
J . DIFFERENTIAL GEOMETRY
10 (1975) 85-112

COMPLEX PARALLELISABLE MANIFOLDS
AND THEIR SMALL DEFORMATIONS

IKU NAKAMURA

Introduction

By a complex parallelisable manifold we mean a compact complex manifold
with the trivial holomorphic tangent bundle. Wang [8] showed that a complex
parallelisable manifold is the quotient space of a simply connected, connected
complex Lie group by one of its discrete subgroups.

It is known that if the Lie group corresponding to a parallelisable manifold
is semi-simple and does not contain SL(2C) as a component, then the first
Betti number vanishes and its small deformation is rigid, [2], [5], [6].

In this paper we consider the similar problems in the case where the corre-
sponding Lie group is solvable, and obtain quite different results. We note that
a simply connected, connected solvable complex Lie group is biholomorphical-
ly equivalent to Cn as a complex manifold where n = dimc G. If a complex
parallelisable manifold has a solvable Lie group as the universal covering, it is
called a complex solvable manifold.

In § 1 we summarize some known results and give three lemmas. In § 2 by
numerical invariants we classify three-dimensional complex solvable manifolds
into four classes IΠ-(l), IΠ-(2), IΠ-(3a), IΠ-(3b), and construct some exam-
ples in all cases.

In § 3 we construct Kuranishi families of deformations of three-dimensional
complex solvable manifolds constructed in § 2. The base spaces of these
Kuranishi families which are reduced complex spaces are irreducible in the
cases of ΠI-(2) and IΠ-(3a) but reducible in for case of IΠ-(3b), about which
we shall give explicit descriptions.

For a compact complex manifold X we denote by Θ and Ωp the sheaves of
germs over X of holomorphic functions and p-forms respectively. Recall hVΛ

= dim c H*(X, Ωp) and Pm(X) = dim H\X, (Ωn)®m) where n = dim c X. Also
we denote by r, K and bt respectively the number of linearly independent closed
holomorphic 1-forms, Kodaira dimension of X and the i-th Betti number.

S. litaka proposed a problem whether all Pm and K are deformation invari-
ants [1]. However computing the numerical characters of small deformations
obtained in the above examples we have

Theorem 2. hVΛ for (p, q) Φ (0, 0), r, Pm and K are not necessarily ίnvari-
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ant under small deformations.
On the other hand we note that small deformations of a complex parallelis-

able manifold are not necessarily parallelisable.
In § 4 and § 5 we prove the following theorems.

Theorem 3 (Kodaira). Let X be parallelisable such that the corresponding
Lie group is nilpotent. Then h°>1 = r.

Theorem 4. For a complex solvable manifold whose Lie algebra has the
Chev alley decomposition (§ 2) we have bλ — 2r.

We remark that a complex solvable manifold has Cn as its universal covering.

Theorem 5. // an n-dimensional complex solvable manifold satisfies the e-
quality /zM = r, then any small deformation has Cn as its universal covering.

In Theorem 5 we cannot remove the assumption that ftM = r. In fact, in
the case of IΠ-(3b) where we have ΛM > r, there exist small deformations
whose universal covering are not analytically homeomorphic to C3.

In § 6, following the algorithm shown in § 1 we classify complex solvable
manifolds of four and five dimensions.

The author would like to express his deep appreciation to Professor K.
Kodaira, Professor S. Iitaka and Mr. K. Akao for valuable advices and en-
couragement during his preparation of the paper.

1. Preliminaries

Let X be a compact complex manifold of dimension n.
Definition 1.1. X is parallelisable if the holomorphic tangent bundle of X

is complex analytically trivial.

This condition is written in the following ways:
(1) Θ = Θn, where Θ is the sheaf of germes of holomorphic vector fields,

and Θ is the structure sheaf of X.
(2) There exist n holomorphic vector fields Θ19 , θn on X which are li-

nearly independent at every point on X.
(3) Ω1 ^ Θn, where Ωι is the sheaf of germs of holomorphic 1-forms.
(4) There exist n holomorphic 1-forms φly - - , φn on X which are linearly

independent at every point on X.

It is obvious that Ωp^Gr*\ Hence H\X, Ωp) is spanned by {φίχ Λ Λ φip,

1 <h< •- <iP<n} and h*>° = (Λ.

Theorem (Wang [6]). Let X be parallelisable. Then there exist a simply
connected, connected complex Lie group G and a discrete subgroup Γ of G
such that X ^ G/Γ.

In particular, H°(X, Θ) = q where q is the Lie algebra of G.

Definition 1.2. A complex parallelisable manifold X is solvable (respec-
tively nilpotent) if the corresponding Lie group G is solvable (respectively nil-
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potent).
Let G be a connected complex Lie group, and Γ one of its discrete subgroups.

Definition 1.3. Γ is uniform in G if G/Γ is compact.
Theorem (Mostow [4]). Let G be a connected solvable complex Lie group,

and Γ a uniform subgroup of G. Let N be the connected, maximal nilpotent
normal subgroup of G. Then Γ Π N and ΓN/N are uniform in N and G/N
respectively.

The original form of this theorem is not restricted to the complex case. This
theorem means that for any solvable manifold X = G/Γ, there is the decom-
position π: X-^B, where B = (G/N)/(ΓN/N), and (X, π, B) is a holomorphic
fiber bundle with a typical fiber F = N/Γ Π N. We shall call this decomposi-
tion the Mostow decomposition of X. If G is solvable, the commutator group
Gr = [G, G] is nilpotent. Gf is contained in the maximal nilpotent normal sub-
group N, so that G/N is abelian. Therefore the base space B is a complex
torus.

In an obvious way, we define the pairing

H°(X, Ωp) X H°(Xv A Θ) -> C , φ X θ — > (9, θ) .

The exterior differentiation d: H°(X, Ωp~ι) -> H\X, Ωp) induces an adjoint
map ιd: H°(XP Λ 0) -> H\X^'1 Λ θ). Then we obtain

Lemma 1.1. (1) (ιd)(θ A ff) = - [θ, θ'], θ, df έ H°(X, θ).
(2) (ιd)(θ Λ ^ Λ θ") - -θ A (ιd)(ff A d") - ff A (ιd)(θ" A θ)

- θ" A (ιd)(θ A θ'), θ, ff, ff' e H°(X, θ).
We omit the proof.
(1) of Lemma 1.1 shows

(1.1) (dψ,θ Aff) = -{φΛΘ9ff\j

for θ, ff e H°(X, Θ), and φ e H°(X, Ωι). (1) and (2) show that d2 = 0 is equiva-
lent to the Jacobi's identity.

Let g be a solvable Lie algebra defined over C. Then by virtue of Lie's theo-
rem we have a C-basis of g: φλ, , φn (n = dim c g) such that

(1.2) dψv = ξv A ψv + ΎJV, v = 1, , n ,

where ξv, ηv are represented by φ19 , φv_x. Since d2φv = 0, we have dξv = 0,

i.e., ξv is a closed holomorphic 1 form. There it follows from (1.3) that ξv =

Σμ=i avμψμ for s o m e constants avμ.
Lemma 1.2. Let X be a compact complex manifold of dimension n, and

ψ a holomorphic (n — \)-form on X. Then dφ = 0.

