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The purpose of this paper is to classify Riemannian submersions from com-
plex projective space onto a Riemannian manifold under the assumption that
the fibers are connected, complex, totally geodesic submanifolds. In § 1 we
review basic facts about Riemannian submersions needed in the rest of the
paper. In § 2 we develop local results used in § 3. Included in § 2 is a decom-
position of the second fundamental form for a fibered submanifold. In § 3 we
handle the question of uniqueness of submersions from complex projective
space, which satisfy the above hypothesis. Specifically, it is shown that any
such submersion from complex projective space must fall into one of two clas-
ses. No assertion is made in this section about whether these classes are non-
empty. In § 4 we discuss the problem of equivalence, and show that any two
submersions from the same complex projective space in one of the determined
classes differ by a fiber preserving isometry. § 5 gives the main result of the paper
and concludes with some remarks and questions.

The author wishes to thank Professor A. Duane Randall who made a very
valuable suggestion. In addition, he wishes to thank his teacher, Professor
Tadashi Nagano, who introduced him to the area of Riemannian submersions.

1. Let M and B be Riemannian manifolds. By a Riemannian submersion
we mean a C°° mapping π: M —» B such that π is of maximal rank and π* pre-
serves the lengths of horizontal vectors, i.e., vectors orthogonal to the fiber
π~\x) for some x € B. Throughout this paper, g will denote the Riemannian
metric on M, and g* the Riemannian metric on B. For a Riemannian submer-
sion π.M-^B, the implicit function theorem tells us that π~\x) is a closed
submanifold of M for each x e B. Given a Riemannian submersion π from M
onto B, we denote by Ψ* the vector subbundle of the tangent bundle TM of M
consisting of the tangent spaces of the fibers of π. Ψ* is called the vertical dis-
tribution of π. tf will denote the complementary "horizontal" distribution of
Ψ* in TM determined by the metric of M.

If q e M, where M is any Riemannian manifold equipped with connection F,
TqM denotes the tangent space to M at q. If M admits a Riemannian submer-
sion π: M —> B, then π determines in a natural way two tensors T and A defined

Received June 12, 1975, and, in revised form, June 20, 1977.



94 RICHARD H. ESCOBALES, JR.

on M as follows. For vector fields E and F of TM,

TEF =

where i^E, 2tfΈ, etc. denote the vertical and horizontal projections of the
vector field E. O'Neill [16] has described the following three properties of the
tensor T.

(1) TE is a skew-symmetric operator on M reversing the horizontal and ver-
tical subspaces.

(2) TE = T^E.
(3) For vertical vector fields V and W, T is symmetric, i.e., TVW = TWV.

In fact, along a fiber T is the second fundamental form provided we restrict
ourselves to vertical vector fields.

O'Neill also defined the tensor A which we will call the integr ability tensor
associated with π. For arbitrary vector fields E and F,

AEF = jPF^rTF + rV*E#F .

The tensor A enjoys the following properties:
(10 At each point AE is a skew-symmetric operator on M reversing the hor-

izontal and vertical subspaces.
(20 AE = AJts.
(3') For any horizontal vector fields X and Y, A is alternating, i.e., AXY —

— AYX. Note AXY is vertical.
Definition. A basic vector field on M is a horizontal vector field X which is

π-related to a vector field X^ on B, i.e., π*Xu — X*π{u) for all u e M. For basic
vector fields we recall the following facts.

Lemma 1.1. If X and Y are basic vector fields on M which are π-related to
X* and Y* on B, then each of the following holds:

(a) g(X, Y) = g (X*9 YJ.
(b) je[X, Y] is basic, and is π-related to [X*9 Y*].
(c) 3fPxY is basic, and is π-related to V*XiY* where V* is the Rίemannίan

connection on B.
(d) Suppose {Z1+, Z2*, , Zn*\ forms a basis for B, and {Zlt Z2, , Zn} are

the corresponding π-related basic vector fields on M. If gp(Y, Zt) = gp>(Y, Zt) for
all p, pf e π~\b) where b e B, then π* Y is a well defined basic vector field on B. In
particular, Y is basic.

Proofs of these results are given in O'Neill [16] and in [3]. For a given Rie-
mannian submersion, we have the following decomposition results which we
will need in the sequel.

Lemma 1.2. Let X and Y be horizontal vector fields, and V a vertical vector
field. Then each of the following holds:

(a) VVX = JPVyX + TVX.
(b) IfX is basic, then tfVvX = AXV, and FVX = AXV + TVX.
(c) VXV=AXV+TVXV.
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(d) rxγ
For a discussion of these properties the reader is referred to [16] and [4].
Denote by R the curvature tensor of M, and by K(PEF) the sectional cur-

vature of the plane PEF spanned by linearly independent vectors E and F. In
like manner let R* and K* denote, respectively, the curvature tensor and sec-
tional curvature of B. Since there is no danger of confusion, we denote the
pullback of R* and K* to M by π by R* and K^ respectively. We recall the
following curvature identities which will be needed in the sequel.

