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In the first part of this paper we study the asymptotic cone of an im-
mersion Mn —» Mn+1(c), and prove that such an immersion is minimal if
and only if there exist n orthogonal asymptotic directions ut. This will imply
that the sectional curvatures K(ut, u3) are less than or equal to c. This is a
stronger version of a theorem stating that the Ricci curvature is less than or
equal to (n — l)c for a minimal immersion, and gives a metric condition for Mn

to be immersed minimally in Mn+\c). This can be generalized to the case of
codimension p if the curvature of the normal bundle vanishes.

In the second part of this paper we classify all conformally euclidean mini-
mal hypersurfaces of euclidean space, and show that there is only one surface
of revolution, a generalized catenoid, which belongs to this class. All results in
this paper are of local nature.

1. Preliminaries

We consider an n-dimensional manifold Mn immersed or imbedded in an
(n + p)-dimensional manifold Mn+P(c) of constant sectional curvature c: Mn->
Mn+P(c). The metric on Mn+p and its Levi-Civita connection D induce a
Riemannian metric on Mn, both metrics being denoted by <( , ), and its Levi-
Civita connection F. We denote the normal bundle of the immersion by N(M),
tangent vectors to Mn by u, v, w, x, y, tangent vectors to MB + J ) by Z, Y, Z, W,
and normal vectors to Mn by ξ, η,

The curvature tensor of Mn is denoted by R(u, v)w, the sectional curvature by
K(u, v), the Ricci curvature by Ric (u, v), and the scalar curvature by S. A
splitting into the tangent and normal parts gives:

Duξ = -Aξu + V^ξ ,

where Aξ is the second fundamental form, and VL is a connection in the nor-
mal bundle whose curvature is denoted by RL(u, v)ζ.
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In this paper we need two of the imbedding equations one is the Gauss
equation:

<R(u, v)w, x> = c«v, w>(u, x} - <u, w}<v, *»

+ Σ <4U(V), wχAtt(μ)9x> - <Au(μ), w}(Aξi(v), x) ,
i

f u 9 ζp being an orthonormal basis of the normal space, and the other one
is the Ricci equation:

ζRHu, v)ξ,?> - <χAζ,Av-\u,vy ,

where [Aζ,Av] = AξoAη — AηoAξ. The Codazzi equation is not needed here.
The use of the Ricci equation gives that if the curvature RL of the normal bundle
vanishes, then [Aζ,Av] = 0 which means that all the Aζ can be diagonalized
simultaneously, independent of the normal ξ. For codimension 1 we write A
instead of Aξ where ξ is a locally chosen normal. The mean curvature normal
η is defined by

trace Aξ = <£, rf) for all normals ξ .

We also need the contracted version of the Gauss equation, which gives the Ricci
curvature and scalar curvature in terms of the second fundamental form. This is
easily seen to be:

Ric (u, v) = (n- l)c<w, v> + Σ <Au(u), v> trace Au - <Au(u), Aζ.(v)> ,Σ

In the case of a minimal submanifold, i.e., η = 0, these equations show the
following well-known theorem (see e.g. [8]).

Theorem 1. // Mn —> Mn+P(c) is a minimal immersion, then the Ricci
curvature and scalar curvature satisfy

Ric («, v) < (n - l)c<w, v} , S < n(n - l)c ,

and the equality holds everywhere if and only if Mn is totally geodesic in
Mn+P(c).

This is the only known metric restriction for Mn to have a minimal immer-
sion in Mn+P(c). In § 3 we shall prove a somewhat stronger condition on the
sectional curvature.

We now recall a few other known theorems for 1-codimensional immersions,
which we will need later. One defines the type number t(p) by t(p) = rankv4(p)
where A is the second fundamental form. The following is a theorem of Beez
(see [ l , p . 368]).

Theorem 2. For an immersion Mn —> Mn+ί(c) the type number is an inner
geometric invariant, i.e., can be expressed in terms of the curvature operator
(except that the two cases t(p) = 0 and t(p) = 1 cannot be distinguished since
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in both cases the curvature is 0). // t(p) > 3 for all p, then the immersion is
rigid {already locally), i.e., there exist no other immersions of Mn into Mn+1(c)
except the given one composed with isometries of the ambient space. If t(p)
< 2 for all p, then there do exist other immersions.