Proof. If dφ Φ 0, then i~n2 \ dφ A dφ > 0. On the other hand,
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Γn2 dφ A dφ = Γn* d(φ A dφ) = 0, a contradiction.
J x J x

From Lemma 1.2 we infer readily
Lemma 1.3. Let {<pλ} be a basis of H\X, Ωι) which satisfies (1.2). Then

(1.3) Σ £, = 0 .

Proposition 1.4. Let G be a simply connected, connected solvable complex
Lie group. Then G is biholomorphίcally equivalent to Cn, where n = dimc G.

Proof. When dim G = 1, we can prove the proposition easily. By induc-
tion on dim G we shall prove the proposition. When dim G > 2, there exists
a connected normal Lie subgroup N of dim 1. (G, π, G/N) is a holomorphic
fiber bundle with fiber N. Calculating homotopy exact sequences of this fiber
bundle, we infer readily that N and G/N are simply connected, connected and
obviously solvable. By the hypothesis of the induction, G/N and N are biho-
lomorphically equivalent to Cn~ι and C respectively. From Oka's principle it
follows that G is biholomorphically equivalent to Cn.

2. Classification of three-dimensional complex solvable

manifolds and construction of examples

In this section we shall classify three-dimensional complex solvable mani-
folds, and use an algorithm to classify higher-dimensional complex solvable
manifolds. Let X = G/Γ be a three-dimensional solvable manifold, and φ19 <p2

φ3 be a basis of H°(X, Ω1), which satisfies (1.2).
By an elementary calculation together with Lemma 1.4, solvable manifolds

X are classified into the following three classes:

III-( l) : dφλ = 0, Λ = 1 , 2 , 3 ,

I I I - ( 2 ) : dφx = 0 , dφ2 = 0 , dφ3 = — φx A <p2 ,

I I I - ( 3 ) : dφ1 = 0 , dφ2 = φ1 A <p2 , dφ3 — — φ1 A <p3 .

Dualizing III (l)-(3) by virtue of (1.1) we can determine the structures of the

Lie algebra g of G.

III-( l) ' : [θi9ΘJ\ = O, J , » = 1 , 2 , 3 ,

Π I - ( 2 ) / : [θ19 θ2] = - [θ2, θ1] = θ3 , [θ2, θu] = 0 otherwise ,

Π I - ( 3 y : [θ19 θ2] = - [θ2, ΘJ = - θ2 ,

[θ19 ft] = - [ft, ft] = ft , [#2, ft] = 0 .

Case III-(l). It is well known that X is a complex torus.
Case ΠI-(2). In view of Proposition 1.4, C3 is the universal covering of X.
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Let 0 be the origin of C3. We set Φv(z) = Γ <pv9 v = 1,2. Then Φv is a single
Jo

v a l u e d h o l o m o r p h i c funct ion o n C 3 , a n d ψv = dΦv, v = 1 , 2 . T h u s dψz =
Cz

— dΦλ Λ dΦ2, i.e., d(φ3 + ΦλdΦ2) = 0. We set Φ3(z) = p3 + <M$2- Φ3 is a
Jo

single valued holomorphic function on C3, and φ3 = dΦ3 — ΦγdΦ2. For g e Γ,
we set z' = z-g. Since ψλ is Γ-invariant, dΦv{zf) = dΦv{z) (v = 1,2). Thus we
have Φw(z0 = Φy(z) + ωv(g), where ωv(g) is a constant depending only on g.
Since

= dΦlτί) - {Φλ{z)

we obtain

for some constant ω3(g) depending only on g. Define a multiplication * of C3 by

fe, Zi, z3) * Cvi, y2, y3) = fe + )Ί, <Z2 + 3*2 > ^ + yΛ + y3).

This multiplication * makes C3 a nilpotent complex Lie group with the Lie al-
gebra of type III-(2)/. Hence G is isomorphic to (C3, *) as a complex Lie group.

Case ΠI-(3). Set

φλ(z) = [ V , Φ2(z) = Γ e~Φίφ2 , Φ3(z) = Γ <?ΦV3 .
Jo Jo Jo

Since dφλ — d(e~Φlφ2) = d(eΦlφ3) = 0, Φ^ are single valued holomorphic func-
tions on C3 and we have φ1 = dΦ l s ^2 = eΦldΦ2, <p3 = d~ΦldΦ2. By the same ar-
gument as in the case of IΠ-(2), we have

Φx(z') = Φx(z) + ωλ(g) ,

) + ω3(g) ,

where z' = z g for g e Γ, and ωυ(g)'s are constants depending only on g. De-
fine a multiplication * of C3 by

Oi, z2, z3) * ( j 1 ? y2, y3) = (zx + 3Ί, e'v% + y2, eyiz3 + y3) .

The multiplication * makes C3 a solvable complex Lie group with the Lie al-
gebra of type ΠI-(3y, so that G is isomorphic to (C3, *) .

Examples. Case III-(2). Set
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S-1

The multiplication is defined by

(
0 1 zλlo 1
0 0 l/\0 0 1

Z = G/Γ is called Iwasawa manifold.
Case IΠ-(3a). We take an algebraic integer a satisfying the equation a2 +

5a + 1 = 0. Let E be an elliptic curve with fundamental periods {1, α}. Let
H be a group of analytic automorphisms oί C X E x E generated by two
automorphisms:

σ1: (z1? z2, z3) H-> (^ + 2τrf, z2, z3) ,
(X2: fe, z2, z3) ^ (Zi + β, (-a - 2)z2, (α + 3)z3) ,

where β = log a, and (z1? z2, z3) are global coordinates of C X E x E. H acts
on C X E X E properly discontinuously, and its action has no fixed points.
The quotient manifold X = C X E x E/H is a parallelisable manifold of type
ΠI-(3) with h0'1 = dimc H\X, Θ) = 1.

Case IΠ-(3b). We take a unimodular matrix A = (a λ with trace A > 3.

Let a be an eigenvalue of A, and β = log a > 0. Let E be an elliptic curve
with fundamental periods {1, τ). Let H be a group of analytic automorphisms
of C X E X E generated by two automorphisms:

σλ: (z15 z2, z3) •-> (Zi + 2πi, z2, z3) ,

σ2: (z1? z2, z3) ^ (Zx + /3, ΛZ2 + 6z3, cz2 + dz3) ,

where (z19 z2, z3) denotes the system of global coordinates of C X E x E. H
operates on C X E X E properly discontinuously, and its action has no fixed
points. The quotient manifold X — C X E x E/H is a parallelisable manifold
of type IΠ-(3) with /i0'1 .= 3.

By virtue of Theorems 3 and 4 and the proof of Theorem 4, it can be
checked that h0*1 Φ 2 for a solvable manifold of type III-(3). Thus we obtain
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Theorem 1. Three-dimensional solvable manifolds are classified into the
following four classes:

Lie group

(1) abelίan

(2) nilpotent

(3a) solvable

(3b) solvable

6

4

2

2

r

3

2

1

1

3

2

1

3

Structure (Albanese mapping)

complex torus

^-bundle over T2

T2-bundle over Tι

T2-bundle over T1

where T1 and T2 denote complex tori of dimensions 1 and 2 respectively.
In this section, we have shown how to determine the structures of C3 as

solvable Lie groups. Proposition 2.2 and the statement below show that this
algorithm is valid for higher dimensional cases.

