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ALMOST REGULAR CONTACT MANIFOLDS

C. B. THOMAS

If M2n+1 is a C°°-manifold such that a 1-form ω of class C°° is defined over
M with the property that ω A (dώ)n = ω A dω A Λ dω Φ 0, then M is
said to be a contact manifold and ω a contact form. Classical examples are
provided by the (In + l)-sphere S2n+1 and the total space of the cotangent
sphere bundle of any (n + l)-dimensional manifold X. Indeed the latter arises
as a level of constant energy in the momentum phase space of a Hamiltonian
system, see for example [12], and historically has provided the incentive for
the study of contact structures in general. In 1958 W. M. Boothby and H. C.
Wang introduced the notion of a regular contact form this, loosely speaking,
is such that every point x of M has a neighborhood U which is pierced exactly
once by any integral curve of the vector field Z dual to ω, [1]. Regularity is
equivalent to the existence of a free ^-action on M, whose orbit space is a
symplectic manifold with integral fundamental class. In this paper we weaken
the definition of regularity to allow an integral curve to pierce U a finite number
of times, and prove that this implies the existence of a C00 ^-action on M
without fixed points, and with only finitely many isotropy groups. The manifold
M can be fibred in the sense of Seifert, and assuming the M/S1 is a C°°-mani-
fold, it is easy to see that the quotient space of principal orbits admits an
integral symplectic form. But perhaps the more interesting result is the converse
(Theorem 3 below) which allows us to construct an almost regular contact
form on the total space of a suitable Seifert fibration. We apply this in par-
ticular, when the base is a projective algebraic variety, and obtain examples
of contact forms on (n — l)-connected (2n + l)-manifolds, n = 2 or odd.

The existence of a contact form ω imposes restrictions on the tangent bundle
r(M). On R2n+1 the form ω = dz + xxdx2 + . + x2n-ιdx2n is contact, and
by Darboux' Theorem [8, p. 132], every point x of the contact manifold M
has a coordinate neighborhood on which ω can be expressed in this way. It
follows that M has an atlas for which the coordinate transformations are com-
patible with this standard contact form, and hence that the structural group of
τ(M) reduces to U(n)@ 1, at least when M is orientable [3, 2.3.2]. This
provides the definition of an almost contact manifold, and an almost structure
is integrable if it is induced by a contact form ω on M. On an open manifold
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the general theory of Gromov (see [4] for example) shows that there is a 1-1
correspondence between homotopy classes of sections of the bundle associated
to τ(M) with fibre SO(2n + 1)/U(ή), and C°°-homotopy classes of contact
structures. In short for open manifolds the integrability problem disappears.
Let us consider the example of 1-connected 5-manifolds, which originally
motivated this paper. The only obstruction to an almost structure is the third
integral Stiefel-Whitney class, which is the image of w2(M) under the Bockstein
homomorphism. Hence, if the latter class vanishes, τ(M) has structural group
t/(2) 0 1 and (M—point) is an open contact manifold. The closed manifold
is the connected sum of prime manifolds Mk9 2 < k < oo, where MTO = S2 X
S3 and otherwise Mk has second homology group of order k2. We prove below
that, unless 3 divides the order of k, Mk is a contact manifold. Unfortunately
it is not clear that the forms ωk are compatible with connected sums, so Theo-
rem 6 below is only a weak analogue to the results for open manifolds.
However both it and Martinet's cleaner result for orientable 3-manifolds [9]
suggest that contact forms, like codimension-1 foliations, are differential
geometric structures which extend from almost closed to closed manifolds.

The organization of the paper is as follows. In the first section we define an
almost regular contact form, and prove that the integral curves of the associated
vector field are the orbits of a smooth ^-action. Our argument is modelled on
that of D. B. A. Epstein in [2], except that the almost regular condition easily
implies the existence of a global bound on the point-wise periods. In the second
section we construct examples of almost regular contact forms, the orbit spaces
of whose associated ^-actions are C°°-manifolds. The proofs are similar to
those in [1], even though near an exceptional orbit a Seifert fibration need not
be locally trivial. The obvious 1-form fails to satisfy the contact condition at
points of an exceptional orbit, but we are able to modify it, without destroying
invariance with respect to the group action. The last section applies the theory
of higher dimensional Seifert fibrations over complex manifolds developed in
[10] to (i) homotopy spheres in bP4n+2, (ii) 2ra-connected (4m + 3)-manifolds
and (iii) 1-connected 5-manifolds. In dimension 3 the orbit space of the associ-
ated S^-action is always a surface, and the theory of almost regular contact
forms is equivalent to the classical Seifert theory; compare [2] and [9].