Theorem 3. Suppose that Mn —> Mn+1(c) is a minimal immersion.
(i) If c < 0, then Mn cannot have constant sectional or Ricci curvature

unless it is totally geodesic.
(ii) If c> 0, then Mn cannot have constant sectional curvature unless it

is totally geodesic, and if the Ricci curvature is constant then Mn is locally
a product of two spaces of constant curvature. If in addition Mn+1(c) is the unit
(n + l)-sphere Sn+1, then the immersion is the standard one of Mn — Sm(*/m/ri)
X Sn~m(V(n — m)ln) into Sn+ι as a minimal hyper surf ace where Sr(k) is an
r-sphere of radius k. (See [3] or [ l , ρ . 386].)

From the Gauss equations follows easily (see [9, p. 200])
Theorem 4. // Mn —> Mn+1(c) satisfies Ric (w, v) = 0 for all u,v, then

K(u, v) = 0 for all u, v.

2. The asymptotic cone

In this section Mn+v need not be of constant sectional curvature. If u <~ TPM
with (Aζ(u), w> = 0 then u is called an asymptotic direction with respect to ξ.
The set of asymptotic directions in TPM with respect to a fixed ξ is clearly a
cone, i.e., with respect to u also λu is an asymptotic direction. This set is
called the asymptotic cone.

Theorem 1. Suppose that Mn —> Mn+p is a minimal immersion, and ξ a
fixed normal vector.

(i) // (Aξ(u), vy is positive or negative semidefinite, then the asymptotic
cone is a linear subspace of TpM of dimension equal to the dimension of the
kernel of Aζ.

(ii) // (Aξ{u), Vs) is indefinite, then the asymptotic cone consists of the
linear subspace keτ Aξ, orthogonal to it a cone, which is not contained in any
lower dimensional linear subspace, and all sums of both kinds of vectors. This
cone is a differentiate (n — lydίmensional submanifold of TVM except at the
points of ker Λξ.

Proof, ( i) is clear.

(ii) The last statement follows from the fact that the function /: (TPM —
ker Aζ) —> R given by /(«) = (Aξ(u), u} has 0 as a regular value 0 actually
appears as a value of / since (Aξ(u), v} is indefinite. The part of the asymp-
totic cone orthogonal to ker^4 f is not contained in any linear subspace, since
the asymptotic vectors would otherwise form a (n — l)-dimensional linear sub-
space V71-1 of TPM and <Aξ(μ)9 v} = 0 for u,ve Vn~ι. Therefore there exists
an (n — 2)-dimensional subspace Wn~2 of Vn~ι contained in ker^l f . But this
cannot be possible since then Aξ restricted to WL would have only one asymp-
totic direction.
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Corollary 1. // (Aξ(μ), Vs) is indefinite, then there exist n linearly inde-
pendent asymptotic directions with respect to ξ. This is especially the case if
trace Aξ = 0.

Theorem 2. There exist n orthogonal asymptotic directions with respect to
ξ if and only if trace Aς = 0.

Proof. If n orthogonal asymptotic directions exist, then clearly trace Aξ —
0. If trace Aζ = 0, we do induction on n. If n = 2, let u,v be the two
orthogonal eigenvectors otAξ: Aξ(u) = λu, Aξ(v) = μv, trace Aξ = λ + μ =
0. Then x = u + v,y = u — v are two orthogonal asymptotic directions
since (Aξ(μ + v), u + v} = λ + μ = (Aξ(u — v), u — Vs) = 0, (u + v, u —
#> = 0. Now we want to prove the number of orthogonal asymptotic directions
to be n. By Corollary 1 there exists an asymptotic direction x: (Aζx,x) = 0.
Take the linear subspace W c TPM orthogonal to x. Then there exists a
symmetric linear mapping Aζ: W—>W denned by: (Aξ(ύ),vy = (Aξ(u),vy
for all w,?; € Wand trace -4e = Σ i <iϊ e (M i ), w*>=Σ*<Λ(w*)> w<>=—<4 *(*),*>
= 0 ({wj is an orthonormal basis of W), and by induction hypothesis there
exist n — 1 orthogonal asymptotic directions of Aξ which are also asymptotic
directions of Aξ.