Let G be a simply connected, connected solvable complex Lie group of dim n.
Definition. A solvable Lie algebra g has the Chevalley decomposition if

there exist a commutative subalgebra α and the maximal nilpotent ideal n of g
such that g = α + n (direct sum as vector spaces).

Assume g to have the Chevalley decomposition. Then by definition we can
choose a basis {θλ} of g such that

(2.1)

\θλ, θv] — 2 fj β
μ>max(/l,iθ C μ λ v U μ ?

\9λ, 0J = 0 ϋ<λ,v<s) ,

[θλ, β.\ = Σ < Λ (s + 1 < λ, v < ή) ,

where cf

μλv = -c'μvλ.
Dualizing (2.1) by (1.1) we conclude that there exists a basis {φλ} of right

(or left) invariant 1-forms on G such that

(2.2) = Σ ψv

w h e r e cμλv = —cμvλ. cμλv = 0 if "1 < λ9v < s" o r "s + 1 < λ, v a n d μ <

max U, v)" or 4 > < max (λ, v)".
Furthermore we can arrange dφμ in the following order:

Qλ: dp! = 0, , dφr = 0, where r = dim H\X, d(9),

dΘ denoting the sheaf of germs of closed holomorphic 1-forms on X

(2.3)

l l

Qt: dφλ = sum of ψv A φμ's for (v,μ) € (J Qz_, X
i
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any nontrivial linear combination of dφm+l9 , dφn cannot be represented by
a linear combination of dφ19 , dψm.

Proposition 2.1. Assume g to have the Chevalley decomposition, and let
{φλ} be a basis of right invariant holomorphic 1-forms on G which satisfy (2.2).
Then there exist holomorphic functions Φ19 ,Φn on G such that

ψλ = dΦλ (1 < λ < r) ,

(2.4) _ i

where Fλv(Φ) = Σ Fλva(Φ) exp (a& + + asΦs), Fλva(Φ) is a polynomial
a

in φl9 , φλ_l9 and FU(Φ) = exp (a*& + + a\Φ8).
Proof. By induction on n = dim G we shall prove the proposition, which

is obvious for n = 1. Assume (2.1) to be valid for v < n — 1. Since ξn =
s

= -exp (-Σa"φp)ξn Λ ψn + exp ( - Σ a^)(fn Λ con

= Σ Pt(Φ)dΦx Λ dΦ, .
I

By the hypothesis of the induction together with (2.1), (2.2) and (2.3) we have

FfXΦ) = 0 (1 < λ, v < s) ,

FfXΦ) = Σ Fla exp ( α A + + asΦs) ,

wheae F*a(Φ) is a polynomial in Φu , Φn_2. Take Gv such that

Σ σ,dφ, - Σ

= Σ FfβΦ, A dΦu - Σ FZ-idΦ. A dΦn_γ - Σ F^^dΦ, A dΦn_,
λ<v v>S v<S

+ (terms of dΦλ Λ dΦv, λ, v < n — 2)

= Σ Ff*dΦλ A dΦv, where F * * = Ff*(Φ19 , Φ^O .
λ<v<n-2

Since 0 = ί/f Σ Ff*dΦ1 A dφ\ = 3 F * * dΦB_, A dΦ> A dΦ, + • • , we
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have 3F**/3Φn_1 = 0. Hence Ff* = E**(Φ19 , Φn_2). Obviously F * * = 0
(1 < Λ, ̂  < s), etc. Thus we obtain the proposition by induction, q.e.d.

By the same way as stated above we can contruct a multiplication * of Cn.
In order to show that this multiplication defines a Lie group structure of Cn we
have only to check the associative law. We can easily do this by using the
fact that ψλ is a right invariant 1-form on G and the multiplication is written ex-
plicitly (see below). Hence the multiplication * makes Cn a complex Lie group,
and (Cn, *) is isomorphic to the Lie group G.

The multiplication * is defined by

(z19 '—,zn)* (y19 , yn) = (zx + y19 , zr + yr9 ,

exp (-a\yι av

sys)zv + yv + F v(z, y), •) ,

where F£z9 y) is expressed in z19 , zυ_i, y19 - , 3\,-i Therefore we obtain
Proposition 2.2. Assume g ίo /ιαvβ ί/ie Chevalley decomposition. Let {ψλ}

be a basis of right invariant 1-forms on G which satisfy (2.3). By an appro-
priate choice of a system of coordinates (z1? -,zn) of Cn, {φλ} are represented
as follows:

[dzλ , 1 < λ <r ,

(2.5) φλ

Σ

( s \

Σ aPzΛ9 Fλva is a polynomial in zl9 9zλ-19
(0 = 1 /

S

and Fu = exp Σ <**Pzp-

Dualizing Proposition 2.3 by means of (1.1), we obtain
Proposition 2.3. Let {θλ} be a dual basis of right invariant vector fields of

{φλ}. Then by the same system of coordinates of Cn as in Proposition 2.2, {θλ}
are represented as follows:

(d/dzλ , 1 < λ < r ,

(2.6) θλ = \n
( Σ GλXz)d/dzλ , r < λ ,

where Gλv(z) = Σ Gλva(z) exp ( Σ aPzp) and Gλva is a polynomial in z19 ,
a \P=1 /

Zv-i

3. Construction of Kuranishi families of deformations of
three-dimensional complex solvable manifolds

In this section we shall calculate small deformations of three-dimensional
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complex solvable manifolds constructed in §2. In these cases we see that sev-
eral numerical characters, such as hp'q (p, q) Φ (0, 0), r, Pm (m > 1) are not
necessarily invariant under small deformations. Moreover, in the case of IΠ-(3b)
there are small deformations whose universal covering are not biholomorphi-
cally equivalent to C3.

Kodaira first calculated small deformations of Iwasawa manifold. In the
first part of this section we shall introduce his result.

Case IΠ-(2) Let X = C3/Γ be Iwasawa manifold, g e Γ operates on C3

as follows:

z[ = Zι + ωλ , z'2 = Z2 + ω2 , z'3 = Z3 + ωxz2 + ω3 ,

where g = (ω1? ω2, ω3) and zf =• z-g. There exist holomorhpic 1-forms φ19 <p2, <p3

which are linearly independent at every point on X and are given by

φλ = dZi , ψ2 = dz2 , φ3 = dz3 — Zλdz2 ,

so that

dψx — dφ2 = 0 , dφ3 = —φλ A ψ2 .

On the other hand we have holomorphic vector fields Θ19Θ2, #3 on X given by

θx = dλ , θ2 = d2 + -̂ 1^3 ? #3 — ^3 J

where ^ denotes 9/3zλ. It is easily seen that

[0i, 0J = - 0 2 , 0J = 3̂ , [02, 03] - Wi, 0J = 0 .

In view of Theorem 2 (§ 4), Ή%\X) is spanned by φ19φ2. Since θ is isomorphic

to Θ\ H°f\X, Θ) is spanned by θiψi9 i = 1, 2, 3, ^ = 1, 2.