Lemma 1.3. For a Rίemannίan submersion π: M —• B with totally geodesic
fibers, let X, Y, Z and H be horizontal vectors and V a vertical vector. Then

(a) g(R*XYZ, H) = g(RxγZ, H) + 2g(AxY, AZH) - g(AγZ, AXH)
- g(AzX, AYH).

If X, Y and V are of unit length and g(E, E) is denoted by \\E\\\ then the fol-
lowing identities hold:

(b) K(PXV) = \\AXV\\\
(c) K(PXY) = K*(PXY) - 3\\AXY\\\
As before, these results are proven in [16].
We have the following structure theorem due to Nagano [15] and Hermann

[9]. Anearlier related result is found in Muto [14].
Theorem 1.4. Let π: M —> B be a Riemannian submersion, and assume M to

be connected. If' M is complete, so is B, and π is a locally trivial fiber space. If,
in addition, the fibers are totally geodesic (i.e., T = 0), then π is a fiber bundle
with structure group the Lie group of isometries of the fiber.

2. Submanifolds and their lifts

Let M be a connected Riemannian manifold of dimension n + p, and let π
be a Riemannian submersion from M onto a Riemannian manifold B of di-
mension n. If P is a closed submanifold of B of dimension r, and Γ* is a
vector normal to P in B, then C*Fs)c will denote the second fundamental form
of P in B. K* will denote the covariant derivative of the normal bundle of P in
B. Suppose E is tangent to π~\P), and Y is normal to π~\P) in M. Let Sγ

denote the second fundamental form of T Γ " 1 ^ ) in the direction of the hori-
zontal Y, and set CYE — ^SY^E, where, as in §1, J f denotes the projec-
tion onto the horizontal distribution. In this section K will denote the covari-
ant derivative of the normal bundle of π~\P) in M.

The first result gives a decomposition of the second fundamental form Sγ

of π~\P). The local results of this section were part of [2].
Proposition 2.1. (a) For any horizontal X tangent to π~\P),

iJy A \^γyί. ~J~ /x.γ J\. .

If X and Y are basic vector fields, then CYX is π-related to C*Y^X%, where X
and Y are π-r elated to X% and Y^.
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(b) For any vertical V tangent to π~\P),

sγv = κvγ - yeVyY - τvγ.

In fact, if Y is basic,

SYV= KVY - ΛYV - TVY .

Proof. On B we have

(i) r*zj* = -cγ^ + κ*xγ*,

where X% is tangent to P, and F* is the covariant derivative~of B. In a similar
way on M,

( 2 ) F X 7 = - S F X + # X 7 .

Using (2), the O'Neill decomposition given in Lemma 1.2, and the alternating
property of the tensor of A we get

( 3 ) SYX = KXY - j f VXY + ΛYX .

Now AYX is vertical and hence tangent to π~\P). Since K is the covariant
derivative of the normal bundle of π~\P), ^ F F i s horizontal. It follows KXY
— &FVXY is exactly CYX. This gives formula (a). The remaining part of (a) is
a straightforward argument depending, in part, on Lemma 1.4 and is omitted.

To show (b), note

( 4 ) FVY= -SYV+ KVY , VVY = J^FyY + TyY .

The second result is from Lemma 1.2. Thus

( 5 ) SYV= KVY - j^FyY- TVY .

In particular, if Y is basic, then j^FvY = ΛYV, and so SYV = KVY — AYV
— Tv Y, as asserted.

Our next result concerns minimal submanifolds. A similar result was ob-
tained by Lawson [12] when the fibers were totally geodesic.

Theorem 2.3. Let π: M —> B be a Rίemannian submersion. If the fibers π~\x)
are minimal submanifolds of M, then an r-dίmensional submanίfold P of B is
minimal in B if and only if π~\P) is minimal in M.

