THE HIGHER HOMOTOPY GROUPS OF LINKS

W. A. MCCALLUM

1. Introduction

In this paper we generalize the result of Andrews and Lomonaco [2] and McCallum [7] in which the second homotopy group of a 1 -spun classical knot and link respectively were calculated to obtain results about k-spinning higher dimensional links. We take the approach of Lomonaco [6] using Reidemeister homotopy chains [9].

In particular we prove the following theorem.
Theorem 1.1. If L_{μ}^{n+k} is an $(n+k)$-dimensional link of multiplicity μ obtained by k-spinning an n-dimensional ball configuration $K_{\mu}^{n} \subset B^{n+2}$ about the sphere $S^{n+1}=\partial B^{n+2}$ with $B^{n+2}-K_{\mu}^{n}$ aspherical, and

$$
\left(x_{1}, x_{2}, \cdots, x_{m}: r_{1}, r_{2}, \cdots, r_{p}\right)
$$

is a presentation of $\Pi_{1}\left(S^{n+k+2}-L_{\mu}^{n+k}\right)$ with $x_{1}, x_{2}, \cdots, x_{\mu_{1}}\left(0 \leq \mu_{1} \leq m\right)$ the images of the generators of $\Pi_{1}\left(S^{n+1}-K_{\mu}^{n}\right)$ under the inclusion map, then

$$
\Pi_{i}\left(S^{n+k+2}-L_{\mu}^{n+k}\right)=0 \quad(1<i \leq k)
$$

and

$$
\left(x_{\mu_{1}+1}^{*}, x_{\mu_{1}+2}^{*}, \cdots, x_{m}^{*}: \sum_{j=\mu_{1}+1}^{m}\left(\partial r_{i} / \partial x_{j}\right) x_{j}^{*}\right)
$$

is a presentation of $\Pi_{k+1}\left(S^{n+k+2}-L_{\mu}^{n+k}\right)$ as a left $Z \Pi_{1}$-module. We then apply this algorithm to particular well known links and, in fact, obtain yet another proof of the main result found in [1].

2. Preliminary results

Definition 2.1. A ball configuration

$$
K_{\mu}^{n}: B_{1}^{n} \cup B_{2}^{n} \cup \cdots \cup B_{\mu}^{n} \subset B_{\mu}^{n+2}
$$

is a piecewise-linear proper embedding of the disjoint union of μ copies of B^{n} in B^{n+2}.

[^0]Lemma 2.2. In $Y=B^{n+2}-K_{\mu}^{n}$ there exists an $(n+1)$-dimensional C. W. complex K consisting of

$$
\begin{array}{cl}
0 \text {-cell: } & x_{1}^{0}, \\
1 \text {-cells }: & x_{1}^{1}, x_{2}^{1}, \cdots, x_{m_{1}}^{1}, \\
\cdot \cdot \cdot \cdot & \cdot \cdot \cdot \cdot \cdot \cdot \\
(n+1) \text {-cells : } & x_{1}^{n+1}, x_{2}^{n+1}, \cdots, x_{m_{n+1}}^{n+1}
\end{array}
$$

such that $(y, \partial Y)$ deformation retracts onto $(k, \partial K)$ where $\partial K=K \cap \partial Y$, which consists of

$$
\begin{array}{cl}
0 \text {-cell: } & x_{1}^{0}, \\
1 \text {-cells: } & x_{1}^{1}, x_{2}^{1}, \cdots, x_{\mu_{n}}^{1}, \\
\cdot \cdot \cdot \cdot & \cdot \cdot \cdot \cdot \cdot \cdot \\
(n+1) \text {-cells: } & x_{1}^{n}, x_{2}^{n}, \cdots, x_{\mu_{n}}^{n},
\end{array}
$$