For vector (0, l)-forms Ψ, τ, we define

[ψ, T] = Σ (Ψα Λ daτ
β + τa A daψβ)dβ ,

where ψ = Σ V^a and r = Σ τβdβ. (Cf. [3].) We have

\0iφλ, θkψΛ = [Qi, θk]φv A φv .

We shall construct a vector (0, l)-form ψ such that

(3.1) 3 ψ - i ί Ψ , ψ ] = 0 .

3 2

Set ψ = 2 ψβ(0, where ψ^O = Σ Σ ^0<9i, a n d Ψ«(0 i s t h e homogeneous

term of total degree α in /ίyί. Then
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Set ψ2(t) = — (̂ 11̂ 22 — ki ' Thus we obtain a solution of (3.1) given by

This proves the existence of a locally complete complex analytic family of de-
formations Xt of X depending on 6 effective parameters tiλ, [3].

Next, by solving the system of differential equations

(3.2) 3ζv - ψ(t)ζv = 0 , v= 1 ,2,3 ,

under the initial condition ζυ(0) = zv, we have the solutions:

ζl — £l ~Γ - ^2 T

= z 3

where

D(t) = tnt22 - t2ltl2 ,

Since

dζx A dζ2 A dζ3 A dζλ A dζ2 A dζd

= c(t)dzι A dz2 A dz3 A dzλ A dz2 Adzz ,

where c(t) is a differentiate function in tu with c(0) = 1, it follows that

Φ: (z^z2, z3) ι-̂  (Ci, C2? Cs) is a diffeomorphism of C3 if 2 \tiλ\ < ε for suffi-

ciently small positive number ε.

σ

diffeomorphic

Since π is a covering map, πt = φoπoφ-1 is also a covering map from C3 to
Z έ . Therefore C3 is the universal covering of Xt, that is, Z έ = C3/Γt for a
group Γt of analytic automorphisms of C3. The group Γj is defined by

Cί = Ci + ώi C2 = C2 +
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ζ's = ώz(t) A(ω) - D(t)ω3 ,

where ώt(t) = ωt + tixωx + ti2ω2 for (ωλ ω2 ω3) e Γ.
Now we summarize the numerical characters of deformations. The deforma-

tions are divided into the following three classes:
i) tn = tί2 = t2l = t22 = 0, Xt is a parallelisable manifold of type IΠ-(2).

ii) D(t) = 0 and (tn t12121122) Φ (0, 0, 0, 0), Xt is not parallelisable.
iii) D(t) Φ 0, Xt is not parallelisable.

i)

ϋ)

iii)

r

2

2

2

;2i,o

3

2

2

£0,1

2

2

2

£2,0

3

2

1

6

5

5

£0,2

2

2

2

£3,0

1

1

1

£2,1

6

5

4

£1,2

6

5

4

£0,3

1

1

1

Pm (m > 1)

1

1

1

Next we shall calculate small deformations of a solvable manifold of type
IΠ-(3) constructed in § 2. As stated before, hQΛ(X) = 1 or 3 (see the proof of
Theorem 3).

First we shall consider the case where h0>1 = 3. Let X = C3/Γ be a solvable
manifold constructed in Example IΠ-(3b). By an appropriate linear transfor-
mation of z2 and z3, g € Γ operates on C3 as follows:

z'i = Zι + ωι , τ!^ — e~ωiz2 + ω2 , z'3 = ^ ω i Z 3 + α>3 .

There exist holomorphic 1-forms <p19φ2, <p3 on X given by

^ = dzi , ^2 = ^ 0 1 ^ 2 J ^3 = e~Zldz3 ,

so that

dpx = 0 , dφ2 = φλ A <p2 , ^ 3 = — Pi Λ p 3

On the other hand, there exist holomorphic vector fields θ19 θ2, θ3 given by

such that

[θl9 θ2] = - [θ29 ΘJ =-θ2, [θί9 ft] = - [ft? ft] = ft , [ft, ft] = 0 .

H°§>\X) is generated by φf = dz i5 ρ2* = ^ 2 l ^ 2 and ^3* = e~Zldzs (see the proof
of Theorem 3). Since φ* = e**-'1^ and ^3* = e " 2 l + ^ 3 , H°^(X,Θ) is spanned
by ftp?, i = 1,2, 3, Λ = 1,2, 3. We shall construct a vector (0, l)-forms ψ
satisfying (3.1).



COMPLEX PARALLELISABLE MANIFOLDS 97

oo 3 3

Set ψ(t) = Σ Ψ«(.*)> where f,(t) = Σ Σ hxθiψf and ψβ(ί) is the homo-

geneous term of total degree a in tiλ. Then we have

\yJvJj\ 5 (7 U?2 J V ^ i i " I" L^i? " \)ΨΛ / \ Ψ% 5

[θxφΐ,θμψf] = {-δuθμ + [θx,θμ])φ* Λ ψf ,

[θiψt,θμφf] = {-δuθμ - δlμθx + [θ^θ^φ* Λ ψf ,

2"|_/ψ1

1, ψ\\ = = ^1^1 H~ ^2^2 ~f" ^3^3 ?

where

37X = — tntnφf A ψf + tntuφf A ψf — 2t12t13ψf A φ% ,

η2 = (t2ltm — 2tut23)φf A ψf + ίi2*2iP* A ψf — 2tl2t23φf A φf ,

tyi = —^319* A £>3* + (2ίiiί32 — 3̂1̂ 12)9* A φf — 2t1ΆtZ2ψf A ψf .

Since 3ψ2 = | [ψi , ψ j , it follows that ηv is cohomologous to zero in H\>\X).
Lemma 3.1. Set η = ^4^f Λ ^* + 5^* A φf + Ĉ ?2* Λ #f, flnrf assume

that η is cohomologous to zero in H^\X). Then A = B = C = 0.
Proof. φfAψf = eH~Zlφι A φz, ^? Λ ^* = ^2 A <p3, ψf A φf = e*1'21^

A ψ2j d{φf A φf) = 0. If fλ,f2,fz are functions in z1? Zi, then

&(fi<f>2 A ψs + f2ψi A φ3 + fzψι A φ2) = — (3j/ 2 + / 2 ) ^ 3 — (3]/ 3 — / 3 ) ^ 2 ->

where # is the adjoint operator of 3 (see the proofs of Theorems 2 and 3). Thus
&(φf A φf) = &(φ* A φf) = <9(φ? A φf) = 0, and^f Λ φf is harmonic. Hence
η = 0, ^ = B = C = 0. q.e.d.

It follows from Lemma 3.1 that

ίnί13 = 0 , ί11ί12 = 0 ί t — 0

(3.3) ί21ί13 - 2V 2 3 = 0 , t12t21 = 0 , ί12ί23 = 0 ,

I f —- Q 2t t t t •=• 0 t t = 0 .

Consequently ψ = ψx.
By solving (3.2) we have the solutions:

Vl = Zl + tnZι - log (1 - t12e
z%) + log (1 + t13e~z%) ,

ζz Z, + /33Z3 + W s i ^ Z A + ^ ( ^ 1) + 1 .
in 1 - t12e

z%

Four cases may occur. If t12 = ί13 = 0, we infer that C3 is the universal covr-
ing of Xt by the same argument as in the case of IΠ-(2).
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Case 1: tu Φ 0 , tu = tu = ί23 = ta = 0 , ζτ = Zl + tnlχ ,

ζ2 = z2 + t22z2 - A_ «-"(«-'»* - 1) ,

= z3

C3 is the universal covering of Xt, i.e., .SΓt = C3/^"ί for a group 71; of analytic
automorphisms of C3 the group Γt is defined by

Cί = Ci + ώ, ,

ώ, -

where 0)̂  = 0)̂  + ί^ω^ for (ω1? ω2, ω3) e Γ.

