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COMFORMALITY AND ISOMETRY OF RIEMANNIAN
MANIFOLDS TO SPHERES. II

KRISHNA AMUR & S. S. PUJAR

1. Introduction

Let M be an n-dimensional (r > 2) connected smooth Riemannian manifold
with positive definite metric g. If a vector field v on M defines an infinitesimal
conformal transformation on (M, g), then v satisfies &,g = 2pg where £, de-
notes the Lie derivative with respect to v, and p is a function on M. v defines
an infinitesimal homothetic transformation or infinitesimal isometry according
as p is constant or zero.

In the last decade or so several authors (for exhaustive lists see [7], [9]) have
studied conditions for a Riemannian manifold of dimension » > 2 with con-
stant scalar curvature k to be either conformal or isometric to a sphere. Re-
cently Ackerman and Hsiung [1], Yano and Hiramatu [7], [8] and Amur and
Pujar [2] have studied the conditions without putting restrictions on the scalar
curvature k such as £,k = 0, &,, %,k = 0 or [v, Dplk = 0, etc. where Dp is
the vector field on M associated with the differential 1-form dp.

In this paper we consider a metric semi-symmetric connection ¥ on M in-
duced by a smooth function p on M, and obtain conditions for M to be con-
formal or isometric to a sphere. It is shown in § 5 that our results include some
results of Yano and Obata [9] and some of Hsiung and Mugridge [3] as special
cases.

2. Notation and formulas

Let I/ denote a Riemannian connection on M. If x*,i = 1,2, - - -, n, are local
coordinates in a neighborhood of a point x of M, then the Christoffel symbols

associated with I/ are denoted by {ji k}’ and the components of g by g;;. The

raising and lowering of the indices are as usual carried out respectively with
g'/ and g;;. Let p be a smooth function of M. Then r = dp is a smooth closed
differential 1-form on M. The local components of z will be denoted by p;. A
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connection I on M, whose Christoffel symbols are denoted by I, is defined
by

e = { "} + 30— gt .
Jj k

where p" = g"'p,;. Since v :&x; = 0 holds and I}, is not symmetric, the connec-
tion I is called a metric semi-symmetric connection on M, [6].

The components I%k j:" of the curvature tensor K of  and K, ;" of the cur-
vature tensor K of I/ are related by

2.2) Koji" = Koy — a8 + a0 — gl + gudl
where
(2.3) @y = Vi0: — 0,00 + $81;010"

are components of a tensor field of type (0,2) on M and A% = g"%«,,. (2.2)
shows that we can regard K as a tensor field on the Riemannian space (M, g).
Setting K, ;;, = .. K,;;' we have

(2-4) Kjkih = _Kkjih ’ Kkjhi = _Kokjih .

Since 7 is a closed 1-form on M, it follows that «;, is symmetric in i and j,
consequently K satisfies Bianchi first identity. Hence we obtain [4]

o o

2.5) Kihkj = Kkjih .

Contracting (2.2) with respect to the indices # and k£ we have

o

(2.6 Kji =K; — (n — 2)05]'1' — g5
where

i 4 n — 2 k
(2.7 a=gla;, =V,p" + ox0” -

Transvection of (2.6) with g7t yields
(2.8) k=k—20n— Da,

where k = g”lij.
We define a positive smooth function u on M by setting

(29) u(x) — e P
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for all x € M. Denoting the covariant differentiation of u with respect to I/, by
u;, we have

(i) u, = —up,, (i) Vu, = u(p,0, — V,p,) ,
i) du = u(pbp, — 4p) ,

where 4 = g%V, is the Laplacian operator.
Now from (2.7), (2.8) and (2.10) (iii) we obtain

(2.10)

Q.11) Wk — k) = 2(n — Dudu — n(n — Duat .

