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SOME REMARKS ON STABILITY OF FOLIATIONS

HAROLD ROSENBERG & ROBERT ROUSSARIE

A foliation <F of a manifold V is said to be (^-structurally stable (or simply
C*-stable) if there exists a neighborhood U of F, in the Cs-topology, such
that for each foliation SF in U, there exists a homeomorphism h of V which
sends the leaves of SFf to the leaves of 3F'. We also require that h depend con-
tinuously on 2Fr. Stability of vector fields, or one-dimensional foliations, is an
extensively studied subject with many applications. For an excellent reference
to this subject we recommend [8], [4]. It is very natural to consider vector fields
with singularities, and more generally one can study stability properties of
foliations with singularities or Haefliger structures. This seems to us an im-
portant and difficult subject. We shall make some remarks about stability of
Haefliger structures, but for the moment we consider nonsingular foliations.

In this paper we shall study C1 stability of C°° foliations of 3-manifolds. We
shall see that many 3-manifolds (Sz for example) admit no structurally stable
foliations whatsoever. We classify the stable foliations of S2 x S1; they are
relatively simple in structure, and we construct foliations of T3 which are stable.
In § 2, we discuss stability of the intrinsic components of a foliation. We prove
there is an open dense set of foliations on any 3-manifold, for which the intrin-
sic components are stable. This encourages the study of a stratification of the
space of foliations. Finally we shall make some remarks on Haefliger struc-
tures.

1. Instability on some 3-manifolds

In this section we suppose V is a closed oriented 3-manifold, and 3F a trans-
versally oriented foliation of V of codimension one and class C°°.

Theorem 1.1 (H. Rosenberg and D. Weil). Suppose (V^) satisfies condi-
tion

i) there exists a closed transversal curve to !F which is null homotopic in
V, or

ii) τr2(F) φ (0) and V Φ S2 X S1.
Then IF is O-instable, i.e., one can approximate 3F, in the O-topology, by
foliations nonconjugate to iF.

Remark. Conditions i) and ii) are the hypotheses necessary to apply
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Novikov's theorem on the existence of Reeb components. They are always
satisfied if, for example, πλ(V) is finite or V is a nontrivial connected sum of
two 3-manifolds. Thus S3 admits no stable foliation.

We need some preliminaries before proving Theorem 1.1. Let L be a com-
pact leaf of a foliation with abelian fundamental group. We say that L has k-th
order contact with 2F if one of the elements of the holonomy group of L can
be represented by a local diffeomorphism of R leaving fixed O, which has
k-th order contact with the identity at O. If k = 1, we say L is hyperbolic. It
is well known that if one of the elements of the holonomy group has λ -th order
contact with the identity, then the other elements also have k-th order contact
or are equal to the identity (here we use π^L) abelian) [3]. Hence the notion
of contact depends only upon L.

Let T be the boundary torus of a Reeb component τ of SF, and suppose T
has a finite contact k with ^'. Let a and β be generators of πλ(T) such that a
is homotopic to zero in τ. Then the holonomy element associated to β is of
order k, and the element associated to a is the identity. Hence we can choose
a neighborhood U of τ, diίfeomorphic to S1 X D2, whose boundary is trans-
verse to J^, inducing a foliation by circles, each null homotopic in U. Hence
we can change ^ by replacing the foliation of ίF by disks D2 whose boundary
is the induced foliation on dU by 2F. This is the reverse of modification along
a simple closed transversal curve. We shall call this process erasing the Reeb
component.

Proof of Theorem 1.1. First we shall prove that a foliated 3-manifold V
satisfying conditions i) or ii) of Theorem 1.1 must have a flat torus leaf, i.e., a
torus leaf having oo contact with the identity. We know that every foliation of
V has Reeb components. We can assume all the Reeb components of F are
not flat. Let Rλ be a Reeb component of 3F', and ίFι the foliation obtained by
erasing Rλ. If J% has one fewer Reeb component than SF', then we erase another
Reeb component of 2F. Since there is a finite number of Reeb components
in J s we can assume J% has the same number of Reeb components as 3F.
This means that by erasing Rλ we create a Reeb component R2 which contains
Rγ in its interior, and the boundary leaf of R2 is a leaf of ^ . If R2 is not a flat
leaf, then we can erase it (to erase finite contact suffices). Let J^2 be the foli-
ation so obtained. We can assume SF\ has the same number of Reeb compo-
nents as «^Ί, hence we have created a Reeb component R3 whose boundary
leaf is in ϊF. If this process continues indefinitely, then J^ has an infinite num-
ber of torus leaves Tt = dRt. The limit of the Ίt is a torus leaf of !F which
must be flat.