Proof. Let Tq(π~ι(P)) denote the tangent space to π~\P) at q. If Y is a
normal vector to π~\P), then the second fundamental form of π~\P) in the
direction of Y may be viewed as a linear endomorphism Sγ: Tq{π~\P)) -^
Tq(π~\P)). With respect to a suitable orthonormal basis {Xl9X29 ,Xr, Vl9

• - , Vp} where the Xt are horizontal vectors and Vt are vertical vectors, Sγ
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may be interpreted as a real symmetric matrix

-ToY

where —ToY denotes the second fundamental form of the fiber, and Cγ o cor-
responds to y?Sγtf o. In fact, if E — MΈ + i^E = X + V is a tangent vector
to π~\P), then

Γ -ToY

Now

( 7 ) Tr Sγ o = Tr CF o - Tr To Y ,

where Tr L denotes the trace of a matrix L. Since the fibers are minimal,
Tr (—To Y) = 0. By (7), Tr Sγ o = 0 if and only if Tr Cγ o = 0. But by
Proposition (2.1), Tr Cγ o = 0 if and only if Tr C*F+o = 0 where Y* = π*Y.
Thus π~ι(P) is minimal in M if and only if P is minimal in B.

Our next result concerns submanifolds of constant mean curvature and their
lifts.

Theorem 2.4. Let π: M —> B be a Rίemannίan submersion with minimal fibers.
Then a closed hypersurface P of B has constant mean curvature in B if and only
ifπ~\P) has constant mean curvature in M.

We omit the proof, since it is a straightforward application of a result given
in [13] and has no direct bearing on the main theorem of this paper.

Under some special restrictions the lift π~\P) of a totally geodesic sub-
manifold P of B is totally geodesic in M. Sufficient conditions are given in
the next result.

Theorem 2.5. Let π:M^>B be a Rίemannian submersion with totally geo-
desic fibers. Assume P is a totally geodesic submanifold of B. Then π~\P) is
totally geodesic provided ΛYX = 0 whenever X is horizontal and tangent to
π~\P) and Y is normal to π~\P).

Proof If Y is normal to π~ι(P), then Y is horizontal. We will show SYX
= 0 and Sγ V = 0, where X and V are horizontal and vertical tangent vectors
of π~\P). By Proposition 2.1, SYX = CYX + ΛYX. By assumption, ΛYX = 0.
Since CYX is horizontal and π-related to C*ni)tXπ^Y, and since P is totally
geodesic, CYX = 0. Thus SYX = 0.

Again, by Proposition 2.1, Sγ V = Kv Y - Fv Y - Tv Y. Now Tv Y = 0, since
the fibers are totally geodesic. Note that KVY — VVY has no vertical component.
Let X be a horizontal vector tangent to π~ι(P), and assume without loss of
generality that Y is basic. Then
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g(sγv,x) = g(κvγ- jeVyY,x) = g(-jeFvγ,x)

The last two equalities follow from Lemma 1.2 and the fact that Aγ is skew-
symmetric. Since AYX = 0, we conclude SYV = 0.

Corollary 2.6. Let S2n+1 —^> CP(n) be the standard submersion from a sphere
of radius one, and CP(m) a complex projective Kάhler submanifold of CP(ή).
Then π-\CP(m)) is totally geodesic in S2n+1. In fact, π~\CP{m)) = S2m+1.

Proof We refer to our description in [4, § 2] for the standard submersion
from S2n+1 ~^> CP(n) and the work of O'Neill [16].

(a) If X is basic, then AXJN is also basic where JN is the vector field whose
integral curves are the fibers of the submersion. In fact, AXJN = JX, where
/ is the usual almost complex structure on CP(ή).

(b) Since CP(m) is a Kahler submanifold of CP(n)9 AXJN = JX is tangent
to CP(m) when X is. In fact, let Y be orthogonal to CP(m) and let V = JN.
Then g(AγX, V) = -g(AxY, V) = g(Y,AxV) = g(Y,JX).

(c) Apply the previous theorem. Then the submanifold π~\CP{m)) is totally
geodesic and complete, since π~\CP(m)) is compact in S2n+ι. Hence π~\CP{m))
is a sphere since the only complete connected, totally geodesic submanifolds of
spheres are spheres. One should remark that π~\CP(m)) is connected, since
π~\CP(m)) is a fiber bundle over CP(m) with connected fiber S1.

3. The uniqueness question

Let p:CP(r) —> B be a Riemannian submersion from complex projective r-
space CP(r) onto a Riemannian manifold B. We equip CP(r) with the standard
Fubini-Study metric, normalized so that 1 < K < 4 where K denotes the sec-
tional curvature of CP(r). We assume that the fibers of p are connected com-
plex totally geodesic subspaces of CP(r). In addition, we make the following
restriction on the (real) fiber dimension: for any b e B, 2 < dim ^"^b) < 2r
- 2 .

Following a suggestion of A. Duane Randall, we consider the composite

submersion S 2 r + 1 > CP(r) > B, where π is the natural Riemannian submer-
sion defined by O'Neill [16] from the unit sphere S2r+1. Then one sees easily
that poπ: S2r+1 -^ B is a Riemannian submersion.