Case 2 : ίu = ί12 = ί18 = 0 , Ci = z1 ,

C2 = £2 + ^ 2 + ί2i^"ZlZi + t23e-2z>z3 ,

C3 = z* + tssϊs + tsle
z% + h2e

2z% .

C3 is also the universal covering of Xt9 i.e., Xt = C3//^ί A is defined by

Cί = Ci + OH ,

C2 - ^" ω i C 2 + ώ2 + t^e-t*-* + ί 2 3 ω 3 ^- 2 ζ l - 2 ω i ,

where ώt = ωt + tuω^ i = 2,3 for (ω15 ω2? ω3) € .Γ.

Case 3 (Kodaira): ί12 Φ 0 , /π = tld = t2l = t23 = ί31 = 0 ,

& = Z! — log (1 — ί 1 2^%) , ζ2 = z2 + t22z2 ,

Set

w = e~Zl , ^ = TV — ί 1 2 z 2 , Ύ]2 = z 2

^3 : = ^3 T ^33^3 '

Any g € Γ induces a transformation gt of Wt as follows:
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η[ = e~mi(% — tl2ώ2) , ηf

2 = e~ωi(η2 + ώ2) , η'3 = βω α(^ 3 + ώ 3) ,

where ^ = {(ηl9 η29 %) € C3 (1 — |ί22|
2)^i + Ί2O72 — ^ 2 ) =£ 0} and ώt = ωt +

tuωi, i — 2,?> for (ω1? ω2, ω3) e Γ. Set Jt — {gt;ge Γ}. Then we have Xt = Wt\Δt

for Σ 1̂ 1 < 1 and Z = Z o = JF0/Jo For ίi2 Φ 0, ^ is not a domain of holo-

morphy. In fact, by virtue of the edge of the wedge theorem [6] any multivalued
holomorphic function on Wt extends to C3. In particular the universal covering
manifold Wt of Wt cannot be imbedded into Cn for any n.

Case 4 : tl 0 , t n = tl2 = t21 = ί31 = ί32 = 0 .

By the transformation: (z15 z2, z3) ̂  ( — ̂ i> —^25 — z3)» (Ci> C2? ζ3) •-> ( — Ci?

— ζ25 — ζ3), we can reduce Case 4 to Case 3.
Now we summarize the numerical characters of small deformations in Case

3.

i) tχi=O
M=l,2,3

ϋ) t12φθ

r

1

0

3

0

3

2

3

1

1

0

1

0

£31

3

2

£32

3

1

Pm(m>l)

1

0

K

0

— CXD

Thus we obtain
Theorem 2. /zPQ (p, q) Φ (0, 0), r, Pm (m > 1) and K are not necessarily

invariant under small deformations.
Secondly we shall consider the case where X is of type ΠI-(3) with h0Λ = 1.

Holomorphic 1-forms and vector fields on X are given as follows:

ψλ = dzλ , <p2 = eZldz2 , ψs = e~Zldz3 ,

Θ1 = d1 , Θ2 = e~Zld2 , θ3 = eZld3 .

H0>1(θ) is spanned by Θ&, θ2ψλ, θ3φ19 and the vector (0, l)-form ψ satisfying
3

(3.1) is given by ψ(f) = Σ ^ ί ^ i W e c a n construct a locally complete complex
i = l

analytic family of deformations of X depending on 3 effective parameters tt.

Case 1: t, Φ 0 , d = zx + ίχZi ,

ζ2 2 ( ) ,

X1 = C 3 /Γ ί ? and the group Λ is denned by

Cί = Ci + ^ + ί1fiϊ1 , c; = β-^2

ζ3 = Zs + A. β
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- Agci+-.(1 - e*Λ) for

Case 2 : tx = 0 , ζλ = z1 , ζ2 = z2 + ί2e~*% , ζ 3 = z3 + heZlzλ .

JC* = C*/Γt, and the group /^ is denned by

C3 — e(ΰlζ,z + ce>3 + ί 3 ω 1 £ ζ l + ω i for (ω1 ? ω2, ω3) e 7^ .

4. Proofs of Theorems 2 and 3

The following theorem is due to Kodaira.
Theorem 3. // X is nilpoίent, then hOί — r.
Proof. We shall calculate the dimension of harmonic (0, l)-forms by the

Dolbeault isomorphism H\X,Θ) ^ Hf{X). Let {φλ} and {θλ} be a basis of
H\X,Ωι) and H°(X,Θ) dual to each other with respect to (1.1), which
satisfy (2.1) and (2.2) respectively. Let φ be a differentiate (O.l)-form on

n

X. Then φ = J] fλφλ, where //s are differentiate function on X, so that

dφ = Σ (βJv)ψ, Λ φλ + Σ fβψx = Σ (^t - ΘJ, + 2 Σ ζΓΛ)^ Λ ^,.
i,w A = l v<λ μ=l

n

For a differentiate (0, l)-form γ — Σ gλψλ we define
(φ,X)= ί Σhgxdx,

JX λ = l

where dX = /"nVi Λ Λ f 8 Λ f t " Λ ^ n .

Let ^ be the adjoint operator or d with respect to the inner ( , ). For a dif-
ferentiable function g we have

,8) = (φ,ds) = f Σ /A? d^ = - ί (Σ ΘJΰgdX .
Jl-! = 1 JX

n _

Hence 9ψ = — Σ θλU Assume that φ is harmonic so that dφ = 0, Όφ = 0.

Consequently
_ _ n n

μ=l λ=l

Define the Laplacian • by

• = &B + d& .
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Then •/ = 0 implies df — 0 for a function /. Hence / is holomorphic on X,
and is constant.

Πf,= -2 Σ c^zθJ,

Since X is nilpotent, we have cμvλ = 0 (v > μ or λ > μ). Thus Π/» = 0, which
implies that fn is constant. From this it follows that

Thus /n_! is constant. Inductively we conclude that any fv is constant. Since
n

d = 0, fλ — 0 0 < Λ). Hence p = 2 / ^ where //s are constant, i.e., A0*1 = r.

Theorem 4. // X is solvable and its Lie algebra has the Chevalley decom-
position, then we have bx = 2r.

Proof. First we assume X to be nilpotent. Consider the following exact
sequence:

0 > C > Θ-^-> d(9 > 0 .

Then we hove

0 -> H°(X, d&) -> Hι(X, C) -> H\X, Θ) — .

From theorem 3 it follows that bx < 2r, while in general bx > 2 dimc H\X, dΘ).
Hence we complete the proof in case that X is nilpotent.