The author would like to thank Blaine Lawson for originally suggesting the
5-dimensional problem to him, and Jim Eells for his patient help in the original
stages of this research.

1. Almost regular contact manifolds

If ω is a contact form on M2n+1, then dω is a 2-form of rank 2n, and hence
(τxM\ = { I : I e τxM and dω(X, τxM) = 0} has dimension 1. It follows that
to ω we may associate a smooth vector field Z such that

(i) ω(Z) = 1, (ii) izdω = 0.
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By the Picard existence theorem for ordinary differential equations, near each
point x <~ M, Z defines a flow which, if M is compact, extends to a smooth
global action of the real numbers μ: M X R-^ M [8, IV, 2]. The orbit
μ(x X R) is the integral curve of Z, which passes through x at time 0. We
shall often abbreviate μ(x, t) to t-x.

Definition. The contact form ω is said to be almost regular, if there exists
a positive integer R, and each point x € M has a cubical coordinate neighbor-
hood U = (z, x\ , x2n) such that

(i) each integral curve of Z passes through U at most R times, and
(ii) each component of the intersection of an integral curve with U has the

form x1 = a1, , x2n = a2n, with a1 constant.
If R = 1 the form is said to be regular, conforming with the definition in

[1]. Intuitively each point of the manifold has a neighborhood pierced by each
orbit in at most R segments parallel to the z-axis. That this is a very restrictive
condition follows from the first main result.

Theorem 1. If ω is an almost regular contact form on the compact con-
nected manifold M2n+1, the associated global flow μ is equivalent to a flow
inducing an effective C°° action on M by the circle group S1. This action has
no fixed points, and the finitely many distinct isotropy subgroups are contained
in some finite subgroup A of S1.

Proof. That the orbits of R are simple closed curves follows from the fact
that M is covered by finitely many good neighborhoods, each containing at
most R linear segments of the orbit. Since each orbit is closed we may define
the period function λ: M —> R by λ{x) — inf0<ί {μ{x, t) = x). Clearly λ is con-
stant on each orbit. The period function λ is lower semicontinuous, hence
bounded away from zero by reparametrising R if necessary we may suppose
λ(x) > 1. It is convenient to break the rest of the argument up into several
steps.

Lemma 1. λ has a global upper bound on M, i.e., 1 < λ(x) < A for all
xzM.

Proof. This is again a simple consequence of compactness and the almost
regularity condition. M is covered by finitely many closed cubical sets Ft C Ui9

and the natural metrics on Ut may be pieced together by means of a partition
of unity to give a global metric on M, restricting to the natural metric on Ft.
It follows that a particle started from x at time t = 0 spends a total time
interval in Ft bounded above by RTt, where Tt equals the ί-width of the cube
Ft. The existence of A is now clear.

Let U be a regular neighborhood of the arbitrary point x0 e M, so that xQ

has coordinates (0, -",0). There is a 2n-cubical set V with coordinates
(x\ - , x2n) transversal to the orbits of μ near JC0. We define κ\ V —> R by the
conditions

(i) *(JC)>0,

(ii) xt $ V for 0 < / < *(*),
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(iii) xκ{x) € V.
Since each orbit is closed, K is defined at each point of V we may think of it
as defining the time of first return of an orbit to a neighborhood of its position
at time 0. Observe that κ(x) < λ(x) for all x e V, and that y = κ(x) x has z-
coordinate 0 in U. Write t0 = AΓ(JC0).

Lemma 2. There is a neighborhood V3 c F of x such that K \ V3 is a ex-
junction.