We shall call a submanifold A of V a "band" of the foliation & if A is
homeomorphic to T2 X /, and 3F induces a foliation of A equivalent to the
foliation T2 x {ή of T2 X /. We remark that a stable foliation can not contain
any bands since the foliation Γ2 x {t} of Γ2 x / can be (^-approximated,
rel d(T2 X /) by a foliation with a finite number of compact leaves.



STABILITY OF FOLIATIONS 209

To complete the proof of Theorem 1.1 it suffices to show a flat leaf can be
thickened. More generally, we will prove

Lemma a. Let L be a fiat compact leaf of a codimension one foliation 3F
of a manifold Vn. Then L can be thickened, i.e., IF can be O-approximated
by a foliation SFf such that !Fr = !F outside of a tubular neighborhood T of
L, and J Γ / has a band of compact leaves in T.

Proof. Let fx, , fk be local difϊeomorphisms of R at O which generate
the holonomy group of L. Each ft is flat at O fi(O) = O. Let a be a (small)
positive real number, and h: R-+R a piecewise linear map such that h(x) — O
for x e [ — a, a], h is linearly increasing on [a, b] for some small b > a, and
h(x) = x for x large. For x < — a we define h(x) = —h(—x). Let g έ: R-+ R
be the maps:

gι(x) = x if x e [ — a, +a]

= h~ιfih(x) if x > a or x < — a .

Then gι is a C°° diffeomorphism of R which is enclose to fi9 gt = 1 in [ — a,
+ α] and gi(x) = fi(x) for x large. Hence gλ, , gk provide a representation
of KX(L) which gives the desired foliation SF''.

Remark. A leaf L, which is a 2-torus such that the holonomy group is
generated by one diffeomorphism / having k-th (k > 1) order contact, can also
be thickened.

In contrast to Theorem 1.1, we next give some examples of stable foliations
here also, the stability is related to the topology of the manifold.

Theorem 1.2. A foliation & of S2 X S1 is O-stable if and only if & is
isotopic to a foliation of S2 X S1 obtained from the product foliation {S2 X
{y}/y € S1} by a finite number of hyperbolic modifications.

Remark. It follows from the Reeb stability theorems that the product foli-
ation is stable. The reader will enjoy proving this fact directly.

Before proving Theorem 1.2 we need some preliminaries concerning Reeb
components.

Lemma 1.3. Let τ be a hyperbolic Reeb component of (V, ^). Then there
are a neighborhood U of τ in V and a neighborhood N of ^', in the Cι-topol-
ogy, such that for each ^ e N there is a homeomorphίsm h of U conjugating
^/U with ^r

1/U. Moreover, h depends continuously on ^r

1.
Proof. We define U = Όx U U2 where:
i) U1 is open in V satisfying that Ux is contained in the interior of r and

is diffeomorphic to S1 X D2, and SF\UX is conjugate to the foliation of Sι x D2

by disks (y) x D2

ii) U2 is an open neighborhood of dτ = T such that ΘU2 is diffeomorphic
to T X [-1,1] (with Γ x [0, 1] C r), ί/2 is transverse to «F, and for each
x € T, x x [ — 1,1] is transverse to !F.

Now by Reeb stability, there exists a neighborhood Nλ of J ^ (even in the
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C°-topology) such that if &r

ιeNι, then ^r

1/U1 is conjugate to &\ΪJλ. By the
Hirsch stability theorem [2], there is a neighborhood N2 of 8F such that if
1F2 € N2, then J^2/ U2 has exactly one compact leaf T2 in U2, difϊeomorphic to
T. This can be proved directly without too much difficulty, but it is easier to
refer to Hirsch's theorem. We choose N2 small enough so that SF2 e N2 implies
that J S is transverse to dϋ2 and the arcs x X [— 1, 1], JC e Γ.