Now we assume X not to be nilpotent. Then the Mostow decomposition
(X, π, B) is nontrivial. Set dim B = s ( > 1) and dim X = n. Then we can take
a system of coordinates (z1? , zn) of the universal covering Cn of X satisfy-
ing the following two conditions:

(1) π is the projection to the first s factors, and (X, π, B) is a holomorphic
fiber bundle with nilpotent F as fiber:

X = Cn/Γs(z^ .-,zn)

(2) θλ9 ψv are represented in the forms (2.5) and (2.6), a n d ^ 6 Γλ induces

an analytic automorphism of F and Alb F; hence g1 operates on (zs+1, ,

zs+r(Fy) a s a n affine transformation.

Denoting the v-th coordinate otz gx by (z-gι\ = zj9 we have zj = Σ avμzv
μ = S + l

+ cv, s+l<v<s + r(F), where avμ is constant and cv = cv(zl9 , z8, £i)
By induction on v we can check that any cv is constant depending only on gλ
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in view of the representation (2.5) of ψv. Consider the following spectral se-

quence :

Ep,q _ w(B, Rqπ^Θx) ^ Hp+q(X, Θ) .

Then we have the exact sequence:

0 -> H\B, OB) - H\X, 0z) -> H\B, Rιπ^Θx) ->

ill

Since F is nilpotent, H^\F, OF) is generated by dzs+i, , dzs+r{F), and there-
fore any element ψ of H°(B, Rιπ^Θx) can be written in the form ψ =
s + r(F)

Σ fAz)dzλ where fλ(z) is holomorphic in z19 , zs. By the above arguments,
λ = s + l

ψ can be viewed as a (0, l)-form on X, and can therefore be written as ψ =
n

Σ 8iψi w h e r e g λ = g λ ( z i 9 , z s , z 1 ? , z n ) i s a n t i h o l o m o r p h i c i n z ί + 1 , •••,
λ = S + l

Zn

By Proposition 2.3 we see readily that dψ = 0, ^ψ = — 2 ^>ι = 0, and

consequently that ψ itself can be viewed as an element of H\X, φ) ^ Hy(X).
Hence Hι(X, Θx) = H\B, ΦB) 0 H°(B, Rιπ*Θx), that is, any element ψ of
//^(Z) can be represented in the form

s s + r(F) s n

Ψ = Σ cadfi + Σ fχ(z)dz> = Σ c rfz, + Σ gfpi,
λ = l λ = s + l λ = l λ = s + l

where cλ is constant, and fλ, gλ are the same as above. We shall calculate the
dimension of real harmonic 1-forms on X. Let ψ be a real differentiate 1-
form given by

n n

ψ = Σ Exψx + Σ 8tfχ 7
λ=l λ=l

n

where gλ is a diίϊerentiable function. Set ψ = Σ ^ Λ Then ψ — ψ + ψ.

Define rf, ^ by

<fy> = ( 9

Assume φ is harmonic. Then dφ = 0, ^ = 0, and therefore 3ψ = 0,

9ψ = 0. Since dψ + dψ == Σ ( ^ ^ - ^ f »)^ Λ ft,, we have

(4.1) θ9gλ = θΣ.

On the other hand,
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o = δφ=-Σ'θIι-Σ θ>g> = -2 Σ θigx.

From this it follows that £ψ = — Σ θλgλ = 0. Since 3ψ = 0 and £ψ = 0, ψ
λ = l

s n

is an element of H°B

A(X). Thus ψ = Σ cλdzλ + Σ Sxψx f° r some constant c^.
λ = l λ=s+l

From (4.1) we conclude that any gλ is constant. Since ^ = 0, we have gλ = 0
r r

U > r). Accordingly it follows that φ = Σ cχψλ + Σ cjpϊ where φ are com-
χ=\ ι=\

plex numbers. This implies that dimβ H\X, R) = 2r, i.e., bλ = 2r.
Remark 4.1. In the proof of Theorem 3 we have given an explicit descrip-

tion of elements of HY(X). Since θ is isomorphic to d)n, Hγ(X, θ) is spanned
by θiψ {i = 1, , ή) for elements ψ of Hf°(X).

Remark 4.2. If Z is not nilpotent, then X — Cr X FjΓι for a nilpotent
manifold F and a group /\ of analytic automorphisms ot Cs X F. Any element
g of /\ induces an automorphism g* of C s X Alb F. Set Γf = {g* g 6 ΓΊ}.

' Since Γλ operates on Cs X F properly discontinuously without fixed points,
Γf operates on Cs X Alb F in the same way. Thus Z * = O X Alb F/Γf is
a compact complex manifold, and is therefore parallelisable and solvable. Using
this fact we infer that a parallelisable manifold with the following basis {φλ} of
H\X, Ωι) does not exist :

dψx = 0 , dφ2 = φλ A φ2 , dφ3 = —2(μ + l)φ1 A φz ,

dφ4 = μφx A φA , dφ5 = (μ + l)ψi A <pδ + <p2 A φ4 ,

where μ is constant, and μ(μ + 1) Φ 0.
Proof. If a parallelisable manifold X of this type exists, X* is a parallelis-

able manifold with a basis {ψ15 ψ2, ψ3, ψ4} of H°(X*, Ωι) such that dψx = 0,
ί/ψ2 = ψι A ψ2> dψ3 = —2(μ + l)ψ1 A ψ3, dψA = μψί A ψ4. This contradicts
Lemma 1.4.

5. Proof of Theorem 5

First for brevity we assume g to have the Chevalley decomposition. Let {<pλ}
and {θi} be dual bases of H°(X, Ω1) and #°(X, θ) which satisfy (2.1) and (2.2)
respectively. The assumption means that Hy(X9 θ) is generated by θiψλ,
X = 1, . . . , n, and i = 1, , r. Define a (n — r, n — r) matrix A = (A^)
by

where v0 = ί dX = i~n2 \ ψx A Λ ψn A ψx A Λ ψn .

Lemma 5.1. det ( ^ o ) Φ 0.
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Proof. (dφί+r, dφj+r) = (dφί+r, dφj+r) = Vo 2 cί+rλvcj+rλv = 2Aia. Thus,

in order to prove Lemma 5.1, it suffices to show the following:
n

If for a 1-form ψ = 2 cχψχ> (dψ> dφv) = 0, v = r + 1, , n, then we
λ=r+l

have ψ = 0, where c^ are constant. However this is obvious, q.e.d.

It follows from Lemma 5.1. that there exists (n — r,n — r) matrix (Alj)

such that 2 AkiAlj = δkj.

Lemma 5.2. For a (0, 2)-form φ = 2 β ^ ^ Λ ^v >v/ί/z .yom^ constants aλv,
n

φ is cohomologous to zero in Hf(X) if and only if φ = 2 a*dφλ9 where a'λs
are constants.

Proof. For a (0, 2)-form ψ — 2 aχvψλ Λ ^ v the adjoint operator ^ of 9 is

defined by

Set

Hφ — φ — VQΣ Ajicί+rλvaλvdφj+r .

If cjp = 0, then //^ is harmonic, i.e., d(Hφ) = 0, ^(fl^) = 0. In fact, d(Hφ)
= dφ — 0. Moreover,

= 2 2

- 2 2 Ci + riA^^Λ^fc + r = 0

Since H is nothing but the projection of the harmonic part, we have Hφ = 0 if
φ is cohomologous to zero. "If" part of the lemma is obvious.