Corollary 2. Mw —»Mw + 1 w minimal if and only if there exist n orthogonal
asymptotic directions. (See also [10, p. 24].)

Remark. If the codimension is greater than 1, then the asymptotic cones
for different ξ are different in general and coincident in special cases as fol-
lows : If M2-+M2+p is a minimal immersion, and ξ, η are fixed normal vectors
with [Aζ,Av] = 0, trace Aζ = t raced, = 0 and Aζ Φ 0, Aη Φ 0, then the
asymptotic cones of Aξ and Aη coincide, In fact, ker Aξ = ker Aη = 0 and the
asymptotic cones consist of u + v, u — v where u, v are the common eigen-
vectors of Aζ and Av. For n > 2 this statement becomes false, even if one
assumes ker^4 f = k e r ^ in addition.

Theorem 2 can be generalized in this direction as follows:
Theorem 3. // Mn —> Mn+P is a minimal immersion, [Aξ,Av] = 0 and

trace Aς = 0 for all ξ,η. Then there exist n orthogonal vectors which are
asymptotic with respect to all ξ.

Proof. If n = 2, then the claim follows as in Theorem 2 since all Aξ have
the same eigenvectors. To do the induction, take ut to be the common eigen-
vectors of all Aξ. Then x = Σ« u% is a n asymptotic direction with respect to all
ξ. Take W orthogonal to x, and define Aξ as in Theorem 2. Then [Aξ, Aη] =
trace Aξ = 0, and by assumption there exist n — 1 orthogonal vectors in W
asymptotic with respect to Aζ and therefore also with respect to Aξ.

Remark. For n = 2 the conclusion also follows from [11] (if M n + ^ =
Mn+P(C)) since then M2 lies in a 3-dimensional totally geodesic subspace of Mn+p.
It is not true, if we assume only [Aζ,Av] = 0, that there exist n linearly in-
dependent vectors asymptotic with respect to all Aξ.
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3. Curvature properties of minimal submanifolds

Theorem 1. Suppose that Mn —» Mn+1(c) is an immersion.
(i) (A(u), Vs) is semidefinite if and only if K{u, v) > c for all u, v e TPM.
(ii) Suppose that (A(u), v)> is indefinite. Then for any u, v in the asymp-

totic cone, K(u, v) < c and K(u, v) < c // and only if u + v is not asymptotic.
Proof, (i) Let ut be the eigenvectors of A, i.e., A{u^ = λiUt. Then one

shows easily through the Gauss equations that K(u, v) > c for all u, v if and
only if K(ui9 Uj) > c for all i, j . But from the Gauss equation it follows

K(ut, Uj) = (RijUi, UJ)UJ, uty = c + ^A(ut)9 u^Aiuj), Uj} = λjj + c .

If K(ui9 Uj) > c, then λjj > 0 and therefore all λt > 0 or all λt < 0. If on the
other hand all λt > 0 or < 0, then K(ut, Uj) > c and from the above remark
it follows that K(u, v) > c for all u, v.

(ii) If <A(u), u} = <A(v), v} = 0, then K(u, v) = c - <A(u), v>2 < c,
and if <A(u + v), u + v} = 2(A(u), v} Φ 0 then K(u, v) < c.

From Corollary 1 of § 2 follows
Corollary 1. // ζA(u),vy is indefinite, then there exist n linearly inde-

pendent ut with K(ut, Uj) < c. If in addition ker A = 0, then there exist n
such Uι with K(ut, u3) < c.

From Corollary 2 of § 2 follows
Theorem 2. // Mn —» Mn+1(c) is a minimal immersion so that trace A = 0,

then there exist n orthogonal vectors ut such that K(ut, u3) < c.
In view of Theorem 1 of § 1, Ric (u )̂ < (n — l)c in this case. Since Ric (u^

— Σij Kiμi, Uj) for ut orthonormal, Theorem 2 is stronger than the correspond-
ing theorem with a condition on the Ricci curvature, and gives a metric con-
dition for Mn to have a minimal immersion. One can generalize this to the case
of codimension p.