Now the fibers of poπ are totally geodesic. To see this, note that if b € B, then
the fiber p~\b) is a connected totally geodesic complex subspace of CP(r),
and hence is isometric to CP(m) with the induced metric. By Corollary 2.6, if
CP(m) is totally geodesic in CP(r), then π~\CP(m)) is totally geodesic in
S2r+1. Thus the fibers of πop are totally geodesic in *S2r+1. Moreover, since
/Γ^b) and the fibers of π are both connected, it follows that (poπ)~\b) =
π^p'Xb) is connected.

Using the classification 1.1 of [3] (see [4] for its complete proof), we conclude
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that the only possible Riemannian submersions from unit spheres Sm with
1 < dim fiber < m — 1 are the following:

( i ) s2n+ί > CP(ή), where CP(n) is complex projective «-space,

(ii) S*n+3 > QP(ri), where QP(ή) is quaternionic projective «-space,

(iii) S15 - ^ > S\i), where S\%) is the unit eight-sphere of radius \.

In (i) and (ii), 1 < K# < 4, where K* is the curvature of the base space.

N o w i f poπ:S
2n+1 - > C P ( r c ) , t h e n r = n, so poπ b e c o m e s S2n+ι * > CP(n)

> CP(n). Thus p is an isometry. This case is excluded by our assumption on

the fibers of p. If p o π: S4n+3 -> βP(rc), then 4/i + 3 = 2(2Λ + 1) + 1, so r =

2rc + 1 and po π becomes Sin+3 —^> CP(2rc + 1) —^> βP(/ι). Finally, if poπ:

Slb —> S8(J), then we have 15 = 2r + 1, so r = 7 and ^ o % becomes S15 —^>

CP(7) > S\%). Summarizing, we have the following uniqueness result. No
assertion is yet made about whether the classes are nonempty.

Proposition 3.1. Let p: CP{r) —> B be any Riemannian submersion with con-
nected complete complex and totally geodesic fibers. Assume 2 < dim of fiber <
2r — 2. Then p must have one of the following forms'.

(i) p: CP(2n + 1) -> QP(n),
(ii) p: CP(7) - 5 8(i).

/« owe (i), 1 < AΓ̂  < 4 where K^ is the curvature of QP(ri) and in case (ii), K^
is the curvature of S\\).

4. The equivalence problem

We begin with a quick review of some elementary facts which will be needed
in this section. Suppose that a real vector space W of dimension An has a positive
definite inner product g and a complex structure / with respect to which g is
hermitian. We will show the existence of complex structures / and K on W
which satisfy the following three properties:

( i ) IJ= -JI= K.
(ii) The metric g on W is hermitian with respect to 7, J and K.
(iii) Suppose S and S' are distinct linear isomorphisms of W belonging to {1,

/, /, K) where 1 denotes the identity mapping. Then g(SZ, S'Z) = 0 for Z € W.
Consider an orthonormal basis of W given by {Zl5 IZλ, Z2,7Z2, , Z 2 n , /Z2π}.

Define / on these basis elements as follows:

JZ\ = Z2 , 7Z3 = Z4, ,«ΛZ2n-i = ^m ?

τ = — 7 Z 2 , «77Z3 = 7Z 4 ,

7/Z2 = 7Z: , JIZ, = 7Z3, , //Z2n = /Z^., .

Then we may extend / linearly to a complex structure of the 4n-dimensional
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vector space W. Since / maps basis vectors to basis vectors, it is clear that the
metric on W is hermitian with respect to /. Now set K = IJ. Then one checks
easily that K = IJ = —JI and that the metric on W is hermitian with respect
to K. With respect to the structures /, / and K we may rewrite the orthonormal
basis {Zl9 IZλ, Z2, IZ2, , Z2n_1, IZ2n_l9 Z2n, IZ2n} as {Zl9 IZl9 JZU KZλ, ,
Z2n_l9 IZ2n_l9 JZ2n_ί, KZ2n_ι}. We have the following lemma.

Lemma 4.1. Let W be a 4n-dimensional real vector space with fixed complex
structure I and metric g.Ifl is hermitian with respect to g, then there exist com-
plex structures J and K on W so that properties (i), (ii), and (iii) hold.

Proof. We need only to check that (iii) holds and this is checked easily on
the basis elements.

Definition. Let W be a Φi-dimensional real vector space with a positive defi-
nite inner product g endowed with three complex structures I, J and K such that

(1) / / = - / / = K,

(2) g is invariant with respect to each such complex structure,
(3) g(IX, JX) = g(IX, KX) = g(JX, KX) = 0 for all X eW.

