MANIFOLDS WITH HOLONOMY GROUP $Z_2 \oplus Z_2$ AND FIRST BETTI NUMBER ZERO

PETER V. Z. COBB

In 1957 E. Calabi [1] announced an approach to the classification of flat compact Riemannian manifolds wherein he proved that any *n*-dimensional flat compact Riemannian manifold with first Betti number q can be constructed from a torus of dimension q and a flat compact Riemannian manifold of dimension n - q. The manifolds which are primitive in this approach are therefore those with first Betti number zero. In this paper we construct a rather large family of flat compact Riemannian manifolds with holonomy group isomorphic to $Z_2 \oplus Z_2$, all of which have first Betti number zero. The approach is algebraic, via well-known theorems concerning the classification of flat compact Riemannian manifolds by their fundamental groups.

1. Preliminaries

Let G be an abstract group. We will call G a space form group of dimension p if

i. G is torsion-free,

ii. G contains a normal subgroup N_G which is maximal abelian in G,

iii. N_G is free abelian of rank p,

iv. G/N_G is finite.

We will need the following theorems which are all paraphrased from [2, Chapter 3].

Theorem. An abstract group G is the fundamental group of a flat compact Riemannian manifold of dimension p if and only if G is a space-form group of dimension p. If G is a space-form group, then N_G is uniquely determined and the holonomy group of the manifold is isomorphic to G/N_G .

Theorem. Two flat compact Riemannian manifolds are affinely equivalent if and only if they have isomorphic fundamental groups.

We fix the following notation. Let *n* be a positive integer. A_n will denote a fixed set of cardinality 4n, i.e., $A_n = \{a_1, \dots, a_{4n}\}$. P_n will denote the group of permutations of the set A_n . (I.e., P_n is isomorphic to the symmetric group on 4n symbols.) T_n will denote the free abelian group generated by the set A_n . Finally, E_n will denote the semi-direct product of T_n with P_n via the obvious action of P_n on T_n .

Received February 1, 1974.

Our object is to identity certain subgroups of E_n as space-form groups. We will make use of the following subset of T_n :

$$V_n = \{u_i | u = r, s, \text{ or } t, 0 \le i \le n - 1\},\$$

where

$$r_i = a_{4i+1} + a_{4i+2} - a_{4i+3} - a_{4i+4} ,$$

$$s_i = a_{4i+1} - a_{4i+2} + a_{4i+3} - a_{4i+4} ,$$

$$t_i = a_{4i+1} - a_{4i+2} - a_{4i+3} + a_{4i+4} .$$

A trivial orthogonality argument yields the following lemma. Lemma. V_n is a linearly independent subset of T_n .

2. The construction

Define X and Y in P_n to be the permutations:

$$X(a_i) = \begin{cases} a_{i+1}, & i \text{ odd }, \\ a_{i-1}, & i \text{ even }; \end{cases}$$
$$Y(a_i) = \begin{cases} a_{i+2}, & i \equiv 1 \text{ or } 2 \pmod{4}, \\ a_{i-2}, & i \equiv 0 \text{ or } 3 \pmod{4}. \end{cases}$$

The subgroup of P_n generated by X and Y is easily seen to be isomorphic to $Z_2 \oplus Z_2$.

Since $E_n = T_n^* P_n$, we can define elements of E_n :

$$x = (a_1 - a_3, X)$$
; $y = (a_1 - a_4, Y)$.

Notice that $x^2 = r_0$ and $y^2 = s_0$.

Let U be a subset of V_n , such that $\{r_0, s_0, t_0\} \subseteq U$. Denote the cardinality of U by P_U , and define G_U to be the subgroup of E_n generated by x, y, and U, where we identify T_n with its image in E_n .

Proposition 1. G_U is a space-form group of dimension p_U with holonomy group isomorphic to $Z_2 \oplus Z_2$ and first Betti number zero.

Proof. The following relations can be verified by simple, direct computation (all operations are written multiplicatively):

1.1)
$$x^2 = r_0, y^2 = s_0, (yx)^2 = t_0^{-1};$$

1.2)
$$xy = yxr_0^{-1}s_0t_0$$
;

1.3)
$$r_i x = x r_i, \ s_i x = x s_i^{-1}, \ t_i x = x t_i^{-1},$$

 $r_i y = y r_i^{-1}, \ s_i y = y s_i, \ t_i y = y t_i^{-1},$ for $0 \le i \le n - 1$.