Now let N = iVx Π N2. If &' e N, then J '̂/LA, has a unique compact leaf
V in t/2. Since Γ' is close to T, T bounds a solid torus τ' in U. It is clear that
the leaves of IF' in U2 with the exception of V are planes or cylinders (this
can be seen by observing that the leaves are transverse to the fibres x X [ — 1, 1],
x e T, and to dU2, hence the projection along these fibres realises the leaves as
covering spaces of V). Since these leaves intersect dUι in circles, they must be
cylinders in τ' Ω U2. Also V is hyperbolic (in the proof of Hirsch's theorem,
one obtains that the holonomy maps of V are close to those of Γ), and hence
the leaves of <F' in U2 — τf are also cylinders. Now it is easy to construct a
homeomorphism of U conjugating SF''/U with 1F/U. We leave this to the
reader.

Lemma 1 4. Suppose a foliation & is obtained from a foliation άF by a
finite number of hyperbolic modifications. Then & is O-stable if and only if 2F
is O-stable.

Proof. We can suppose ^ is obtained from J^ by one hyperbolic modifica-
tion. Let us prove the stability of IF implies that ^ is stable. First we remark
that the operation of erasing hyperbolic Reeb components can be done to be
locally continuous in the C°°-toρology, i.e., if IF' is the foliation obtained by
erasing a hyperbolic component from ^ , then the map <&' —> 3Ff is continuous
in a neighborhood of ^ .

Now suppose ^ is obtained by hyperbolic modification along a simple closed
transversal curve γ in a foliated tubular neighborhood U of γ. If & is close
enough to 0 , then <&' comes from modification along γ9 in £/, of a foliation ίFf

close to SF. <F is stable, so if tFf is close enough to !F (which happens when
<gf is close enough to ^ ) then there is a homeomorphism hλ conjugating !Ff

with <F. Since hx is close to the identity, we can suppose h^U) = U, and hence
hx(y - U) = V - U.

By Lemma 1.3 we know there exists a homeomorphism h2: U —> U conju-
gating &'/U with &/U. Now hϊιhλ is a homeomorphism of dU sending the
circles of G/dU onto themselves. It is clear then that h^xohx extends to a
homeomorphism of U to itself, leaving &/U invariant. Denote by λ such an ex-
tension. Define a conjugation h of ^ to <$' by

h/V - U = hJV -U, h/U = h2oλ .

To prove the converse of Lemma 1.4, one uses the same methods; observ-
ing that hyperbolic modification can be done to be locally continuous, i.e., if
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IF is a foliation, f a simple closed transversal curve to J% and £/ a foliated
tubular neighborhood of γ, then one can choose the same γ and U to perform
modification for all foliations <Fr sufficiently close to !F such that the map
!F' —> <&' is continuous in a neighborhood of J^.

Proo/ of Theorem 1.2. By the Reeb stability theorems and Lemma 1.4, it
suffices to prove that if ίF is a stable foliation of 52 X 51, then IF is obtained
from the product foliation by a finite number of hyperbolic modifications. If !F
has no Reeb components, then IF is isotopic to the product foliation. So we
can assume SF has Reeb components which are finite in number. They must
all be hyperbolic, otherwise we could introduce a band. We erase the Reeb
components as in the proof of Theorem 1.1. A finite number of erasures suffice
to obtain a foliation with no Reeb components since 3F has no flat leaves. Then
the foliation thus obtained is the product foliation.

Stable foliations of T3. The study of stability on T3 relies very heavily on
the thesis of Nancy Kopell [3]. Before discussing this we need a sharpening of
Lemma a which will permit us to dispose of compact torus leaves which have
finite R Φ 1.

Lemma b. Let L be a compact leaf of foliation !F of codimension one.
Suppose πλ(L) is abelian and not (1), and L has a finite contact R Φ 1. Then
!F can be O-approximated by a foliation !Ff such that <Ff = F outside of a
tubular neighborhood T of L and inside T, ,F/ has two or three compact
leaves.