Then QX = IX Λ JX Λ KX is called a quaternίonic structure or a quaternίonίc
hermitian structure on W9 where Q is linearized so that it is a tensor of type
(3, 3). Note that up to sign QX is independent of /, / and K.

Remark. This definition is the vector space analogue of Gray's quaternionic
hermitian (see [7, 4.6]).

Definition. Let M be a Riemannian manifold of dimension An. M is said to
be quaternionic hermitian provided that for each x <ε M, there exists a neighbor-
hood U of x together with local almsot complex structures 7, J and K defined on
C/so that /, /and Kgive rise to a quaternionic structure on TZM for each z e U.
If FEQ = 0 for all x and for all E e TXM, then M is quaternionic. (Gray calls
this a quaternίonίc Kάhlerίan manifold.)

Let QP(n) denote the quaternionic projective space normalized so that 1 <
K* < 4, where K* is the sectional curvature of QP(ri). Let R* denote its curva-
ture tensor and let g* be its metric. We will need the following lemma later.

Lemma 4.2. Suppose x € QP(n) and let I, J, K be complex structures on
TxQP(ή) which give rise to the quaternionic structure Q on TxQP(n). Assume X
and Y are unit vectors in TxQP(n) with Y in the complementary subspace of the
space spanned by {X9IX, JX, KX}. Then g*(R*Σ BχΫ, SΫ) = 2, for any S e

Proof. Suppose S = J. Consider the Riemannian submersion π: S4n+3 —>
QP(ή), where S4n+3 is the unit sphere and π is the natural submersion described
in [4, pp. 266-267], For these complex structures, we showed in Step C of [4,
Lemma 2.5], that g(R*XJXY, JY) = 2, where g is the metric on S4n+3. X and Y
were unit horizontal vectors, and Y was in the complementary horizontal sub-
space of the space spanned by {X, IX, JX, KX}. Thus g*(R*ZJZY, JY) = 2 for
some p € QP(n), since the R* on Sin+3 is the pullback by π of R* on QP(n).
Define a linear isometry L from TxQP(n) to TpQP(n) which maps J to /, / to
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/, and K to K. Then, up to sign, L preserves the quaternionic structure Q.
Thus L preserves the sectional curvatures [7], and L induces an isometry / of
QP(n), so /*_„_= L. Suppose X, Y satisfy the conditions in the lemma, and set

f*X = X,f*Ϋ = Y. Then Yj {X, IX, JX9 KX}± c TpQP(n). By [4], 2 =
g$(R*zjχY> Jγ) = gϊ(R*z,jzY> JY)± since an_ isometry preserves both the
curvature tensor and the metric. If S = I or K, a similar argument gives the
desired result.

Before proceeding to the main result on equivalence, we recall this concept
which was introduced in [3]. Let πλ and π2 be Riemannian submersions from
some connected complete M onto B. Assume the fibers of πλ and π2 are connected
and totally geodesic. π1 and π2 are said to be equivalent provided there exists an
isometry f of M which induces an isometry / of B, so that the following dia-
gram commutes:

M—U M

B
1-

In [3] we announced the following result which is crucial to PropositisΌn 4.4.
Theorem 4.3. Let πι and π2 be Riemannian submersions from M onto B satisfy-

ing the above hypotheses. Suppose f is an isometry of M satisfying the following
two conditions alone:

(i) f*p\ 3^lp —> ̂ yιp) is an isometry from the horizontal distribution ^flp of
πλ at p onto the horizontal distribution ^ 2 / ( p ) ofπλ atf(p).

(ii) For E, F € TP(M), the tangent space to M at p, f*(AlEF) = A2fφEf#F,
where Ai are the integrability tensors of π^

Then f induces an isometry f of B so that πλ and π2 are equivalent.

The next proposition is the main result of this section. K will denote the curva-

ture of CP(2n + 1).
Proposition 4.4. Let ρx and p2 be two Riemannian submersions from

CP(2n + 1) —» QP(n). Assume the fibers are complex totally geodesic subspaces,
n>2 and 1 < K < 4. Then there exists an isometry f of CP(2n + 1) which
induces an isometry f of QP(n) so that the following diagram commutes:

CP(2n + 1) —U CP(2n + 1)

QP(n) - ^ QP(n)

Proof By Proposition 3.1, 1 < K* < 4, where K* denotes the curvature of
QP(n). Since the pt are fiber bundles by Theorem 1.4, a simple homotopy argu-
ment guarantees that the fibers are connected. The idea of the proof is to con-
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struct a linear isometry L which corresponds t o / ^ of the last theorem. The con-
struction of such an L with the desired properties is given in steps A through E.