Proof. Let T be a triangulation of R^{n+2} which has K_{μ}^{n} as a subcomplex and has ∂B^{n+2} as a subcomplex of its dual triangulation T^{*} where B^{n+2} is an $(n+2)$-simplex. Adjoin to K_{μ}^{n} any edge of T, which lies within B^{n+2} and meets K_{μ}^{n} at one end point only. Continue this process as long as possible which is only a finite number of times, always adjoining an edge of T within B^{n+2} which meets the previously constructed complex at one end point only. There results. an n-dimensional subcomplex $K^{\prime \prime}$, which meets ∂B^{n+2} at $K_{\mu}^{n} \cap \partial B^{n+2}$ and has K_{μ}^{n} as a deformation retract. Let K^{\prime} be the subcomplex of $T^{\#}$ made up of cells which lie in B^{n+2} and do not meet $K^{\prime \prime}$. Then K^{\prime} is a complex of dimension $\leq n+1$, and K^{\prime} is a deformation retract of $B^{n+2}-K^{\prime \prime}$ and hence of $B^{n+2}-$ K_{μ}^{n}. Furthermore, $K^{\prime} \cap \partial B^{n+2}$ is ∂B^{n+2} minus several of its open faces. Therefore a cell complex K of the required type is obtained by shrinking to a point the remaining cells plus a suitable maximal tree of $K^{\prime \prime}$.

It now follows that $\Pi_{1}(Y)=\left(x_{1}^{1}, x_{2}^{1}, \cdots, x_{m_{1}}^{1}: x_{1}^{2}, x_{2}^{2}, \cdots, x_{m_{2}}^{2}\right)$ where we are identifying the elements of $\Pi_{1}(Y)$ with their carriers in K.

Let \tilde{K} be the universal cover of K. In \tilde{K} we have

$$
\begin{array}{rlll}
0 \text {-cells: } & g \tilde{x}_{1}^{0}, & g \in \Pi_{1}(Y), \\
1 \text {-cells : } & g \tilde{x}_{i}^{1} & \left(1 \leq i \leq m_{1}\right), \\
\cdot \cdot \cdot \cdot \cdot & \cdot \cdot \cdot & \cdot \cdot \cdot \cdot \cdot \\
(n+1) \text {-cells: } & g \tilde{x}_{i}^{n+1} & \left(1 \leq i \leq m_{n+1}\right) .
\end{array}
$$

We consider the Reidemeister homotopy chain complex

$$
0 \rightarrow C_{n+1}(\tilde{K}) \rightarrow \cdots \rightarrow C_{0}(\tilde{K})
$$

with boundary homorphisms given by

$$
\partial_{i}\left(g \tilde{x}_{j}^{i}\right)=g \partial_{i}\left(\tilde{x}_{j}^{i}\right),
$$

($\left.0 \leq i \leq n+1,1 \leq j \leq m_{i}\right)$, (see [9]).

3. k-spinning

Definition 3.1. One obtains the $(n+k)$-dimensional link L_{μ}^{n+k} of multiplicity μ by k-spinning K_{μ}^{n} as follows:

$$
S^{n+k+2}=\left(S^{k} \times B^{n+2}\right) \cup\left(D^{k+1} \times B^{n+2}\right)
$$

identified along

$$
S^{k} \times \partial B^{n+2}=\partial D^{k+1} \times \partial B^{n+2}
$$

and

$$
S_{i}^{n+k}=\left(S^{k} \times B_{i}^{n}\right) \cup\left(D^{k+1} \times \partial B_{i}^{n}\right)
$$

identified along

$$
S^{k} \times \partial B_{i}^{n}=\partial D^{k+1} \times \partial B_{i}^{n}
$$

(see [4] and [11]).
If $n=k=1$, then this definition is equivalent to the classical spinning technique of Artin [3]. We have the following lemma due to Artin [3] and Summers [11].

Lemma 3.2. Suppose L_{μ}^{n+k} is obtained by k-spinning K_{μ}^{n}. Let $X=S^{n+k+2}$ $-L_{\mu}^{n+k}$, and $Y=B^{n+2}-K_{\mu}^{n}$. Then

$$
\Pi_{1}(X)=\Pi_{1}(Y)
$$

Proof. See [11].
We now k-spin Y to obtain X as follows:

$$
X=\left(S^{k} \times Y\right) \cup\left(D^{k+1} \times \partial Y\right)
$$

identified along

$$
S^{k} \times \partial Y=\partial D^{k+1} \times \partial Y
$$

Lemma 3.3. X will deformation retract onto an $(n+k+1)$-dimensional $C . W$. complex K^{*} with the following cells:

Type I. Cells obtained from the deformation of Y :

$$
\begin{array}{cl}
0 \text {-cell: } & x_{1}^{0}, \\
1 \text {-cells: } & x_{1}^{1}, x_{2}^{1}, \cdots, x_{m_{1}}^{1}, \\
\cdot \cdot \cdot \cdot & \cdot \cdots \cdot \cdots \cdot \\
(n+1) \text {-cells : } & x_{1}^{n+1}, x_{2}^{n+1}, \cdots, x_{m_{n+1}}^{n+1} .
\end{array}
$$

Type II. Cells obtained by k-spinning cells of type I:

$$
\begin{array}{cl}
k \text {-cells : } & x_{1}^{0^{*}}, \\
(k+1) \text {-cells }: & x_{1}^{1 *}, x_{2}^{1_{2}^{*}}, \cdots, x_{m_{1}}^{1 *}, \\
\cdot \\
(n+k+1) \text {-cells : } & x_{1}^{n+1^{*},}, x_{2}^{n+1^{*}}, \cdots, x_{m_{n+1}}^{n+1^{*}} .
\end{array}
$$

Type III. Cells obtained by the deformation of the "plug", $D^{k+1} \times \partial Y$:

$$
\begin{aligned}
& (k+1) \text {-cells: } x_{1}^{0 * *}, \\
& (k+2) \text {-cells: } \quad x_{1}^{1 * *}, x_{2}^{1 * *}, \cdots, x_{\mu_{1}}^{1 * *} \text {, } \\
& (n+k+1) \text {-cells: } \quad x_{1}^{n * *}, x_{2}^{n * *}, \cdots, x_{\mu_{n}}^{n * *} .
\end{aligned}
$$

The proof of Lemma 3.3 follows from the definition of k-spinning and Lemma 2.2.

Let \tilde{K}^{*} be the universal cover of K^{*}. Then the cell structure of \tilde{K}^{*} is given by the following three types:

Type $\mathrm{I}^{\prime} . \quad 0$-cells: $g \tilde{x}_{1}^{0}, \quad g \in \Pi_{1}(X) \simeq \Pi_{1}(Y)$, 1-cells: $\quad g \tilde{x}_{i}^{1} \quad\left(1 \leq i \leq m_{1}\right)$,

$$
(n+1) \text {-cells: } \quad g \tilde{x}_{i}^{n+1} \quad\left(1 \leq i \leq m_{n+1}\right) .
$$

Type II': k-cells: $\quad g \tilde{x}_{i}^{0 *}, \quad g \in \Pi_{1}(X)$, $(k+1)$-cells: $g \tilde{x}_{i}^{*^{*}} \quad\left(1 \leq i \leq m_{1}\right)$,

$$
(n+k+1) \text {-cells : } \quad g \tilde{x}_{i}^{n+1^{*}} \quad\left(1 \leq i \leq m_{n+1}\right) .
$$

Type III'. $(k+1)$-cells: $g \tilde{x}_{1}^{* * *}, \quad g \in \Pi_{1}(X)$, $(k+2)$-cells: $g \tilde{x}_{i}^{* *} \quad\left(1 \leq i \leq \mu_{1}\right)$, $(n+k+1)$-cells: $g \tilde{x}_{i}^{n *} \quad\left(1 \leq i \leq \mu_{n}\right)$.

We now observe that the boundary homorphisms of the Reidemeister homotopy chain complex of \tilde{K}^{*},

$$
0 \rightarrow C_{n+k+1}\left(\tilde{K}^{*}\right) \rightarrow \cdots \rightarrow C_{0}\left(\tilde{K}^{*}\right),
$$

are given by
Type $I^{\prime}: \quad \partial_{i}^{*}\left(g \tilde{x}^{i}\right)=g \partial_{i}^{*}\left(\tilde{x}^{i}\right)=g \partial_{i}\left(\tilde{x}^{i}\right)$,
Type $\mathrm{II}^{\prime}: \quad \partial_{i}^{*}\left(g \tilde{x}^{i}\right)=g \partial_{i}^{*}\left(\tilde{x}^{i}\right)=g\left(\partial_{i} \tilde{x}^{i}\right)^{*}$,
where if

$$
\partial_{i} \tilde{x}^{i}=\sum_{j=1}^{m_{i-1}} g_{j} \tilde{x}_{j}^{i-1},
$$

then

$$
\left(\partial_{i} \tilde{x}^{i}\right)^{*}+\sum_{j=1}^{m_{i}-1} g_{j} \tilde{x}_{j}^{i-1^{*}},
$$