Corollary 1.5. Let !F be a O-stable foliation of codimension one, and L a
compact leaf of IF with π^L) abelian, and π^L) Φ (1). Then L is hyperbolic.

Proof of Lemma b. Let f19 , fm be local difϊeomorphisms of R at O
which generate the holonomy group of L, and let h: R —> R be a map as in
the proof of Lemma a. We know there is a k > 1 such that fίk)(O) Φ O, and
/<S)(O) = O for 1 < s < k. Define maps gt by

gi(y) = h-'fMO if | ί | > * .

Let gι(±a) be the formal power series of gt at ±fl. By a theorem of N. Kopell
[3], we know there exists a formal vector field Xλ at +a, with a one-parameter
formal group <pλ(τ) such that ψfci) = gi(a) for certain values τ1 ? , τm.

Similarly, there exists a formal vector field X2 at — a with analogous prop-
erties for the same values of Tt (they are determined by the λ -th derivatives of
ft at O).

Let X(t) be a C°° vector field on [ — a, a] such that X(a) = X19 X( — a) — X2

and X is enclose to the zero vector field. Clearly such a vector field can be
chosen to have two or three zeros (depending on the parity of k), at the points
±a and eventually at an interior point.

Let φ(τ, t) be the one-parameter group of X, and define gt on [ — a, a] by

giit) = φiτt, t) .



212 HAROLD ROSENBERG & ROBERT ROUSSARIE

Then the representation of πλ(L) given by g19 , gm defines the desired folia-
tion &'.

Now we are ready to analyse (^-stable foliations of Γ3. Suppose ϊF is a C1-
stable foliation of T3. We know !F is obtained from a (^-stable foliation G by
a finite number of hyperbolic modifications, and G has no Reeb components.
Moreover, all the compact leaves of G are tori and hence hyperbolic.

Now one can cut G by a transverse 2-torus (see [5] and [7] for details of this
method), and G becomes the suspension of a foliation g of T2 by a diffeomor-
phism a of T2, isotopic to the identity and leaving g invariant. More precisely,
G is equivalent to the foliation g x / of T2 X /, quotient by the identification
(JC, 0) = (α(jc), 1) for x e T2. We shall write this as

G = g X I/a .

There are two possibilities:
Case 1: G has no compact leaves. In this case, the foliation g is the sus-

pension of a diffeomorphism of S\ and it can be shown (by the process of
cutting along transverse tori) that G is equivalent to a foliation of T2 X S1

transverse to the factor S1. Such a foliation is completely determined by the
holonomy representation:

If the image of p were generated by one diffeomorphism β, then G could not
be stable. For β would have no periodic points (G has no compact leaves), yet
we could (^-approximate β by a diffeomorphism with periodic points, and the
associated representation p' would give a foliation enclose to G with compact
leaves. Hence the image of p is isomorphic to Z ® Z ; it is generated by two
diffeomorphisms of S\ without periodic points and whose rotation numbers are
irrationally independent. Thus G is a foliation of T3 by planes R2, and we must
admit (with much consternation) that we do not know if a stable foliation of
T3 by planes does exist. This is an important problem. We have previously
proved that a foliation by planes of T3 is topologically equivalent to a linear
foliation. If this equivalence could be chosen differentiable, then the foliation
would not be stable. We have some more success when G has compact leaves.

Case 2: G has at least one compact leaf. One can choose a transverse
torus to G so that G is the suspension of a hyperbolic foliation g of T2. If g is
the suspension of a diffeomorphism of S1 (topologically, this means g has no
Reeb components of dimension two), then G is given by a representation

and the image of p consists of hyperbolic diffeomorphisms of S1 (or the iden-
tity). N. Kopell has analysed such subgroups.
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Lemma 1.6 [3]. Let H be an abelian hyperbolic subgroup of Diff (S1). Then
H = {γn/n e Z} for some diβeomorphism γ of Sι or H is a one-parameter group

{fit € R}.
Clearly, the case when (πλT

2) embeds in a one-parameter group gives rise to
an unstable foliation. Now in the general case, when g can have Reeb compo-
nents, we proceed as follows.