Let H_U be the subgroup of G_U generated by U. By the lemma, H_U is free

222

abelian of rank p_U , and H_U is normal in G_U by 1.3). If z is in G_U , it follows easily from 1.1), 1.2), and 1.3) that z can be written uniquely in the form:

1.4) z = wh, with $w \in \{1, x, y, yx\}$ and $h \in H_U$.

Hence G_U/H_U is isomorphic to $Z_2 \oplus Z_2$.

From 1.3) and 1.4) it follows that H_U is its own centralizer in G_U and, a fortiori, maximal abelian in G_U .

 $H_1(G_U; \mathbb{Z}) \cong G_U/[G_U, G_U]$, but 1.1) and 1.3) imply that $G_U/[G_U, G_U] \cong (\mathbb{Z}_4)^2 + (\mathbb{Z}_2)^{p_U-3}$. Hence $H_1(G_U; \mathbb{Z})$ is a finite group so that G_U has first Betti number zero. The proposition will therefore be established if we can show that G_U is torsion-free.

Suppose the contrary. Then there exists z in G_U , $z \neq 1$, and $n \geq 2$ such that $z^n = 1$. Using 1.4) and the fact that H_U is torsion-free, we can assume that z = wh where h is in H_U and w = x, y, or yx. Then $z^2 = w^2(w^{-1}hw)h$ which is in H_U . Since H_U is torsion-free, it follows that n must be even and that in fact $z^2 = 1$. Let u_0 denote w^2 . Then u_0 is in U, and the elements of U form a basis for H_U . Let q be the exponent of u_0 when h is expressed as a word in the elements of U. Using 1.3) one can easily see that $z^2 = whwh = w^2u_0^{2q}h' = u_0^{2q+1}h'$, where h' is in the span of $U - \{u_0\}$. But u_0^{2q+1} cannot equal 1, hence $z^2 \neq 1$. This is a contradiction. Hence G_U is torsion-free.

3. Remarks

We wish to investigate the manner in which the choice of n and U in the above construction affects the isomorphism class of G_U .

Let $\mathscr{U} = \{(n, U) | n \ge 1; \{r_0, s_0, t_0\} \subseteq U \subseteq V_n\}$. Let J denote the set of unordered triples of positive integers. Define a function $d: \mathscr{U} \to J$ by the rule; $d(n, U) = \langle d_r(U), d_s(U), d_t(U) \rangle$, where $d_r(U)$ (resp. $d_s(U), d_t(U)$) denotes the number of r_i 's (resp. s_i 's, t_i 's) in U.

Proposition 2. Let (n, U) and (n', U') be in \mathcal{U} . Then G_U is isomorphic to $G_{U'}$ if and only if d(n, U) = d(n', U').

Proof. If d(n, U) = d(n', U'), one can easily construct an isomorphism from G_U to $G_{U'}$ using an appropriate bijection from U to U' and an appropriate automorphism of $Z_2 \oplus Z_2$. We omit the details.

To prove the other implication, notice that G_U determines a unique integral representation of $Z_2 \oplus Z_2$ in $H_U \cong Z^{p_U}$. The relations 1.3) tell us that this representation is completely reducible to a direct sum of one-dimensional representations. But it is clear that these representations cannot be equivalent if $d(n, U) \neq d(n', U')$, since the eigenvalue patterns will be different.

Corollary. The number of affine equivalence classes of n-dimensional flat compact Riemannian manifolds with first Betti number zero and holonomy group $Z_2 \oplus Z_2$ is at least equal to the cardinality of the set $\{(n_1, n_2, n_3) \in Z^3 | 1 \le n_1 \le n_2 \le n_3, n_1 + n_2 + n_3 = n\}$.

PETER V. Z. COBB

References

- E. Calabi, Closed, locally euclidean, 4-dimensional manifolds, Bull. Amer. Math. Soc. 63 (1957) 135.
 J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

FORDHAM UNIVERSITY