There exists Vλ c V such that for ε > 0, t x € C/ for all xzVι and |ί — tQ\ <
ε. Moreover ε may be chosen so small that for x e V19 μ((t0 — ε, t0 + ε), x) is
connected. For t in this interval xi(t-x) = c^y), and z(ί Λ ) = g(t,z(x),x1(x),

is a function of class C°° such that

g(t0,O, . . . , 0 ) =

If |ί — tQ\ and |^ | are both sufficiently small,

f x)

f,z(χ),x\x),

by the definition of a flow. Since each orbit is normal to the plane z = 0, we
may choose a new coordinate system near x0 — (0, , 0) by setting

**(*) - x\y) - x\yd , = g(ί0, Z(JC), , χ2n(x)) .

If Z is the vector field associated to ω, and we compute the components of
ZXo with respect to the new coordinates, then the only possible nonzero com-
ponent is

ZXo(z) = lim [g(t0, z(t x0), , x2n(t xQ)) - g(f0, z(x0), , x2 w

t-o
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= l i r a [ g ( t + t 0 , z ( x 0 ) , • • • , x 2 n ( x o ) ) - g ( f t , z ( x 0 ) , ••-,*2I! ( • * „ ) ) / ' ]
ί-0

| « , , z ( 4 , ( , ) )
θt

Since (ω, Z> = 1, (dg/dt)\(tOtO) Φ 0. Therefore by the implicit function theorem
there is a neighborhood of x0, V2 c F x on which there is defined a C°°-function
t = <p(x\x), , X27Z(JC)) such that

(i) g(φ, 0, x\x), , x2n(x)) = 0, (ii) t0 = p(0, , 0).
The final step is to show that near (0, , 0), κ(x) = <p(x\x), , x2n{x)). Let
x be some point with z-coordinate 0 and (xKx), , x2n(x)) eV2. If | ; — tQ\ is
sufficiently small, ί x = <p(x\ , x2w) x has coordinates

Λ«(ί Jc) = *'G0 , z(ί JC) = g(φ, 0, ^(x), . . . , x2n(x)) = 0 .

Therefore φ(xι{x), , ;c27i(jc)) = h-κ(x), where /z is some real number > 1 and
dependent on x. We claim that h(x) = 1 inside some neighborhood V3 c F 2 .
Otherwise there is a sequence of points {xm} in V2 converging to x0 such that
h(xm) > 1 + Ύ] for some positive constant 9. (The difference between the times
of first and second return is bounded aways from zero.) Then

0 Φ κ(x0) = KmφixKxn) x2n(xj) = lim h(m) κ(xm) > (1 + η)fc(x0)
ra-^oo m-*oo

by the continuity of φ. Since this is a contradiction, there exists F 3 3 (0, , 0)
such that tc: V3—>Risot class C°°. Following [2], define an associated C°°-map
T: V3^VbyT(x) = κ(x) x.

Lemma 3. There exists a neighborhood W of x in V, so that with respect
to suitable coordinates T\W is conjugate to a periodic linear map.

Proof. If A is the global bound on the pointwise periods from Lemma 1,
set N = [A + 1]. By induction there exist neighborhoods Wt of x0 in V such
that

TWi+ι <^Wt iX < i < N\ = q) .

Since 1 < λ{x) < A, for each x e Wq, Trx = x for some r, 1 < r < N, and
r* = 1 on Wq. The neighborhood Ψ = Π?=i Γ W ^ i s invariant under Γ, and
by averaging the usual metric on V restricted to W, we obtain a Γ-invariant
metric.

The lemma now follows from the commutativity of the diagram

R2n - ^ > R2n

A A

exp-1 exp-1
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Returning to /c, we see that qκ(x) = pλ(x), where p is an integer depending
on x. Covering M by a finite number of regular coordinate neighborhoods of
the form W X (—ε, ε) we may construct a C°°-map F: M -+ R with the prop-
erty that on each orbit F is an integral multiple of λ.

The flow ι>: M x R—> R given by

v(x, t) = /*(*, ίF(jc))

has the same orbits as μ, but v \ M x Z is trivial, hence v induces a smooth
^-action on M. By the general theory of transformation groups, see for ex-
ample [6], there are only finitely many orbit types. The group S1 cannot be an
isotropy subgroup, since the period of any orbit is positive. The manifold M
is connected, hence the isotropy subgroup corresponding to the principal orbit
type is the unique maximal vertex in the "slice diagram" [6, §4]. Since the
action is effective, it follows that the principal isotropy subgroup is the identity.
The subgroup A in the conclusion of the theorem may be taken to be the sum
of the remaining isotropy subgroups.