Let C(g) be the group of difϊeomorphisms of T2 which leave g invariant
and are isotopic to the identity. Let C0(g) be the normal subgroup of C(g) of
difϊeomorphisms isotopic to the identity by an isotopy which at each stage
leaves g invariant. Let C(g) = C(g)/CQ(g). The lemma of N. Kopell yields

Lemma 1.7. Let g be a hyperbolic foliation of T2. Then either
i) Cp(g) is open in C(g), or

ii) C(g) is nontrivial and generated by a one-parameter group {β1} of C(g),
modulo C0(g).

Remark. It is clear that two elements of C(g), which differ by an element
of C0(g), define the same foliation by suspension.

The topological study of foliations of T3 done in [7] permits us to state
Lemma 1.7 precisely as follows.

If a foliation G of Γ3 is obtained by suspension of a hyperbolic foliation g
of T2, then all the noncompact leaves of G are of the same topological type,
i.e., they are all planes or all cylinders. In case (i) of Lemma 1.7, the non-
compact leaves are all cylinders. In case (ii), we can put in correspondence the
noncompact leaves of Gt = g X I/β* with the number t as follows: the non-
compact leaves of two such foliations Gtl and Gh are homeomorphic if and
only if tλ and t2 are rationaly dependent. From this it follows easily that a foli-
ation of type (ii) of Lemma 1.7 is unstable. Thus, if G is stable, then G is of
type (i), and all the noncompact leaves are cylinders. Now one can prove that
there is a transverse torus to G such that G is the suspension of another folia-
tion g of T2 by the identity: G = g X / / 1 . Hence the leaves of G are the prod-
uct of the leaves of g by S1.

If g x S1 is a stable foliation, then condition (i) is satisfied for all foliations
near g more precisely we have

Definition. Let Σ be the foliation g of T2 satisfying: g is hyperbolic, and
there are a neighborhood V(g) of 1 in Diff (S1), in the C^topology, and a
neighborhood U(g) of g in the C^topology such that for g' e £/(g),

c(g') n v(g) c co(go .

Then one can generalise to the following Lemma 1.8 the N. KopelΓs result
that the set of diffeomorphisms β of S1 whose commutator subgroup is {βn/n e Z)
contains an open dense set of Diff (Sι).

Lemma 1.8. Σ is open and dense in the space of foliations of T2 with the
O-topology.
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As one should expect, the foliations in Σ yield stable foliation of T\
Theorem 1.9. If g e Σ, then the product foliation g X S1 is O-stable.
Proof. Suppose G is a foliation of T3, and C1 close to G = g X 51. G can

be written as g' x I/a' where gf and a! depend continuously on G. Thus, if
G is sufficiently close to G, then gf e U(g) and a' e V(g) which implies
af e C0(g') Hence one can find an isotopy sending gf X I\af to gf X S\ which
depends continuously on α' and thus on G.

Now g is hyperbolic, so if g' is sufficiently enclose to g then g' is conjugate
to g by a homeomorphism /z(g') depending continuously on g'. Thus G is C1-
stable.

We summarise our results on T3 as follows.
Theorem 1.10. The O-stable foliations of T3 are, up to hyperbolic modifi-

cation,
(i) foliations by planes {perhaps), or
(ii) foliations of the form g X S1 with g e Σ where Σ is the open dense set

of foliations of T2 defined above.

2. Intrinsic components

We now assume ^ is a transversally orientable codimension one foliation
of a closed rc-manifold V. Novikov has defined the components of IF as fol-
lows : two points x and y of V are in the same component if there exists a closed
transversal curve to 3F passing through x and y. It is easy to see that a foliation
has three types of components:

1. the entire manifold V,
2. an open submanifold of V, whose boundary consists of the union of

compact leaves of 8F.
3. a compact leaf.
Rigorously speaking, it is the points of type 3 which are the components.

Among the components of type 2, we distinguish the intrinsic components: A
is intrinsic if the normal vector field to 3F points in the same direction along
each connected component of dΛ, i.e., into A or towards V — A. We also
agree to call components of type 1, intrinsic components. It is easy to see that
!F always has at least one intrinsic component, and the intrinsic components
are characterised by the property of remaining components whenever they are
embedded in some foliated manifold.