Let / be the natural complex structure on CP(2n + 1); let θ and A be the in-
tegrability tensors of px and p2 respectively. Suppose q and q' are in CP(2n + 1)
with ρλ{q) = p and p2{q') = p'. We denote the horizontal distribution of ρx at q
by tf*lq, and the horizontal distribution of ρ2 at qf by #F2qt. By Lemma 4.1, we
may define three complex structures /, / and K on #Pλq so that / = Iq. In a similar
way, we may define complex structure 7, / and K on 3^2qt, enjoying the same
three properties with 7 = Iq,. Choose an orthonormal family {Xλ, X2, XZ9 ,
Xn) of tfu. For j Φ U assume Xj € {Z,, IXi9 JXί9 KX^1 c J f v where {*,, /Z,,
•/ATi5 JOfJ-1- denotes the orthogonal complement in Jfίq of the subspace spanned
by these vectors. Then {Xl9 IXl9 JXλ, KXλi X29IX2, JX2, KX2, - ,Xn, IXn, JXn9 KXn}
is an orthonormal basis of 3#Ίq. In a similar way, we may choose an orthonormal
family of vectors {Xl9 X29 -9Xn} of jf2q, so that {Xl9 ΪXl9 JXl9 KX,, --,Xn,
IXn, JXn, KXn} is an orthonormal basis of J f 2/ This notation is used in Step
A through Step D.

Define a linear isometry from Jtf*lq onto J f 2q, as follows:

L.JX.-^JX,,

L: KXt -> KXi.

One checks easily that Lol = IoL, LoJ = JoL, and LoK = KoL.
Step A.
(a) \\ Ί
(b) ii
(c) \\ΘXKX\\ = ^

for any unit vector X € J f lg and Z = L(X) € J f 2 / .
To see (a) note that by Lemma 1.3 the following formula holds:

(8) K*{PZY) = K{PXY) + 31|θxY\f ,

where K* denotes the sectional curvature of QP(n) lifted to q. By assumption,
1 < K < 4. Using [10, formula 7.2, p. 167] (normalizing the metric and recall-
ing / = Iq is induced from the natural complex structure on CP(2n + 1), we
have K{PXIX) = 4. On the other hand, from Proposition 3.1, we have 1 < K*
< 4. By a formula in Kraines [11], (suitably normalized), we have K*(PXIX)
= 4. Setting Y = IX in (8), we conclude \\ΘXIX\\ = 0. Exactly the same argu-
ment shows \\AΣΪX\\ = 0.

To prove (b), we again use [10, formula 7.2, p. 167] (Note their / is our / and
we multiply their formula by 4.) On the other hand, by the formula of Kraines
[11], K*(PXJX) = 4. Thus letting Y = JX in (8) we get \\ΘXJX\\ = 1. The same
argument shows ||^4Z/X|| = 1. The proof of (c) is similar to that of (b).
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Step B. Let Y e {X, IX, JX, KX}L c 3^lq where, as before, _J_ denotes the
orthogonal complement of the indicated subspace of ^ l q . Suppose Y e {X, IX,
JX, KX}1- c ^f2qf. Assume both F a n d 7 have unit length. We claim

(a) ΘXY=O,
(b) AxX=0.
By suitably normalizing [10, formula 7.2, p. 167], it follows that K(PXY) = 1.

On the other hand, by the formula in Kraines [11] (suitably normalized),
K*(PXY) = 1. Direct substitution into formula (8) of Step A shows ΘΣY = 0.
In a similar way, AXY = 0.

Step C.
(a) ΘXSX = ΘYSY for all X, 7_in Jflq of unit length and S e {/, /, K}.
(b) AXSX = AXS7 for all X, F in J T V of unit length and S e {/, /, K}.
To prove (a), assume Y e {X, /X, /X, ̂ Z } ^ C ^flg. From step A, ΘXIX =

(9Γ/7 = 0. We will show ΘXJX — ΘYJY. Using Lemma 1.3 we have

S ( * ^ x ^ J) g(χjχ , J) + g(θxJX, ΘYJY)

(θY, ΘXJY) - g(θγX, ΘJXJY) ,

where R* is the curvature tensor of QP(ή) lifted to q while R is the curvature
tensor of CP(2n + 1). Note that ΘYX = 0 and ΘJXY = —ΘYJY = 0 follow from
Step B and our assumptions on X and Y. Recall that /, and not /, is the com-
plex structure on £<flq induced by the coordinates of CP(2n + 1 ) . Keeping this
fact in mind, we use a formula of [10, p. 166] to conclude g(RχjXY, JY) = 0.

Caution. The curvature tensor RXYZ used in this paper differs by a sign from
that used in [10].