2. Seifert (2w + l)-manifolds

If ω is an almost regular contact form on M2n+1, Theorem 1 implies that the
associated vector field Z generates an ^-action, with respect to which M2n+1

has the structure of a Seifert fibration, see [10]. Globally, if π: M —• M/S1 =
B denotes the projection onto the space of orbits, by first factoring out the
action of A, π decomposes as

where πx: M —> N is a branched covering map, and π2: N —> B is a principal
^-fibration. In particular, there is an open dense subset of M, the union of
the principal orbits, which has the structure of a principal ^-fibre bundle. In
the neighborhood of an arbitrary point of JC, the description of the action is
almost as nice. Thus, if SI is the isotropy subgroup of the point x e M, and V
is a slice through x, carrying a representation τ of SI, then the quotient S1 X ^
V is mapped diffeomorphically onto some open neighborhood of the orbit of
x [6, 1.3]. Locally, if Γ: C —• S1 is a section over some neighborhood of the
identity in Sι/Sl, then (c, v) ι-> Γ(c) v is a diffeomorphism of C X V onto a
neighborhood of x.

From now on we assume that B, the space of orbits, has the structure of a
compact complex manifold. This will be the case, for example, if S1 acts
analytically on the complex manifold M, with a single nontrivial isotropy sub-
group A, such that the slice representation is the sum of a trivial and a 1-
dimensional (complex) representation. In particular the union of the exceptional
orbits has real codimension two, and all the examples discussed in the final
section will be of this type.
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We recally that the 2π-dimensional manifold B is called symplectic, if it
admits a closed 2-form Ω of maximal rank.

Theorem 2. // ω is an almost regular contact form on M2n+1, such that B,
the space of orbits of the associated Sι-actίon, is a C°°-manifold, then the open
submanifold Bo defined by the principal orbits admits an integral symplectic
form Ω. Furthermore over Bo

dω = π*Ω .

Proof. Since the ^-action, defined by the associated vector field Z, is free
on the union of the principal orbits, this result follows from the main theorem
in [1], The point is that the form ω is ^-invariant, defines a connection on
π~\B0)9 whose curvature form is the pullback of the 2-form Ω, defined on the
base. Furthermore the cohomology class defined by Ω is integral, and classifies
the 5!-bundle structure on π~1(B0). As in the case of regular contact forms this
remark is the clue to the converse theorem.

Let L be a nonsingular hypersurface in the projective algebraic variety B,
and N the principal ^-bundle over B defined by the 2-form Ω coming from
the natural Kahler structure. Let M be the total space of a Seifert fibration
over B, with a single nontrivial isotropy subgroup A, such that

(i) 7r2 is the projection map of N, and
(ii) the branching locus of the finite covering πλ is defined by π^L.
Theorem 3. // the Seifert fibration π: M —» B is defined by the data above,

M admits an S]-invariant, and hence almost regular, contact form ω.

Proof. Recall the construction of Kobayashi in [7]. If B2

0

n is the base space
of a principal S^fibration, determined by an integral symplectic form Ω, there
is a scalar valued 1-form ω0 on the total space with the property that dω0 =
π*Ω. Since the fibration is principal, and Ω has maximal rank, so does dω0.
Furthermore, if the vector field Z = d/dt is taken as a basis for the Lie algebra
of the group S1, it determines a "vertical" vector Z + at each point x of the
total space. By construction ωo(Z+) Φ 0, and since (dωo)

n cannot vanish on the
element determined by the "horizontal" vectors, the contact condition ω0 A
(dωo)

n Φ 0 is satisfied. Finally, if the vector field X satisfies dωo(X, τxM0) = 0,
then

Ω(πX, τπXB0) = 0 ,

implying that X is vertical, and Z the vector field associated to the 1-form ω0.
In the present case M is a Seifert fibration, in which the nonprincipal orbits

map to the hypersurface L in B. On Mo = π~ι(B — L) there is a contact form
ω09 but because of the branching along π^L, the pullback of the contact form
ω on the intermediate fibre space N does not define a contact form on M.
Indeed the product πγω Λ {π^Y fails to be a volume form along the non-
principal orbits. We must therefore modify πγω in a neighborhood of the union
π~ιL of the exceptional orbits.
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As a subvariety of B, L inherits an integral symplectic form ΩL, of maximal
rank equal to n — 1. Furthermore the 2-codimensional subvariety π~ιL of M
admits a contact form ωL (say) by the Kobayashi construction applied over L.
If z denotes a normal coordinate in the complex tubular neighborhood V of
π~ιL in M, set

ωv = ωL + —(zdz — Zdz) .