We now prove some lemmas which show that intrinsic components can only
get bigger after perturbation.

Lemma 2.1. Let ^ be a foliation of V such that V is an intrinsic compo-
nent (hence of type 1). // J Γ / is a foliation of V and O-close to 2F, then V is
also an intrinsic component of 3Fr.

Proof. Let C be a closed transversal curve to 8F which intersects each leaf
of 3F. Cover V by a finite number of distinguished neighborhoods U19 , Uk.
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Let W19 , Wk be distinguished neighborhoods such that Wt c JJt for each
/, and W19 , Wk cover V. For each i, ί < i < k, and x €Wί9 there exist
εx > O and a neighborhood N x of x such that if 8F' is a foliation of V with
dG^', J O < εx (in the C°-topology), then each leaf of &' which intersects Nx

also intersects C. This can be seen as follows: let Γ be a path in the leaf of
ίF containing x, which joins i t o a point of C. Cover Γ by a finite number of
distinguished neighborhoods and carry out the reasoning for each distinguished
neighborhood, and the intersection of successive neighborhoods. Now by com-
pactness one can choose a smallest εx such that if d{βFr, IF) < εx, then each
leaf of SFr intersects C. Hence V is an intrinsic component of 2F'.

Lemma 2.2. Let L be a compact leaf of ^F, and T a tubular neighborhood
of L with IF transverse to the fibers of T. Suppose IF' is a perturbation of !F',
and 8Ff has no compact leaves in T. Then some leaf of SFr goes from one
component of dT to the other.

Proof. Identify T with L X [—1, + 1], and L with L x (0). Assume &'
close enough to SF so that 2Ff is transverse to the fibres x x [— 1,1] for each
x e L. Observe that !Fr has no closed invariant nonempty sets A in the inte-
rior of T; for otherwise, {yx/yx = (x, sup {t/(x, i) € ^ j ) } ^ ^ would be a com-
pact leaf of J Γ / inside T. Hence for each zeT, the closure of the 3Ff leaf of
z must intersect dT.

Let Vλ = {z e T\ the &' leaf of z meets L x (3/4, 1]}, and U_λ = {ze
T\ the &' leaf of z meets L x [—1, —3/4)}. Clearly U1 and U_x are open in
L x ( — 3/4, 3/4), and by our previous remark, each point of L x ( — 3/4, 3/4)
is in U1 or U_x. Hence U1 Π £/_i Φ 0, and some leaf of £Fr intersects L x
( — 3/4) and L x (3/4), and consequently goes from one side of T to the other.

Lemma 2.3. Let A be an intrinsic component of type 2 of IF. Suppose the
compact leaves in dA are stable under Ck-perturbation. Then A is stable under
Ck perturbation of 2F.

Proof. Let T19 - , T3 be the leaves of & in dA, and let ε > O such that if
&' is Ck ε-close to & then &' has compact leaves T[, , T'j close to 7\, . ,
Tj respectively. Let C be a closed transversal curve to 2F which meets all the
leaves of the interior of A. Let δ > O and B = {x e A/d(x,A) > δ}; for δ
sufficiently small, B is homeomorphic to A. By reasoning as in the proof of
Lemma 2.1, we see there exists ε1 > O such that if IF' is a foliation of V,
C° εΓclose to !F', then each leaf of $Ff which intersects B also intersects C. Now
let ε2 = min {ε, ε j . If IF' is Ck ε2-close to J^, then IF' has an intrinsic compo-
nent Ar which is close to A. To see this we remark that all points of B are in
the same component of !Ff (all the leaves meet C), and IF' has compact leaves
Tί, , T'j close to T19 Tj, hence the submanifold bounded by Γ(, , T'j
and containing C can not be properly contained in a component since no closed
transversal curve to SFr can intersect T[ U U Ty.

Lemma 2.4 (M. Hirsch [2]). Lei L be a compact leaf of a foliation of
codimension k. Suppose that for some a € π^L), in the center of π^L) the
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holonomy of a is hyperbolic. Then L is stable under perturbation.
Corollary 2.5. A hyperbolic torus leaf is stable.
One can prove this corallary directly for 2-torus leaves in 3-manifolds (cf. [6]).
Theorem 2.6. Let V be a closed orίentable 3-manifold, and Ω the space

of codimension one foliations of V, with the O-topology. Then there is an
open dense subset S of Ω such that if ,F e S, then the intrinsic components of
2F are stable.