On the other hand, by Lemma 4.2, g(R*ZjχY9 JY) = 2. Again by Lemma 4.2,
this equality is independent of the structure / which together with / and K gives
the quaternionic structure on 3d?lq. Now for our /, \\ΘXJX\\ = | | 0 r / I Ί | = 1.
This follows from Step A. Substituting in (9), we have 2 = 2g(θxJX, ΘYJY), so
ΘXJX = ΘYJY.

If Z is a unit vector in the space spanned by {X, IX, JX, KX), then using the
above arguments we see ΘZJZ = ΘYJY = ΘXJX. Thus, for any unit X and Y in
j ^ l q , ΘXJX = ΘYJY. It should be noticed that this is the point where we use the
assumption n > 2. In a similar way, we see ΘXKX = ΘYJY for any unit vectors
X and Y of J^lq. Part (b) follows in the same way.

Step D.
(a) For any horizontal unit X in j ^ l q 9 ΘXJX is orthogonal to ΘXKX. More-

over, IΘXJX = ΘXKX, and IΘXKX = -ΘXJX. _
(b) For any horizontal unit X in J f 2q,9 AXJX is orthogonal to AΣKX. Also,

IAXJX = AXKX, and ΪAXKX = -AjX.
To obtain (a), set V1 = ΘXJX and V2 = ΘXKX. Vx and V2 are vertical vectors

in the tangent space to the fiber πx at ql9 since the integrability tensor θx re-
verses horizontal and vertical subspaces as was pointed out in § 1. If g is the met-
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ric on CP(2n + 1), then g(Vl9 V2) = g(θxJX, V2) = -g(JX, ΘXV2). For the last
equality we use the fact that θx is a skew symmetric operation as described in
§ 1. By Step A above, 1 = g(θγJX, ΘXJX). It follows that 1 = g(θxJX, VJ =
-g(JX,θzVύ. But g(JX,JX) = 1. Hence ΘXVΎ = -JX. Similarly, ΘXV2 =
-Kx. τhus g(θxjχ,θxκx) = g(θxjχ, v2) = -g(jχ,θxv2) = -g(jχ, -KX)
= 0, which means ΘXJX is orthogonal to ΘXKX.

To see that IΘXJX = ΘXKX, note /of7 = V o / where V is the connection on
CP(2n + 1 ) . Since j ^ l q is / = Iq invariant, it follows the vertical distribution of
pλ at q is / invariant. By definition, ΘXJX = i^VxJX where Y* denotes the pro-
jection onto the vertical distribution. Hence IΘXJX = ΘXIJX = ΘXKX. The other
relations follws in a similar way. To show (b), reproduce the arguments above.

Step E. We define a linear isometry L: TqCP(2n + 1) -» Tq,CP(2n + 1) as
follows. Choose a family {Xl9 X2, , Xn} a family of orthonormal vectors of
Jflq, so Xj e {Xi9 IXί, JX{, KX^JZ jflq for j_ Φ i. In a similar way, select a
family of orthonormal vectors {Xl9 X29 , Xn) of J!?2q,9 so Xj e {Xi9 IXί9 JXp

C ^ v for j Φ ί. Set

L: JXt

L:ΘXJX,-

L:θXlJXx

L'. θ

This defines L on a basis of TqCP(2n + 1). That L is an isometry is obvious
from the above steps.

We claim LΘEF = AL(E)L(F) for any E, F e TqCP(2n + 1). Let us check this
on the horizontal distribution. If i Φ j9 then Lθx.SXj — ALx.LSXj for any S e
{1, /, /, K). This assertion is a consequence of Step B. If / = y, then Lθx.SXj =
Lθz_1SX1j= ΛΣlSXλ = AΣjSXj = ALX.LSXP where S € {1, /, / , K) and S e
{1, J, / , J£}. The first quality follows from Step C and the fact that ΘZjXj = 0
= AΣ.Xj. Thus LΘXjSXj = ALZJLSXJ.

To show Lθsx.S'Xj = ALSX.LS'XJ for all f,./ and S, S' e {1, /, /, Λ}, one re-
numbers the basis elements and proceeds as above. We omit the details. Thus
LΘXY = ALXLY for all X, Y e j ^ l q . An argument given in the proof of [4,
Lemma 2.4] shows LΘEF = ALELF for all E, F <ε TqCP(2n + 1).

Note that L o / = 7 o L, which follows from the definition of L on Jf lg, the re-
lations of the complex structures, and the work of Step D.