Theorem 3. // Mn —> Mn+P(c) is a minimal immersion with R1- = 0, then
there exists a basis {wj of TPM with K(ut, u3) < c and (uu u/} = 0.

Proof. According to the Ricci equations of § 1 the conditions of Theorem
3 of § 2 are satisfied, so that there exist n vectors ut which are asymptotic with
respect to all Aξ. Thus the Gauss equations imply K(ut, u3) < c.

From K(ut, u3) < c for all i, j it does not follow that K(u, v) < c for all u,
v since ut, uό are not eigenvectors of A. In fact, K(u, v) < c is a very strong
condition:

Theorem 4. Suppose that Mn-+Mn+1(c) is a minimal immersion. If K(u, v)
< c for all u, v e TpM then rank A < 2.

Proof. If A(ut) = λiUi9 then K(ut, u3) = c + λiλj. From K{ui, u3) < c it
follows that λtλj < 0, and only two of the λt can be distinct from 0, for other-
wise the sign of the λt cannot be chosen properly. Therefore rank A < 2.

Corollary 2. Suppose that Mn —» Mn+1(c) is a minimal immersion. Then
K(u, v) < c for all u, v if and only if rank A — 2 or 0.

Proof. If rank A = 1, then trace A Φ 0. On the other hand, if rank A = 0,
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then K(u, v) = c for all u, v if rank A = 2, then the eigenvalues of A are
λ, — λ,0, and the sectional curvatures Kζu^Uj) = —λ2 + c or c. Therefore
K(ut, Uj) < c, and K(u, v) < c for all u, v € TPM.

This corollary characterizes the minimal immersions Mn —> Mn+1(c) with
sectional curvatures < c (except the totally geodesic ones) as the ones with
type number 2, and by the theorem of Beez, Theorem 2 of § 1 these are non-
rigid.

To conclude this paragraph we propose a question with some partial results.
In Theorem 3 of § 1 we saw that there exist no minimal immersions Mn —•
Mn+1(c), c < 0, of constant sectional or Ricci curvature. Do there exist mini-
mal immersions of constant scalar curvature? The next theorem gives a partial
result.

Theorem 5. / / Mn -> Mn+1(c), c < 0, is a minimal immersion, rank A = 2,
or n — 1 of the eigenvalues of A are equal, then the scalar curvature S cannot
be constant, except for totally geodesic Mn.

Proof. Since S = n(n - l)c + \\η\\2 - \\A ||2 and \\A ||2 = Σt %> i f h are the
eigenvalues of A, then S = n(n — \)c — Σ Ά- If rank ,4 = 2, then λ, —λ,
0 are the eigenvalues of A. Therefore S = n(n — l)c — 2λ2. If S = constant,
then λ = constant. But according to [ 1 ] there can be only two different eigenvalues
of A if the eigenvalues are constant. Thus λ = 0 and A = 0. If the eigenvalues
of A are λ with multiplicity n — 1 and — (n — 1)Λ, then S = n(n — l)c —
n(n — l)λ2 and again λ = constant. Therefore all eigenvalues of A are constant
again, and [1, p. 374] shows that (n — l)λ2 = c < 0. Hence λ = 0 and A =0.

One would hope to prove that in the other cases the scalar curvature can-
not be constant either. But the only thing we found is the following. From the
equation for the scalar curvature it follows that \\A\\ is constant. Now one can
use an equation of Simon's type [7, p. 372] to conclude that \\FA || is constant,
and also the norms of the higher covariant derivatives are constant. But this
information does not seem to help very much. As Theorem 3 of § 1 shows, the
situation is completely different if c > 0. See also [6].

4. Conformally euclidean minimal hypersurfaces

In this section we classify all conformally euclidean minimal hypersurfaces of a
euclidean (n+ l)-space Rn+1, n>4. One starts with a theorem of Schouten [12]:

Theorem 1. // Mn —• Rn+1, n > 4, is a conformally euclidean immersion,
then at least n — 1 of the eigenvalues of A are equal.