At interior points of the (2n + l)-dimensional manifold V, ωv satisfies the
contact condition. Thus, if z = u + iv,

—(zdz — Zdz) = udv — vdu ,

which goes to a multiple of the usual volume form on R2 under exterior dif-
ferentiation. Furthermore

(ωv) A (dωv)
n = (ωL + udv — vdu)(2ndu A dv A (dωL)n~ι)

= ±2ndu A dv A ωL A (dωL)n~ι ,

which is a volume form, given that ωL satisfies the contact condition on π~ιL.
It is possible to choose the forms ω0 and ωv compatibly in the sense that where
each of them defines a volume form (in Mo and near π~ιL respectively), these
belong to the same component of the complement of the zero section in the
(2n + l)st exterior power of τM. Assuming the choice of a metric on the fibres
of V, we let Vr denote the closed tubular neighborhood of π~ιL such that each
fibre is a 2-disc of radius r. If (w, v) are Cartesian coordinates in a generic
fibre, we write (r, θ) for the corresponding polar coordinates. With these con-
ventions, define a global 1-form ωM as follows:

'ω0 on M — V2 ,

ηωv at interior points of Vλ ,

(2 - r)Vωv(x, r, θ) + (r - l)ωo(x, r, θ)

on the set V2 — Int (Fj), η small.

(*>M = 1

The continuous form so obtained may have to be smoothed at the boundary
of V2 or Kl5 but then satisfies the contact condition, because ωv and ω0 give
rise to compatible volume elements. Invariance with respect to the group action
follows, since ω0 and ωL are defined using the bundle structure.

Clearly Theorem 3 is a special case of a more general result, in which we
allow more than one nontrivial isotropy group, that is, the total space M de-
composes as the union of more than two strata. We have confined ourselves
to the simplest nonprincipal case, since this is all we shall require in the next
section.
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3. Applications

In this section we shall apply the construction of almost regular contact
forms to highly connected manifolds. The base space B will be CP(ή), and the
total space M2n+1 a branched covering of the standard sphere S2n+1. In the
language of the previous section let the hypersurface L have degree δ, and if
x belongs to π~ιL, let a be the order of the isotropy subgroup S*. The slice
representation is described by the matrix

oϊπίv/a 0

0

and we may define β uniquely by

0 < β < a, (a, β) = 1 , and vβ = 1 mod a ,

In [10, Theorem 3.15] it is shown that M is determined up to orientation-
preserving equivariant difϊeomorphism by the integral orbit invariants (δ a, β),
except that, for n even, (δ a, β) ~ (δ a, a — β). The manifold M is simply
connected if and only if 1 = ±(a + δβ). If this condition is satisfied M is
(n — l)-connected, and

Hn(M,Z) ^ Z/a+ ... +Z/a ,

wherejc(ί,n) = [(3 - l)n+1 - (-l)n+1]/δ + (-l)n+\ [10, Theorem4.9]. By
Theorem 3 above a Seifert fibration built up from this data admits an almost
regular contact form. The definition of κ(δ, ή) yields the following table of
values:

^ \ n

1

2

3

n = odd

0

1

1(2-1-1)4 - 1

n = even

0

0

1(2-1+1)- 1

n = 2

0

0

2

As an important special case M2n+1 is a homotopy sphere if and only if δ = 1
(δ = 1 or 2) for n odd (n even). Most of the examples below can also be
succinctly described as Brieskorn varieties [5, § 14] we use the notation
V(a09 , an+1) for {z € Cn+2: f(z) = 4° + + zSΆ1 = 0} and VM, ,
an+1) = V(a0, , αn + 1) Π 5 2 w + 3. If d is the least common multiple of the ai9

there is a C*-action on V, given by ί(z0, , zn+1) — (^/α° z0? , ^ / α n + 1zw + 1)
with respect to which V is invariant. This C*-action on V induces an inaction
on V19 which thus acquires a Seifert fibre structure.
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Lemma 4. The orbit space of V(2k + 1, 2, , 2) — (0, , 0) under the
action of C* is CP(n).