Lemma 5.3. Under some algebraic relations between tiλ(i = 1, , n, and

λ — 1, , r), ί/zere ejcίsta a vector (0, l)-form ψ = Σ ψa(f) for some nx < n
a = l

such that

(5.1) 5ψ - itψ , ψ] = 0 ,

7i r

w/zer^ ψj — Σ Σ t%λ0iψλ, and ψa is the homogeneous term of total degree a
i = l λ = l

in tίλ.
oo n r

Proof. Set ψ = 2 ψa(t) a n d Ψi — Σ Σ UχQiψ» where ψa is the homo-
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geneous term of total degree a in tίλ. Since [θiψλ9 θkφv] = \θu θk]φλ Λ φλ9 we
have1

3ψ2 = itΨi, ΨJ - Σ Σ 4 , * ω ^ Λ φv.
i = l /1<P

vl — Σ αLΐ^i Λ ^ is cohomologous to zero in H0

B'\X). Hence from Lemma

5.2 it follows2 that η\ = Σ &Jt(O<% f o r s o m e *it(0 a n d

6Q

(5.2), a\M) = 2 ,

(In general (5.2)! is nontrivial; see (3.3).) Then we have

Hz = EΨi, Ψ J = Σ Σ dLtOiψi Λ ^ .
v6Q a

Again from Lemma 5.2 it follows that

yl — Σ a\Viψλ A ψλ = Σ bμidφμ ^ o r some fe^ ,

(5.2) 2 £4,(0 - 2 2 ftJiCOc^ .

Inductively we define ψ α and bμi(t) under additional relations (5.2) 2, •••,
(5.2)T O l_!. Since \Jμ Qμ is bounded, we obtain the desired ψ after finite steps
of processes, q.e.d.

(5.2)!, , ( 5 . 2 ) n i _ ! define an algebraic set A in Cnr. Set Aε = {(tiλ) e 4̂
Σ Σ 1^1 < ε} f ° r a sufficiently small positive number ε. Lemma 5.3 implies
i = 0 λ = l

that there exists a maximal complex analytic family of deformations of X de-
pending on nr parameters tiλ. Aε is the Kuranishi space of deformations of X,
[3].

Lemma 5.4. The system of differential equations

(5.3) dζa -

e solved in Cn X Ae under the initial condition ζα(0) = za9 where 0 e Aa

denotes the origin of Cnr.
Proof. Since (5.3) is the integrability condition of the system of differential

equations (5.3), we can formally solve it by the interation method. To this
end we must show that the formal solutions converge in Cn X Aε for a suffi-
cient small positive number ε.

In view of Propositions 2.3 and 2.4 together with Lemma 5.3, ψ is repre-
sented by

^ S e e (1.4) as for βi, β 2, etc.
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n τϊi

+ = Σ Σ Ufiiψi + Σ Σ Σ < ψ μ
ί=l λ=l k=r+l μ=r+l β = 2

where m = $Q (see (1.2)), and a{μ denotes the homogeneous term of total
m m

degree β in tίλ. Then we have Σ alμψμ — Σ Hμ(t, Z)dzμ for a polynomial
μ=r+l μ=r+l

bίμiU z) in Zi, , Zm-u tu> which is of degree β in tu. Therefore the system
of differential equations (5.3) is equivalent to the system of equations:

U= ΣUM+ Σ Σ b>a(t,z)θtζ,

ΣΣ(5.4) 3rζ = Σ UAZ + Σ Σ K i u ϋ θ i ζ ,
ί=l β=2 ί=r+l

U=Σ Σ MM for μ e QiQ > 2),
β=l i=r+l

= 0 for μ e β . .

Set ζ = Σ Cs where ζβ denotes the homogeneous term of total degree β in tiλ.
β=0

Case 1. Assume ζ(0) = za or requivalently ζ0 = za (a = 1, , r). Then
we have

5̂ Ci = ^ , ^ < r a^d = 0 , μ > r .

r r

Hence setting d = Σ '«A> w e obtain the solution ζ = za + Σ *«A

Case 2. Assume ζ0 = z α ( α e β ) . Denote by Dλ(f) the degree of a polyno-
minal / with respect to zλ. Since S^d = taμ (μ<r), B^ = 0 (μ > r), we have

r

Ci = Σ taμZμ From Proposition 2.4 it follows that for μ ( < m )

0 l Z = 0 (Ϊ > μ or i < 5) , θμzμ = 1 , θiZμ = G,, (^ > Ϊ > J) ,

where Giμ is a polynominal in z1? ,Zί_i Hence we have (Da(ζ2) = 0,
Dr(ζ2) = 0 (γ > a). If £>α_i(C2) = N, then D.^Q = N - 1, Dr(ζ3) = 0
( r > α). Inductively we obtain Da_x{j:N+2) = 0 D ^ ζ ^ ^ ) = 0 (γ > a). For a
sufficiently large integer Λ^ we have

Dr(ζNl+δ) = 0 , τ-= 1, . . , π , 3 = 1 , . . - ,« ! ,

so that we may set ζβ = 0 for any β> Nλ + δ. Hence ζ = Σ Ĉ  is the desired
,8=0

solution.
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Case 3. Assume ζ0 = za (a e Q^, i.e., a > m + 1). Similarly, as in Case
2 we have Dr(ζN+δ) = 0, p = s + 1, , n, δ = 1, , nx. Therefore the
problem is reduced to the case where

r = s , and ζ0 is a polynomial in e*1, z1? , zr ,

and it suffices to prove the covergence of the series Σ ζβ only for ζ0 =
0 = 0

eZlZiei- z r

e r . Moreover, the system of differential equations (5.4) takes the
form:

5,C= Σ
λ = l

Define the norms || || by

= Σ \z> = Σ Σ \k>\, \Ω . . . Ω I I 7 β i .
\aβi Pr\ \<Ί

for a polynomial / = Σ aβ1-..βr

zιH' ' 'zrr- S i n c e <̂ Ci = Σ ^ACo> w e n a v e

and therefore |CxI < ||*|| \\z\\ ||Cί||, d,ζ2 = Σ ^ACi Thus |ζ 2 | < M ^ | | ζ - | | .

Idductively we have |ζfc| < JlίJI!Ml||ζ(j)||, and
k\

= Σ
k\

Therefore k\
Λί G(z) where β0 = Σ ^ ? G(z) =

Σ IVIIV'I * |V1> and Mis a sufficiently large positive number inde-
0<jv<e»

pendent of k. Hence

ΣβC*

<

e o - l

ΣoC*
e o - l

Σ ̂ *

e o - l

fc = 0

+

+
A:!

M G(z)(||ί|

In view of the proof of Lemma 5.4 we have

dζ, A • • • A dζn A dζ, A • • • A dζn

q.e.d.
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= c(t)dz1 A - - A dzn A dzλ A A dzn ,

where a differentiate function c{t) of tίλ is independent of z19 , zn and satis-
fies c(0) = 1. Hence by the same argument as in § 3 we conclude that any
small deformation Xt (t e Aε) has Cn as the universal covering for a sufficiently
small positive number ε.

In the general case we can apply the following lemma which is a weaker
form of Propositions 2.2 and 2.3.