Corresponding to the tensor fiields G, Z and W (for definitions see [7], [3])
on (M, g) we define G, Z and W on the same space by

k

.12) G, =K, — —8u >
(2.13) ijih = kkjih - ”i*—(ghkgij — 81381 »
nn — 1)

ijih = aZ°kjih + blgkh.éji - bzgkiGojh + bsgjiGokh

2.14) o o o
— b4gthki + bsgijih - begithj s

where a, b,, - - -, by are the same constants which occur in the definition of
ijih' o R
Substituting for K;; and k from (2.6) and (2.8) respectively in (2.12) we ob-

tain
(2.15) éji =G, + (n — 2)Tji s
where
1
T;; = (00, — Vip:) + ;(PkPk — dp)g;:
(2.16)

= u"‘(V,ui — lAugji>
n

in view of (2.10). It is easy to see that
(2.17) g¥T,; =0, g9G,;=0.

Computations similar to those for G, yield

o

(2.18) ijih = ijih + Skjih )

where
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(2.19) Sesin = &Ly — &inTus + Tin&si — Tin&ui »
(2~20) ijih = ijih + ijzn )
where

i a a
nQij-hZ = (n — + bl)gkthi - (m + bz)gkiTJh

2.21
( ) +<nf_2 +b3)gjiTkh_(ni2 +b4>gthkt

+ bsgijin — ngithj .

It is easy to see that
(2.22) T,TY = u“z(Vfui — iAug”)(V,ui - idug”) )
n n

(2.23) G,,GY = G,,GI 4 2n — 2)G,, T + (n — 2T, TH ,
(Q.24) Wy, W = W, WHh 4 2e(n — 2T, G + c(n — 2T, T4,
where c is a constant given by [3]

Y a3 b+ (5 (= 1)) = 1) 3 by
¢ = a . — 1) —
(2.25) n—2 Z +<Zl ) f)+ n—1 2 b

- 2(b1bz + b2b4 - bsbe) .

3. Lemmas

Lemma 3.1. Suppose M is orientiable and compact. p = constant if and only
if the scalar function kis equal to the scalar curvarure k of M.

Proof. If p = constant, it is trivial to see that k= k. Suppose k = k holds.
Then from (2.11) we have 2udu — nuu® = 0 which implies

j W upd)dV = 0,
M
where dV denotes volume element of M. Since u > 0, the integral equation im-

plies u = constant which in view of (2.9) implies p = constant.
Lemma 3.2. Suppose M is compact and orientiable. Then

G.1) j )G dV = — =2 j W fdv = — =2 j LpkdV
o 2n s 2n o

where Du is the vector field on M associated with the 1-form du.
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Proof. Since VK, = 4V .k, from the formula G,; = K,; — (k/n)g,; it fol-
lows that

n—2
n

(3.2) ViG, = Vik .

Hence by directly computing V/(u*G,;), using (3.2) and integrating over M we
obtain (3.1).

Lemma 3.3. Suppose M is orientable and compact. Then the following inte-
gral formulas hold for M :

(33 L I [mu(G,,G¥ — G,,G¥) + (n — 2L puk — n(n — 22T, TH¥)dV =0 ,
n M

(3.4 % ,[M [au( ijih Wit — WeunWH™) + c(n — 2 L p.k

— n(n — 22cuT,,THdV =0 .
Proof. Since g"G,; = 0, from (2.17) we can write (2.23) in the form
w{G,,GY — GG — (n — 20T, T} = 2n — 2)G, Vit .

On integrating over M and using Lemma 3.2, we obtain (3.3). The proof of
(3.4) is similar.

To prove the next lemma we need the following known theorem.

Theorem A (Tashiro [5]). If a compact Riemannian manifold M of dimension
n > 2 admits a nonconstant function p such that

. 1
(3.5) VleP = ;Apgij s

then M is conformal to a sphere.

Lemma 3.4. Suppose M of dimension n > 2 is compact, and admits a non-
constant function p. M is conformal to a sphere if the tensor field with components
T, is identically zero on M.

Proof. Since u > 0, from the expression (2.10) for T}; it follows that T,
= 0 if and only Vu, = dug,;/n. Hence from Theorem A the required result
follows.

Finally we list a lemma due to Yano and Obata [9].