Proof. Project V — 0 to Cn+1 — 0 by mapping (z0, , zn+ι) to (zl9 ,
zn +i). The map is compatible with the C*-action on the image given by zt <->
t2k+1Zi, and Vλ is a branched covering of 5 2 n + 1 . The equivalence classes in Cn+1

— 0 are lines through the origin, hence the final orbit space is CP(n). The
induced ^-action on Vλ clearly has the same image.

Theorem 4. Every homotopy sphere J^2n+1 which bounds a parallelisable
2n + 2 manifold admits an almost regular contact structure, n > 3, n even.

Proof. Suppose that n is even, so that bP2n+2<=—> Z/2. By [5, Theorem
11.3] Σ2n+ι is represented by Vx(2k + 1, 2, . ,2), where for 2k + 1 =
±1(8) we obtain the standard sphere and for 2k + 1 = ±3(8) the Kervaire
sphere. In the language of Seifert fibrations over CP(2n) the only nontrivial
isotropy group of the ̂ -action on Vx is Z/(2k + 1), and the proof of Lemma
4 shows that the exceptional orbits map to a quadric hypersurface. With a =
2k + 1, β < a is determined by the equation

1 = (2k + 1) + 2/3, or β = k + 1 modulo a .

The existence of a contact form now follows from § 2.
For the next application we consider (n — l)-connected (2n + l)-manifolds

M for n odd under the simplifying assumptions that M bounds a parallelisable
manifold and Hn(M, Z) is a torsion group of odd order (there is nothing special
about n = 3,7). Up to the addition of a homotopy sphere M is classified as a
C°°-manifold by Hn(M, Z) and the nonsingular symmetric intersection pairing
Hn(M, Z) (x) Hn(M, Z) -> Q/Z [14, Theorem 7], Moreover M splits as a con-
nected sum of manifolds (i) Lm, Hn(Lm) ^ Z/ra, m = pr and 1 (8) 1 >-» c/ra,
c a quadratic residue modulo m, and (ii) Z4, with the same data except that
c is a quadratic nonresidue. The decomposition is unique up to relations of
the form Lm$Lm ^ L'm$Lf

m [13, Theorem 4], For the prime manifolds we
have

Theorem 5. Let p be an odd prime and m = pr. If p = 1 (mod 4), Lm

admits an almost regular contact structure. If p = 3 (mod 4) there is an almost
regular contact structure on L'm if n = 3 (mod 4), and on Lm if n = 1 (mod 4).

Proof. Consider the Brieskorn variety V^m, 2, , 2) (remember that n
is odd!). As a Seifert fibration over CP(ri), Z/m is the only nontrivial isotropy
group and the exceptional orbits map to a hypersurface of degree 2. Since
Λ;(2, ή) = 1, Hn(M) ̂  Zlm. If V* = {z e Cw+21 zj° + + zftl1 = *}, by the
original argument of Brieskorn, V1 = V1 (t Φ 0), and for sufficiently small t,
VM, , an+1) is diίϊeomorphic to V1 Π S2 n + 3 [5, 14.1-14.3]. The cohomology
group Hn+l(Vl, Z) is free abelian, and the symmetric cup product pairing
induces the intersection pairing on Hn(M). From [5, 12.4] it follows that 1 (x)
1 = - ( ( - l ) / m ) w + 1 / 2 . If p = 1 (mod 4), - 1 is a quadratic residue, if p = 3
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(mod 4) a quadratic nonresidue, and in the first case the parity of \{n — 1) is
irrelevent.

Theorem 5 admits a limited generalization to composite manifolds. Let A
be a finite abelian group of odd order with every Sylow subgroup cyclic, that
is,

A s Z/pί1 Θ - Θ Z/pp .

Since A is cyclic of order pp pp, we may consider the Brieskorn variety
ViiPϊ1 * PίS 2, , 2), which fibres over CP(n) as in the prime case. The
argument of [5. 12.4] applied to the intersection form shows that

(If n Ξ 3 (mod 4) we must replace Lm. by L'mj in the connected sum above
for each prime pj = 3 (mod 4), which further illustrates the limited power of
the construction.) If the Sylow subgroups are not restricted to be cyclic, the
position is much worse, since replacing Qj in the Seifert construction by a
hypersurface of higher degree leads to a p -̂Sylow subgroup isomorphic to
(Z/pJOβ(">n)j a n d * increases rapidly with n. The same observation shows that
the Seifert construction is an even clumsier instrument for discussing contact
structures on M2n+1, when n is even. As we have already observed in the proof
of Theorem 4, κ(2, ή) = 0, so in order to obtain a nontrivial homology group
Hn(M, Z) we must map the exceptional orbits to hypersurfaces of degree > 3 ,
and *(3, ή) = i(2n+1 + 1) — 1. Only in dimension 5, when κ(3, 2) = 2, does
the construction yield a reasonably large class of contact manifolds.

