

where k = gijKtj.
We define a positive smooth function u on M by setting

(2.9) u(x) = e-pix)
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for all x € M. Denoting the covariant differentiation of u with respect to Ft by
ut, we have

(2.10) Ui ~~ ~ 2

(iii) Jκ = i/(

where J = gl*V3Vt is the Laplacian operator.
Now from (2.7), (2.8) and (2.10) (iii) we obtain

(2.11) u\k - k) = 2(n - \)uΔu - n(n - X^u.u1 .

Corresponding to the tensor fiields G, Z and W (for definitions see [7], [3])

on (M, g) we define G, Z and W on the same space by

(2.12) Gij = i t ^ — —gij ,

o jς
( 2 . 1 3 ) Z f c J ίΛ = A:fcJ i Λ — — —{ghkgί3 — ghjgkι) ,

n(n - 1)

Wkjih = aZkjih + bλgkhGjt — b2gkίόjh + b3gnGkh
(2.14)

— b±gjhGki + b5gkjGih — begihGkj ,

where α, bl9 , 66 are the same constants which occur in the definition of
W

Substituting for Kυ and k from (2.6) and (2.8) respectively in (2.12) we ob-

tain

(2.15) Gn = Gjt + (n — 2)Tn ,

where

1 / ir
τji = \PjPί — rjpi) + —KPPk — ΔPmμ

n
(2.16)

in view of (2.10). It is easy to see that

(2.17) giJTtJ = 0 , g^Gi} - 0 .

Computations similar to those for GSi yield

(2.18) Zkμh = Zkjίh + Skjih ,

where
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(2.19) Skjth = gkhTH - gjhTki + Ttkgjt - Tjhgki

(2.20) Wkjih = Wmh + Qkm ,

where

+ b5gkjTίh — b6gίhTkj .

It is easy to see that

(2.22) Γ ^ Γ " = *

(2.23) G^G*^ = GtjG^ + 2(n - 2)GisT^ + (n - ΊfT^ ,

(2.24) Wk3ίhW^ih = WkmWk"h + 2c(n - 2 ) 7 ^ * ' + c(n - 2)2Γ4

where c is a constant given by [3]

6 / 6 \2 6

Σ *i + (Σ (-I)*"1*,) + (« - i) Σ V
ί=i \i=i / ί=ι

- 2{bA + bA - bA).

(2.25) n — 2

3. Lemmas

Lemma 3.1. Suppose M is orientίable and compact, p = constant if and only

if the scalar function k is equal to the scalar curvarure k of M.

Proof. If p = constant, it is trivial to see that k — k. Suppose k = k holds.
Then from (2.11) we have 2uΔu — nutu

l = 0 which implies

ί
JM

= 0 ,

where dV denotes volume element of M. Since u > 0, the integral equation im-
plies u = constant which in view of (2.9) implies p = constant.

Lemma 3.2. Suppose M is compact and orientiable. Then

(3.1) f ( Γ ¥ ) G # = - ^ f A [ uΨikdV= --"^
JM 2n JM 2n

where Du is the vector field on M associated with the I-form du.
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Proof. Since FjKόi = \FJc9 from the formula Gυ = Kυ — (kjrήg^ it fol-
lows that

(3.2)

Hence by directly computing Vj{μίGij), using (3.2) and integrating over M we
obtain (3.1).

Lemma 3.3. Suppose M is orientable and compact. Then the following inte-
gral formulas hold for M:

(3.3) — f [nuφifiv - GtfiV) + (n- Tf££Ώuk - n(n - ΊfuTnT^\dV = 0 ,
n J M

- ί [nu(WkjίhW^h - WkjihW*'ih) + c(n -
n JM(3.4)

- n(n - ifcuTijT^dV = 0 .

Proof. Since gijGtj = 0, from (2.17) we can write (2.23) in the form

uiGijδ" - GtjG" - { n - iγTtjT"} = 2(/ι - 2)GίjP^uί .

On integrating over M and using Lemma 3.2, we obtain (3.3). The proof of
(3.4) is similar.

To prove the next lemma we need the following known theorem.
Theorem A (Tashiro [5]). If a compact Riemannian manifold M of dimension

n > 2 admits a nonconstant function p such that

(3.5) VΨ*p = ±-ΔPgij ,
n

then M is conformal to a sphere.
Lemma 3.4. Suppose M of dimension n > 2 is compact, and admits a non-

constant function p. M is conformal to a sphere if the tensor field with components
Ti5 is identically zero on M.

Proof. Since u > 0, from the expression (2.10) for Ttj it follows that Ttj

— 0 if and only F\uj — Δug^jn. Hence from Theorem A the required result
follows.