If one assumes now that the immersion is also minimal, then the eigen-
values of A must be λ with multiplicities n — 1 and — (n — l)λ. Note that,
unless A = 0, rank A = n so that such hypersurfaces are rigid. If one looks
for examples of this sort, one first thinks of hypersurfaces obtained by rotating
a plane curve. In more detail let x1 = u, x2 = /(«) be a curve in the jt^-plane
lying in the half space xλ > 0. If Rn+1 has coordinates xl9 , jcn+1, then one
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can let this curve rotate around the Jt2-axis, and thus obtain a hypersurface in
Rn+1. In a chart (w, φl9 , φn_ύ this would look like:

xγ — u cos φ1 , x2 — f(u) , xz — u sin φλ cos φ2, ,

xn = u sin φγ - cos p n - 1 , xn + 1 = zi sin ^ sin φn_γ .

One can easily see from the geometry of the situation that the coordinate
directions are all eigenvectors of A and the eigenvalues of the ^-directions
are all the same. Therefore, according to Theorem 1, all such hypersurfaces
of revolution are conformally euclidean. We will now give the eigenvalues ex-
plicitly :

f f
λ = Vd + f 2 ) 3 ' μ =

the second one being of multiplicity n — 1. They are just the same as those
for surfaces of revolution in R* and can be determined in the same way. If one
requires that the hypersurface be minimal, / has to satisfy the differential equa-
tion

— VTTT2 tτaceA = ri—A + -£1 - JllL^ = 0 ,
f u f 1 + f2

integration of which gives f = a(u2n~2 — a2)'*. For n = 2 this is the catenoid
in R*, which is known to be the only minimal hypersurface of revolution in R3.
For n > 2 this is a generalized catenoid, the curve / being steeper as n is larger.
We have therefore proved

Theorem 2 The only minimal hypersurface of revolution (except the hy-
per plane) in euclidean space is the generalized catenoid.

The generalized catenoid is also a conformally euclidean minimal hypersur-
face. We now prove

Theorem 3. The generalized catenoid is the only conformally eeuclidean
minimal hypersurface {except the hyper plane) in Rn+1, n > 4.

Proof. A classification of Kulkarni [2] states that a conformally euclidean
hypersurface belongs locally to one of the following 4 types:

1. A = 0 or rank^4 = 1, and therefore K(u, v) = 0 for all w, v.
2. A = A-Id, and therefore Mn = Sn.
3. The above surfaces of revolution.
4. A tube of constant length around a curve in Rn+ι.

Clearly a minimal hypersurface (except the hyperplane) does not belong to
type 1 or 2. It does not belong to type 4 either, since there φ e vectors, tangent
to the tube but orthogonal to the curve, are n — 1 eigenvectors of A with the
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same constant eigenvalue. Therefore the last eigenvalue of A has also to be

constant, and the argument used in the proof of Theorem 5 of § 3 shows that

this is impossible.

But we have already shown that the only minimal hypersurf ace which belongs

to type 3 is the generalized catenoid.

Remark. Theorems 1 and 3 are false for n = 3. In fact, one can show that

the cotton tensor [9, p . 92] of the above described catenoid M3 -» R* does not

vanish identically, so that M3 is not conformally euclidean, although two of the

eigenvalues of A are equal.

One can given another interesting example of surfaces of revolution. In

Theorem 4 of § 1 we saw that for an immersion Mn -> Rn+1 if Ric = 0 then

K = 0. One then asks if there exists a hypersurf ace of Rn+1 with zero scalar

curvature but nonzero sectional curvature. This is indeed the case. An example

is a surface of revolution. From S = \\η\\2 - \\A\\2 = (Σi*i)2 ~ ΣiΆ =

ΣiΦj λiλj, where λt are the eigenvalues of A, it follows that if λ, μ are the two

eigenvalues of A as above, then

If one requires S = 0, then one has the differential equation / " — — ?——
2w

•f (1 + f2) with the solution f = ±{aun~2 — 1)~*. This is a surface of revolu-

tion with S = 0 and K Φ 0.
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