Lemma 3.5. Suppose M of dimension n > 2 is complete. If ¥,k = 0 and
V¥V u= Adug,/n holds for a nonconstant function u, then M is isometric to a
sphere.
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4. Thoerems

Throughout this and the next sections we shall assume that M is a compact
orientable smooth Riemannian manifold of dimension n > 2.
Theorem 4.1. Let p be a smooth function on M and u = e™*. Then

@4.1) J (G, G — G,,G) + (n — 2)LpekldV >0,
M

4.2) L{ [nu(ijihﬁ/knn — W WHIm) 4 c(n — 2P L pkldV >0,

where the tensors G and W are formed with the help of the metric semi-sym-
metric connection induced by p. If p is such that the equality in integral equa-
tion (4.1) or (4.2) holds, then M is conformal to a sphere.

Proof. Follows from Lemmas 3.3 and 3.4.

Theorem 4.2. If a smooth nonconstant function p on M is such that

4.3) FLpk =0, G,GY = G,GY
or such that
4.9 Lok =0, ijihﬁ/kjih = ijih Wik o (e > 0,

then M is isometric to a sphere.

Proof. Follows from Lemmas 3.3 and 3.5 and the conditions stated in the
theorem.

Theorem 4.3. Suppose M is an Einstein manifold. If a smooth nonconstant
function p on M is such that

4.5) G, =0
or such that
4.6) ijih =0, (c>0),

then M is isometric to a sphere.
Proof. For an Einstein manifold G,; = 0. Hence from Lemmas 3.3 and 3.5
and the conditions stated in the theorem the result follows.

5. Special cases

(i) Let p be a smooth function on M arising from a conformal change of
metric on M, that is, let p be such that a metric g* on M is conformally related
to g by
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5.1 g = €8y -

For any tensor with respect to g, the corresponding tensor with respect to g*
will be denoted by the same letter with a star. The function p induces a metric
semi-symmetric connection  on M and a connection I’ *, called the conformal
change of connection on M. The expressions for the curvature tensors K and
K* in terms of K and the derivatives of p with respect to the Riemannian con-
nection V are the same (see [4]). Since g*¥/ = e~%g,;, we have

(5:2) K" = ]%kﬁn , Kfi= Kji , k*= ek >
so that
(5-3) G;Fi = Goji ’ Z;ckjih = ijih ) W;ckjih - ijih .

It is easy to see that

(5.4) G*iJ = e 4G

5.5 Wi = & Wyp,  WHEI = gmoefipasin
so that

(5.6) G*iiGE = e G, i1 = uG,,GY

G.7) Wi Wt = e_4kajih Whith — ype ijih Wit |

where u = e™*.
Substituting (5.6) in (3.3) we obtain

[ [(u‘3G;"jG*” — uG,GY) + Ln — 222,k
(5.8) "
— - 2)2uT“Tw]dV -0,

which is an integral formula due to Yano and Obata [9].
Again substituting (5.7) in (3.4) we have

IM [(u‘sW,’fij*"“” W WEy 4+ Lot — 2p e, k
(5.9 "

- 2)2cuTijT“]dV ~0,

which is a formula due to Hsiung and Mugridge [3].
(ii) Suppose p is a smooth function on M satisfying

(5.10) Kkjih = e_p{ajighk — Ox8r; + &il%nr — gkiahj} .
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Then it follows from (2.2) that
(5.11) Kokjih = — u)Ksin » I%ji =1 —uMK,, k= I —uhk,

so that

°

(5~12) Goji =1 - u_l)Gji , ijih = (1 - u—l)ijih .

For this special case, (4.1) and (4.2) reduce to

(5.13) jM [n(u—l — 2)G,,GY + (n — 2)$Duk]dV >0,

(5.14) L{ [n(u—1 )Wy W 4 e(n — 2)2$Duk]dV >0.

Thus, if p is a nonconstant smooth function on M satisfying (5.10) and is such
that the equality in (5.13) or (5.14) holds, then M is conformal to a sphere.

On the other hand, if M is Einsteinian and p is a nonconstant function satisfy-
ing (5.10), then, since é,.j = (I — u™)G,,, it follows that Go” = 0. Theorem
4.3 shows that M is isometric to a sphere.
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