Proof. Let S be the set of foliations in Ω whose intrinsic components are
stable under (^-perturbation. Clearly S is open in Ω. It remains to prove S is
dense. Let !F e Ω, and A be an intrinsic component of SF. For reasons of
Euler characteristic, the boundary components of A are 2-tori. Hence by
Lemma 2.3 and Corollary 2.5, it suffices to prove that a torus leaf can be C1-
approximated by a hyperbolic torus leaf by an approximation whose support is
in an arbitrarily small tubular neighborhood of the torus leaf. Let L be a flat
torus leaf, and T a tubular neighborhood of L homeomorphic to L x [— 1, 1]
with L = L x (O). But we can (^-approximate J^ by a foliation !F', equal to
. f on F - (L x [ — 3/4, 3/4]) and with a band of compact leaves: L x (t),
— a<t<a, with a as small as we wish. Now we (^-approximate IF1 to make
L X (O) hyperbolic and without changing !Ff outside of L x [ — a, a]. This
can be done simply by approximating the identify map /: R —> R by a diίϊeo-
morphism f:R-^R such that O is a hyperbolic fixed point of / and / = i on
the complement of [ — a/2, a/2]. This completes the proof of Theorem 2.6.

3. Remarks on stability of Haefliger structures

A Haefliger structure on M is a foliation with a certain type of singularities
we refer the reader to [4] and [1] for the definition and discussion of Haefliger
structures. We recall that to a Cp-Haefliger structure H on M, are associated
a Cp vector bundle E over M, a section i\M-*E and a Cp foliation <F defined
in a neighborhood of i(M) and transverse to the fibres. The dimension of the
fibre is the codimension of H. The triple (2s, H, ί) is called the graph of H it
is defined up to Cp-equivalence and determines H.

One can define stability of a Haefliger structure by its graph.
Definition. H is C^-stable if for each couple (/', J*"') where V: M —• E is a

section enclose to /, and ϊFr is a foliation defined in neighborhood of i'(M),
transverse to the fibres, and enclose to IF in some neighborhood, there exists
a couple (h, φ) of homeomorphisms, φ being defined in a neighborhood of i(M),
such that the following diagramm in commutative:

, \
Φ
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Clearly, when i is transverse to IF, this is the usual definition of stability. A
good exercise to further the understanding of this definition is the Haefliger
structure on S2 defined as follows: Let E = S2 X R = JR3 — {0}, and & be
the foliation whose leaves are S2 x {ή. Let i: S2 —• E be a section such that z o i
has exactly two nondegenerate critical points where z: E-+R is the "z-coordi-
nate". Then this Haefliger structure is not stable, even though IF is stable.

One can also put a topology on the space of Haefliger structures using the
fact that they can be defined by differential forms. Then defining stability in
terms of this topology is equivalent to the previous definition.

Now consider Haefliger structures of codimension one. Generically, a sec-
tion i: M —• E is in general position with respect to SF so the contact points
are singularities of a Morse function. Consequently, if H is (^-stable, and M
is compact, then H has a finite number of singularities, each of Morse type,
and H is a foliation of codimension one elsewhere. The singularities are conic
or centers.

By convention, a leaf of H will be one of three types:
i) a leaf of a foliation (usual sense),

ii) a leaf which has a conic singularity,
iii) a center.
A difficult and interesting problem is the study of stable Haefliger codimen-

sion one structures of S3. One of the crucial points in the proof of Theorem
1.1 is the existence of a compact leaf for foliations of S3. This fails for Haefliger
structures.

Proposition 3.1. There is a generic Haefliger structure of S3 with no com-
pact leaf.

In order to construct such a structure we need some preliminaries.
The connected sum of foliations. Let M and Λf' be manifolds of the same

dimension, and !F, 3Fr codimension one foliations of M, M', tangent to dM,
dM', with dM Φ0 Φ dMr. Define (M, &)%{M\ &') to be M%M' (connected
sum along the boundary) together with a generic Haefliger structure J ^ f t J ^
defined as follows.