(see Fig. 3.1),

Fig. 3.1
Type $\mathrm{III}^{\prime}: \quad \partial_{i}^{*}\left(g \tilde{x}^{i * *}\right)=g \partial_{i}^{*}\left(\tilde{x}^{i^{* *}}\right)=g \tilde{x}^{i *}$,
as

$$
\partial^{*}\left(\tilde{x}^{i * *}\right)=\partial\left(D^{k+1} \times \tilde{x}^{i}\right)=\left(S^{k} \times \tilde{x}^{i}\right)=\tilde{x}^{i^{*}},
$$

$H_{i}\left(\tilde{K}^{*}\right)=0(1<i \leq k)$, and

$$
H_{k+1}\left(\tilde{K}^{*}\right)=\left(x_{\mu_{1}+1}^{1 *}, x_{\mu_{1}+2}^{1^{*}}, \cdots, x_{m_{1}}^{1^{*}}: \partial_{2}^{*} x_{1}^{2 *}, \cdots, \partial_{2}^{*} x_{m_{2}}^{2 *}\right) .
$$

In particular, ∂_{2}^{*} is given by the Fox free derivatives [5]. Hence by the Hurewiz theorem

$$
\Pi_{n}(X)=\Pi_{n}\left(K^{*}\right)=\Pi_{n}\left(\tilde{K}^{*}\right)=H_{n}\left(\tilde{K}^{*}\right) \quad(1<n \leq k+1)
$$

as a $Z \Pi_{1}$-module, and our theorem is proved for one particular presentation of $\Pi_{1}(X)$. The general theorem will follow from the following two lemmas
which show that the Tietze I and II operations on the presentation of $\Pi_{1}(X)$ induce Tietze I and II operations on $\Pi_{k+1}(X)$ as a $Z \Pi_{1}$-module.

Lemma 4.3. If a relation s is a consequence of

$$
F=\left(r_{1}, r_{2}, \cdots, r_{m}\right)
$$

then $\partial s / \partial x$ is a consequence of

$$
\partial F / \partial x=\left(\partial r_{1} / \partial x, \partial r_{2} / \partial x, \cdots, \partial r_{m} / \partial x\right)
$$

where s is the relation.
Proof. In $Z F$ we have

$$
\begin{aligned}
\partial s / \partial x= & \partial\left(\prod_{k=1}^{p} u_{k} r_{i_{k}}^{a_{k}} u_{k}^{-1}\right) / \partial x \\
= & \partial\left(u_{1} r_{i_{1}}^{a_{1}} u_{1}^{-1}\right) / \partial x+\left(u_{1} r_{i_{1}}^{a_{1}} u_{1}^{-1}\right) \partial\left(u^{2} r_{i_{2}}^{a_{2}} u_{2}^{-1}\right) / \partial x \\
& +\cdots+\prod_{k=1}^{p}\left(u_{k} r_{i_{k} k}^{a_{k}} u_{k}^{-1}\right) \partial\left(u_{p} r_{i_{p}}^{p_{p}} u_{p}^{-1}\right) / \partial x,
\end{aligned}
$$

but as $r_{i} \rightarrow 1$ in $Z \Pi_{1}$ and identifying $\partial s / \partial x$ with its image in $Z \Pi_{1}$ we obtain

$$
\partial s / \partial x=\sum_{k=1}^{p} \partial\left(u_{k} r_{i_{k}^{k}}^{a_{k}} u_{k}^{-1}\right) / \partial x .
$$