We recall from the introduction that w2(M5) = 0 is a sufficient condition for
the structural group of τM5 to reduce to U(2) 0 1. Furthermore, if w2 = 0,
M5 is classified up to diίϊeomorphism by #2(M, Z) ̂  rZ + ®ι

J=1 (Z/mj)\ [11];
each rrij-ίactor occurs as a square because of skew-symmetry in the intersection
pairing [13, Theorem 3]. Therefore M5 decomposes uniquely as the connected
sum of prime manifolds

If nij = pr* (p Φ 3) the following theorem gives a description of Mmj distinct
from that in [11], and shows that such a prime 5-manifold can be given a
contact structure.

Therom 6. Let M5 be a 1-connected 5-manifold such that w2(M) = 0 and
H2(M, Z) = (Z/m)2, 3/fra. Then M5 admits an almost regular contact structure.

Proof. We may obtain M5 as a Seifert fibration over CP(2), and in such a
way that Z/m is the unique nontrivial isotropy group, with exceptional orbits
mapping to a nonsingular cubic curve in CP(2). Since Λ;(3, 2) = 2, the second
homology group of the total space is isomorphic to (Z/m)2. Note that the con-
dition that m is not divisible by 3 is essential to the effectiveness of the con-
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struction in [10]. Furthermore the Brieskorn variety V(m, 3, 3, 3) has the same
orbit invariants, and provides perhaps the most explicit description of M6

m. As
in Lemma 4 we show that the orbits map to complex projective space by first
mapping V to C3-0 by means of the last three coordinates.

We have stated Theorem 6 in sufficient generality to cover the case when
H2(M, Z) ^ T Θ T, T a cyclic group of composite order not divisible by 3. If
T is not cyclic, the same sort of complications arise as for higher dimensional
manifolds. Possibly more interesting in the light of Gromov theory is the case
when H2(M, Z) ^ (Z/3 r ) 2 s By either performing the Seifert construction with
the image of the nontrivial orbits a curve of degree p > 3 in CP(2), or by
considering the variety V(3r, p, p, p) we obtain a manifold M such that 2s =
(ίp ~ I) 3 + ΐ)/P ~ 1. For example, j(4) = 3, j(5) = 6, s(6) = 10, and the
connected sum Mz$Mz$ M3 admits an almost regular contact form.

The method of construction developed in this paper leads to a number of
questions, particularly if our results are compared with those on open mani-
folds obtained in [4].

Problem 1. Given (almost regular) contact structures on Mx and M2, does
there exist a contact structure of any kind on the connected sum Mλ$M2Ί
Conversely, does a connected sum with a contact structure split as the con-
nected sum of contact manifolds? A positive answer to the first question would
increase the significance of Theorem 5.

The situation with 1-connected 5-manifolds is very interesting, since if w2(M)
= 0, we know that M5-point admits a contact form ω. Since S3 is parallelisable,
its cotangent bundle is trivial and the included 52-bundle isomorphic to S2 x S3.
Classically therefore, S2 X S3 = MTO in the notation of D. Barden and S. Smale,
admits a contact form. If the answer to Problem 1 above is positive, it is natural
to ask

Problem 2. Does the prime 5-manifold M\r with second homology group
isomorphic to Z / 3 r Θ Z\Ύ admit an other than almost regular contact form?
Positive answers to problems 1 and 2 would solve

Problem 3. Does a closed 1-connected M5 with vanishing second Stiefel-
Whitney class admit a contact form?

Problem 4. The necessary and sufficient condition for M5 to admit an
almost contact structure is the vanishing of the integral class W3(M). There
exist manifolds, for example the nontrivial S3 bundle over S2 with w2(M) Φ 0
and βw2(M) = WJJM) = 0. Is the almost structure integrable in this case?
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