Finally we list a lemma due to Yano and Obata [9],
Lemma 3.5. Suppose M of dimension n > 2 is complete. If 3?Ώυk = 0 and

FiFjU = Δugijjn holds for a nonconstant function u, then M is isometric to a
sphere.
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4. Thoerems

Throughout this and the next sections we shall assume that M is a compact
orientable smooth Riemannian manifold of dimension n > 2.

Theorem 4.1. Let p be a smooth function on M and u = e~p. Then

(4.1) f
J

(A π ί lm(WkJihW^ - WtjihW*W) + c(n - 2yj?Duk]dV > 0 ,
(4.2) J M

(c > 0) ,

where the tensors G and W are formed with the help of the metric semi-sym-
metric connection induced by p. If p is such that the equality in integral equa-
tion (4.1) or (4.2) holds, then M is conformal to a sphere.

Proof. Follows from Lemmas 3.3 and 3.4.
Theorem 4.2. If a smooth nonconstant function p on M is such that

(4.3) SfDuk = 0 , Gt,G" = Gtβ" ,

or such that

(4.4) seΏuk = 0 , WkJihW**ih = WtJthW**ih , (c> 0) ,

then M is isometric to a sphere.
Proof. Follows from Lemmas 3.3 and 3.5 and the conditions stated in the

theorem.
Theorem 4.3. Suppose M is an Einstein manifold. If a smooth nonconstant

function p on M is such that

(4.5) Gtj = 0

or such thai

(4.6) Wkjlh = 0, ( c > 0 ) ,

then M is isometric to a sphere.
Proof For an Einstein manifold Gυ = 0. Hence from Lemmas 3.3 and 3.5

and the conditions stated in the theorem the result follows.

5. Special cases

(i) Let | θ b e a smooth function on M arising from a conformal change of
metric on M, that is, let p be such that a metric g* on M is conformally related
to g by
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(5.1) gfj = e^gtj .

For any tensor with respect to g, the corresponding tensor with respect to g*
will be denoted by the same letter with a star. The function p induces a metric

semi-symmetric connection V on M and a connection F*, called the conformal

change of connection on M. The expressions for the curvature tensors K and

K* in terms of K and the derivatives of p with respect to the Riemannian con-

nection V are the same (see [4]). Since g*ίj = e~2pgtj, we have

(5.2) Klί

h = Kkjί\ K% = Kμ, k* = e~2ά,

so that

\ J D ) ^Jji — ^ji 9 ^kji — ^kjί 9 v v kji — γ γ kji

It is easy to see that

(5.4) G*ίJ = e-4pGίj ,

(5.5) Wtμn = e2pWkjίh , w*kjih = e-'pWkjίh ,

so that

(5.6) G^Gfj = e-'pGtjG" = u^G^ ,

(5.7) W*jihW*kJih = e-*pWkjίhW
kJίh = uipWkjihW

kjίh ,

where w = ^"^

Substituting (5.6) in (3.3) we obtain

ί k
(5.8) j M l

- (n- 2fuTijT
iΛdV=0,

which is an integral formula due to Yano and Obata [9].
Again substituting (5.7) in (3.4) we have

Γ Γ - A i

( 5 9 ) L ί(l1 W ^ W m - ^jihW^) + -cin - 2fJ?Duk

- {n-2)2cuTίjτAdV=Q ,

which is a formula due to Hsiung and Mugridge [3].
(ii) Suppose p is a smooth function on M satisfying

(5.10) Kkμh = e'p{aSighh - akίghj + gμahk - gkiahJ) .
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Then it follows from (2.2) that

(5.11) Kkjίh = (1 - u-')Kkjίh , Kjt = (1 - I T 1 ) * , , , ίc = (

so that

(5.12) 6Jt = (1 - u-*)Gjt , Wkjίh = (1 - u-*)Wkjih

For this special case, (4.1) and (4.2) reduce to

(5.13) J^ [ φ " 1 - 2)GisG" + (n- 2)&Duk]dV > 0 ,

(5.14) j ^ [ φ " 1 — 2 ) ^ ^ * ' * * + φ - 2yj?Duk]dV > 0 .

Thus, if ^ is a nonconstant smooth function on M satisfying (5.10) and is such

that the equality in (5.13) or (5.14) holds, then M is conformal to a sphere.

On the other hand, if M is Einsteinian and p is a nonconstant function satisfy-

ing (5.10), then, since Gυ = (1 — υΓι)Gij9 it follows that Gtj = 0. Theorem

4.3 shows that M is isometric to a sphere.
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