Let m € dM, m! e dM', and U, Όf be distinguished neighborhoods of m, mf,
diffeomorphic to R71'1 X R+, where the foliations are defined by projection on
R\

Let W, W be the complements in U, V of the (half) open disc of radius one.
Clearly, one can reparametrize W and W by coordinates (JC15 , xn) and
(x'i, 9 *Ί) such that:

w = | ^ | 0 < χλ < l, t A < ή > w' = {χi\° < *ί < !> Σ x? <

and the foliations are given by the functions:

i = χ x - Σ A f o r Σ A < i > f = - Σ A f o r Σ A > I >
2 2 2 2
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and a similar definition for f. Notice that {x1 = 0} corresponds to the bound-
ary C of the half disc which we have removed, and {Σ% x\ — 1} is in 3M.

Define W = W \JCW" where we make the identifications:

i) if yx < 0, then yx = — x and yt = xu i > 2,
ϋ) if 3Ί > 0, then yλ = x[ and yt — x'i9 i > 2.
The functions / and f define a function g by:

and

By definition, we take g as a distinguished function in W. Then J^ft ϊF' is de-
fined by g in JΓ, J^ in M — JF and ̂  in M — W. This is a generic Haefliger
structure onMfM' with one singularity of index one.

Proof of Proposition 3.1. Let τ and τr be two Reeb components, and
(M, !F) their connected sum. M i s a solid pretzel (figure eight), and !F is a
Haefliger structure on M wtih exactly one compact leaf, the dM. Embed M
in S3 so that S3 — M is diffeomorphic to M (the standard embedding works),
and put the same Haefliger structure on S3 — M. This structure on S3 has one
compact leaf, the 9M. We shall perturb this structure to eliminate the compact
leaf.

Let γ be the circle on dτ along which we make the connected sum of τ and
τ''. The holonomy of γ in «̂ Ί is trivial, i.e., there is a neighborhood U of f in
S3 such that:

UπSιχIχJ with / , / « [ - l , l ] , r = (tf,0,0), ^ 6 51 ,

and &Ί/U is defined by projection on /. We perturb «̂ Ί in ί7 as follows:
i) let ψ(jc) be C°° decreasing with

ψ( c) = 0 for - 1 < x < - i , ψ(jc) = — £ for | < x < 1 ,

ii) let φ(t) be C°° with

p(0 = 1 for - i < ί < i ,

= 0 for - 1 < t < - | and I < ί < 1,

0 < φit) < 1 and | ^ ( 0 | < 2 .



STABILITY OF FOLIATIONS 219

We define /: U -+ R by

/ (0, x,i) = t - φ(t)ψ(x) .

Notice that / is of rank one, f = t outside of Sι X [ — | , J] x [ — | , J], and the
level surfaces of / are cylinders connecting the circles (0, — 1, t) for fixed / with
the circles (0,1, f) for fixed t', with t' < t and *' < t if ί e [ — \9 \~\. Let J ^ be
the Haefliger structure on S3 defined by / in U and &r

1 in S3 — U. We claim
^ 2 has no compact leaves. We see this as follows. Let m and m1 be the points
of U Π dM with coordinates (O, —1,0) and (0, 1,0) respectively. In ^ 2 all
the leaves have m or m1 in their closure. If a leaf has m in its closure and not
ml9 then it is not compact. In «̂ ~2, the leaf of m has rax in its closure but does
not contain m19 hence is not compact. The same reasoning holds for leaves
having mι in their closure. Hence no leaf of SF"2 is compact.

It is easy to choose φ and ψ so that J^ 2 is not stable. However, if a Haefliger
structure of S3 is defined by a Morse function with distinct ciritical values and
whose leaves are points or homeomorphic to S2 (i.e., difϊeomorphic to S2 with
one conic singular point), then it is stable. This is an easy consequence of the
Reeb stability theorem. This leads us to the end:

Conjecture. The only stable Haefliger structures of S3 are those defined by
a Morse junction having distinct critical values and whose level surfaces are
simply connected.
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