Since

$$
\frac{\partial}{\partial x}\left(u_{k} r_{i_{k}}^{a_{k}} u_{k}^{-1}\right)=\frac{\partial u_{k}}{\partial x}+\frac{u_{k}\left(r_{i_{k}}^{a_{k}}-1\right)}{r_{i_{k}}-1} \frac{\partial r_{i_{k}}}{\partial x}-u_{k} r_{i_{k}}^{a_{k}} u_{k}^{-1} \frac{\partial u_{k}}{\partial x}
$$

and

$$
\left(r_{i_{k}}^{a_{k}}-1\right) /\left(r_{i_{k}}-1\right)=a_{k},
$$

we have

$$
\partial\left(u_{k} r_{i k}^{a_{k} u_{k}} u_{1}^{-1}\right) / \partial x=a_{k} u_{k} \partial r_{i_{k}} / \partial x,
$$

so that

$$
\partial s / \partial x=\sum_{k=1}^{p} a_{k} u_{k} \partial r_{i_{k}} / \partial x .
$$

Lemma 4.4. The Tietze II operation on $\Pi_{1}(Y)$ induces a Tietze II or the iedntity operation on $\Pi_{k+1}(X)$ as a left $Z \Pi_{1}$-module depending on whether e is in the interior of Y or on its boundary.
Proof. Consider the Tietze II operation

$$
\mathrm{II}: \quad(\bar{x}, \bar{r}) \rightarrow\left(\bar{x} \cup y: \bar{r} \cup y e^{-1}\right),
$$

where y is a member of the underlying set of generators not contained in \bar{x}. Suppose that e is not on the boundary of Y, then it remains to show that

$$
\begin{aligned}
\Pi_{k+1}^{\prime}= & \left(x_{\mu_{1}+1}^{*}, x_{\mu_{1}+2}^{*}, \cdots, x_{m}^{*}, y^{*}:\right. \\
& \left.\sum_{j=\mu_{1}+1}^{m} \frac{\partial r_{i}}{\partial x_{j}}\left(x_{j}^{*}+y^{*}\right), \sum_{j=\mu_{1}+1}^{m} \frac{\partial y e^{-1}}{\partial x_{j}} x_{j}^{*}+\frac{\partial y e^{-1}}{\partial y} y^{*}\right)
\end{aligned}
$$

is obtained from

$$
\Pi_{k+1}=\left(x_{\mu_{1}+1}^{*}, x_{\mu_{1}+2}^{*}, \cdots, x_{m}^{*}: \sum_{j=\mu_{1+1}}^{m}\left(\partial r_{i} / \partial x_{j}\right) x_{j}^{*}\right)
$$

by a Tietze II operation. But as r and e do not contain any factor equal to y as a member of the free group on elements of \bar{x}, we have that $\partial r_{i} / \partial x_{j}=0$ ($i=1,2, \cdots, p$) and further that

$$
\sum_{j=\mu_{1}+1}^{m} \frac{\partial y e^{-1}}{\partial x_{j}} x_{j}^{*}+\frac{\partial y e^{-1}}{\partial y} y^{*}=y \sum_{y=\mu_{1}+1}^{m} \frac{\partial e^{-1}}{\partial x_{j}} x_{j}^{*}+y^{*},
$$

and the result follows. If, on the other hand, e were on the boundary, then $\left(\partial e^{-1} / \partial x_{j}\right)=0$ for all j, and hence Π_{k+1}^{\prime} has the same presentation as Π_{k+1}.

5. Application

In particular we note that if we k-spin a 1 -dimensional ball configuration, which is geometrically unsplittable and intersects ∂B^{3}, then the complex K is always aspherical (see [8]), and further the 2 -dimensional C. W. complex K will have one vertex p, n edges $x_{1}, x_{2}, \cdots, x_{n}$ and $n-\mu$ faces $r_{\mu+1}, r_{\mu+2}, \cdots, r_{n}$ as ∂Y is a surface of genus μ, so that

$$
\chi(K)=\chi\left(S^{3}-K_{\mu}^{1}\right)=\frac{1}{2} \chi\left(\partial\left(S^{3}-K_{\mu}^{1}\right)\right)=1-\mu .
$$

Application 5.1. Two linked knotted two-spheres in the four-sphere.
We obtain yet a third proof (the first given in Van Kampen [13] and the second given in Shinohara and Sumners [10]) that the two unknotted 2-spheres obtained by 1 -spinning the ball configuration in Fig. 5.1 are not isotopically splittable as

$$
\Pi_{1}\left(B^{3}-K_{2}^{1}\right)=\left(a, b, x: x a x^{-1} b^{-1} a x a^{-1} b^{-1} a x^{-1} a^{-1} b\right)
$$