Step F. Since / and J are L-related, and both arise from the complex struc-
ture on CP(2n + 1), we see that L preserves the holomorphic sectional curva-
ture. Hence L preserves the sectional curvature, that is, Kq(PEF) = Kq,{PLELE)
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for E, F e TqCP(2n + 1). Since CP(2n + 1) is simply connected, there exists an
isometry/of CP{2n + 1) so t h a t / ^ = L. Hence,/^ satisfies properties (i) and
(ii) of Theorem 4.3. It follows that/induces an isometry/of QP(n) so that

CP(2n + 1) —f-+ CP(2n + 1)

u
QP(n) - ^ > QP(n)

commutes. This completes the proof of Proposition 4.4.
It might be observed that since q and q' were arbitrary points of CP(2n + 1),

any submersion satisfying the stated hypotheses of Proposition 4.4 is homogene-
ous in the sense of [3] and [4].

5. The existence problem

In § 3 we showed that the only possible Riemannian submersions from CP(r)
onto B with complex connected totlly geodesic fibers, 2 < dim fiber < 2r — 2,
fell into the following two classes:

(i) p:CP(2n + 1) -> QP(n),
(ii) p: CP(7) -> Ss(±).
We show that submersions exist in class (i). To see this consider the unit

sphere S4n+3 c R4n+i. Let /, /, ^ b e the almost complex structures Rin+\ and
let N denote the outward unit normal to Siΐl+3. Then IN, JN, KN generate a fo-
liation of S4n+3. Identifying the leaves we obtain η:S4n+3 -+ QP(ή), where η is a
Riemannian submersion with totally geodesic fibers, as in [7]. Consider the ac-
tion of the one-parameter group generated by IN. This group is a copy of S1

and gives rise to a Riemannian submersion π: Sin+3 —> CP(2n + 1) with con-
nected totally geodesic fibers as in [16]. Now η\ S4n+3 —> QP(n) is a principal S3

bundle, and S1 is a closed subgroup of S3. Since the action described above is
the restriction of that of S3, it follows there exists a mapping p:CP(2n + 1) —>
QP(n) so that the following diagram commutes:

QP(n)

Now since η and π are Riemannian submersions, p is a Riemannian sub-
mersion by [1]. On the other hand, η~\b) = π~ιρ~\b) is totally geodesic for b e
QP(n). A local result, Corollary 2.6, requires that ^o"1^) must be totally geodesic
in CP(2n + 1). It remains to show that the fibers of p are complex submani-
folds of CP(2n + 1). First, note η-\b) is isometric to S3 C S4n+3. Now {IN, JN,
KN} are tangent to S3. On the other hand, η~\b) = S3 = n~lp-\b). Consider
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the vector space spanned by {JN, KN}. This space is π horizontal and is / in-
variant. Now we may choose π basic vector fields X and Y which span {/TV,
KN}. In fact, by O'Neill's work, [16], we may choose Y =IX. Moreover, π com-
mutes with / (see [16]), and induces the natural almost complex structure on
CP(2n + 1). It follows that π^X and π*IX = Iπ^X span the tangent space to
p~\b). Thus p~ι(b) is a totally geodesic / invariant submanifold of CP(2n + 1),
so ρ~\b) = CP{\) = S2, since it is obvious that p~\b) is connected. We have
the following result.

Proposition 3.1. There exists a Riemannian submersion p:CP(2n + 1) —>
QP(ri) with connected complex totally geodesic fibers.

By the assumption on the fibers in Propoiition 1.1 any submersion of type (i)
must have fiber isometric with CP(1), and any submersion of type (ii) must have
fiber isometric with CP(3). Summarizing the results of this paper we have the
following main result. We assume 1 < K < 4, where K is the curvature of CP(r).

Theorem 3.2. Any submersion p:CP(r) —> B with connected complex totally
geodesic fibers and with 2 < dim fiber <2r — 2 must fall into one of the follow-
ing two classes:

(i) S2 • CP(2n + 1) (ii) CP(3) > CP(7)

I' I'
QP(n) S\i)

In fact, 1 < K* < 4, where K* denotes the curvature of QP{ri), and S\j) denotes
the sphere of radius j . Moreover, class (i) is not empty. Finally, ifn > 2, any
two submersions in class (i) are equivalent.

Remarks. (1) The author does not know whether or not class (ii) is empty.
The existence of such a p in class (ii) would be of interest. In particular, it would
imply that the estimate vu of Ferus [5] is a best possible result. There is a related
question: Does there exist a fiber bundle S4 —> QP(3)Ί

ϊ
S8

Remarks at the end of [6] are of interest, although they deal with fiberings of
CP(2r) and QP(2r).

(2) Can one drop the assumption n > 2 in Proposition 4.4? In a similar vein,
can one drop the assumption n > 2 in [4, Theorem 3.5]?
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