Also

$$
\Pi_{2}\left(S^{4}-L_{2}^{2}\right)=\left(X:\left(1-b^{-1} a-x a x^{-1}+x a x^{-1} b^{-1} a\right) X\right)
$$

and $\Pi_{2}\left(S^{4}-L_{2}^{2}\right)$ is nontrivial as it can be mapped onto the integers. However, if S_{1}^{2} and S_{2}^{2} were isotopically splittable, then $S^{4}-L_{2}^{2}$ would deformation retract to $S^{1} \vee S^{1} \vee S^{3}$, and hence $\Pi_{2}\left(S^{4}-L_{2}^{2}\right)=0$.

Fig. 5.1
Application 5.2. An Unknotted two-sphere linked with a knotted twosphere in the four-sphere.

We give a proof that k-spinning the ball configuration as given in Fig. 5.2 is not isotopically splittable. Artin [3] originally showed this to be true for

Fig. 5.2
1 -spinning, and later Andrews and Curtis [1] showed that the 2 -spheres obtained by 1 -spinning K_{2}^{1} were not homotopically splittable. We note that if the two ($k+1$)-spheres obtained by k-spinning were isotopically splittable, then

$$
\Pi_{k+1}\left(S^{k+3}-L_{2}^{k+1}\right)=0 .
$$

However,

$$
\begin{aligned}
\Pi_{k+1} \longrightarrow \Pi_{k+1} \otimes_{Z \Pi_{1}} Z J(t) & =\left(X:\left(t+t^{-2}-t^{-1}\right) X\right) \\
& =\left(X:\left(t^{3}-t-1\right) X\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Z J /\left(t^{3}-t+1\right) \\
& =Z \otimes Z \otimes Z \quad(\text { see }[12])
\end{aligned}
$$

where

$$
\begin{aligned}
& \Pi_{1}\left(B^{3}-K_{2}^{1}\right)=\left(a, b, x: x^{-1} b^{-1} x b a x a^{-1} b^{-1}\right) \\
& \quad \Pi_{k+1}\left(S^{k+3}-L_{2}^{k+1}\right)=\left(X:\left(b a x^{-1}+x^{-1} b^{-1}-x^{-1}\right) X\right)
\end{aligned}
$$

References

[1] J. J. Andrews \& M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. 70 (1959) 565-571.
[2] J. J. Andrews \& S. J. Lomonaco, The second homotopy group of spun 2-spheres in 4-space, Bull. Amer. Math. Soc. 75 (1959) 169-171.
[3] E. Artin, Zur Isotopie Zweidimensionaler Flächen im R^{4}, Abh. Math. Sem. Univ. Hamburg 4 (1925) 174-177.
[4] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc., Math. Phys. Sci. 56 (1960) 215-219.
[5] R. H. Fox, Free differential calculus. I, Derivation in the group ring, Ann. of Math. 57 (1963) 547-560; II, The isomorphism problem of groups, Ann. of Math. 59 (1954) 196-210; III, Subgroups, Ann. of Math. 64 (1956) 407-414.
[6] S. J. Lomonaco, The second homotopy group of a spun knot, Topology 8 (1969) 95-98.
[7] W. A. McCallum, The second homotopy group of spun links, Proc. Amer. Math. Soc. to appear.
[8] C. D. Papakyriakopoulous, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1-26.
[9] K. Reidemeister, Complexes and homotopy chains, Bull. Amer. Math. Soc. 56 (1950) 297-307.
[10] Y. Shinohara \& D. W. Sumners, Homology invariants of cyclic coverings with applications to links, Trans. Amer. Math. Soc. 163 (1972) 101-121.
[11] D. W. Sumners, On an unlinking theorem, Proc. Cambridge Philos. Soc., Math. Phys. Sci. 71 (1972) 1-4.
[12] , Polyhedral invariants and the integral homology of coverings of knots and links, Invent. Math. 15 (1972) 78-90.
[13] E. H. Van Kampen, Zur Isotopie Zweidimensionaler Flächen im R^{4}, Abh. Math. Sem. Univ. Hamburg 6 (1927) 216-221.

Kansas State University

[^0]: Received November 11, 1974, and, in revised form, January 27, 1975.