Lemma. Let G be a connected solvable complex Lie group. Then we can
choose a global coordinate (zί9 , zn) of G (= Cn) and a basis {<pλ}, {θλ} of
right invariant 1-forms and vector fields respectively such that

ψx = Σ Fλ£z)dzv , θλ = Σ Gλ£z)d/dzv,

where Fλv = Fίv(zl9 , zv_i), Gλv = Gλ£zλ, , zv_λ) and (θλ, φv) = δλv.
By quite similar arguments we can also prove Theorem 5.

6. Classification of four- and five-dimensional complex solvable manifolds

By an elementary calculation together with Lemma 1.4 and Remark 4.2 we
classify four and five-dimensional complex solvable Lie groups which may
have uniform subgroups as follows:

Type IV:

2. dφλ = 0 , 1 < λ < 3 , dφ = —φ2 A φ3 .

3. dφλ = 0 , <% = 0 , dφ3 = —φλ A φ2 , dφ4 = — 2φλ A φ3 .

4. dφ1 = 0 , dφ2 = 0 , dφ3 = φ2 A φ3 9 dφA = —ψ2 A φ4 .

5. dφί = 0 , dψ2 = φ1 A φ2 , dφ3 = aψλ A φ3 ,

6.

7.

Type

1.

2.

3.

4.

5.

dφ4

άψl

dψi

V :

dφλ

dψλ

dψi

dψx

dψx

= -d
= 0,

= 0,

= dΨι/

= 0,

= 0,

= 0,

= 0,

= o,

+
dφ

dφ

:

1 <

OL)ψγ A ψ

2 = ψl

2 = ψl

*-ψx

1 < λ

1 <λ<

1 <

1 <

A

A

A

<

4 ;

4 ;

3 ,

3 ,

4 ?

ψl ,

ψl ,

Ψι .

5 .

> ^9

, d(ι

, dH

α(l +
dφ3 = -

dψ3 = -

o, = -ψ3

% = —ψι

?4 = -ψl

h = -ψi

a)

~Ψ

- 2

Λ

Λ

Λ

Λ

^ o ,
i Λ ψ

ψi A

Ψi

ψ3 ~

ψl ,

ψ3 ,

>3 , a

ψ3 ,

ψi A

dψ5--

dφδ =

]'ψi — —ψi A ψ3 .

ψi

= -Ψi Λ ψ3 .

= — 2φ2 A ψA .
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6. dφλ = 0 , 1 < 2 < 3 , dψi = — φι A φ2 ,

dφδ = —2φλ Λφ4 — φ2 Λ φ3 .

7. dφλ = 0 , 1 < 2 < 3 , dφ4 = φ3 Λ ψi , dφδ = — φ3 A p 5 .

8. dφλ = 0 , 2 = 1 , 2 , d^>3 = — ̂  Λ ^2 » ^ 4 = — 2 ^ ! Λ φ3 ,

^ 5 = — 2φ2 A φ3 .

9. dφλ = 0 , 2 = 1 , 2 , d^3 = —^i Λ p 2 > <% = —2^i Λ ^ 3 >

dφ5 = — 3 ^ Λ ?̂4 •

10. dφλ = 0 , λ—\,2, dφ3 = —φγ Λ ^ 2 9 # 4 = — 2ψi Λ ^ 3 »

^ 5 = — 3 ^ ! Λ ψi — ?̂2 Λ ^3

1 1 . dψλ = 0 , Λ = 1, 2 , ^ 3 = — 9i Λ φ2 , ^ 4 = Pi Λ ?̂4 J

^ 5 = ψl Λ ^ 5

12. dp, = 0 , 2 = 1 , 2 , dφ3 = φι A φ3 , dφ^ = φ2 Λ φ4 ,

d^5 = — (pi + 92) A φδ .

13. dφλ = 0 , 2 = 1 , 2 , ίfy>3 = ^2 Λ ψz , d^?4 = α^ 2 Λ ^4 ,

d^5 = - ( 1 + a)ψ2 A φ5 , α ( l + α) 9^ 0 .

14. ^ = 0 , 2 = 1 , 2 , dφ3 = ψγ A <p3 , dφ± = —2ψι A φ^ ,

dφδ = φχ A φ5 — ψx A <p3 .

15. d ^ = 0 , 2 = 1 , 2 , d^3 = φ2 A φ3 , d^4 = — φ2 A <pA ,

d^)5 = —φ3 A ψt .

16. d ^ = 0 , 2 = 1 , 2 , d^3 = φγ A φ3 , d^4 = —<pί A <pA ,

dφδ = —^3 Λ 94 — ψι Λ ^2

17. d^! = 0 , d^?2 = 9)1 Λ 92 J ^ 3 = aψi Λ ^3 » dφA = ^ Λ ?̂4 ,

dφ5 = - ( 1 + a + jSV Λ ^5 , αjSCl + α + β) Φ 0 .

18. dψx = 0 , d^2 = —3ψι A ψ2 , dφz = ^ Λ φ3 ,

d^?4 = ^ Λ ?̂4 — ^1 Λ ψz , d^5 = φ1 A <pδ — ψx A φ3 .

19. d^i = 0 , d^?2 = ψx A ψ2 , d^3 = —^! Λ <p3 ,

d^?4 = ^ Λ ψA — ψx A φ2 , dψδ — —ψγ A φδ — φx A ψ2 .

20. d^i = 0 , dψ2 = ψλ A φ2 , dφ3 = ψι A φ3 — φx A φ2 ,

dψt = aφλ A φA , d^?5 = — (2 + α ) ^ Λ ^5 , α(2 + α) ^ 0 .

Lemma 6.1. Lei A be a 3 X 3 matrix which induces an automorphism of
a complex torus of dimension 3. Assume that A has eigenvalues a, a and a~2.
Then a is a root of unity.

Proof. Let Φ be the proper polynomial of A. Then

¥(x) = Φ(x)Φ(x) € Z[x] .
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Assume a is not a root of 1. We shall prove Ψ is irreducible in Z[x\. In fact,
if Ψ is not irreducible, there exist Φ19 Φ2 e Z[x] such that Ψ = ΦλΦ2. We may
assume deg Φλ > deg Φ2 > 2. Two cases may occur. First, we assume deg Φλ =
4, deg Φ2 = 2. Put F(JC) = (x - a)(x - a) e Λ[JC]. If F | Φ2 in R[x], then F =

± Φ2. Since the constant term of Ψ equals ± 1, that of Φ2 equals ± 1. Hence
\a\ = 1. Any conjugate of a has absolute value 1. Therefore a is a root of 1.
This is a contradiction. If F\Φ2 in j?[jt], then F2\ΦX in j?[jt], hence F 2 =
± Φx. Similarly, we are led to the contradiction. In case deg Φλ = deg Φ2 = 3,
we also have a contradiction. Thus Ψ is proved to be irreducible. This con-
tradicts the fact that Ψ has a double root, q.e.d.

Similarly we obtain
Lemma 6.2 Let A be a 4 x 4 matrix which induces an automorphism of

a 4-dimensional complex torus. Assume A has eigenvalues a, a, a, a~3. Then
a is a root of 1.

From these lemmas, we conclude that a parallelisable manifold of type IV-
6, V-14 or V-18 does not exist. In fact, in the case of IV-7 we consider the
Mostow decomposition π: X —»B. Then B is an elliptic curve, the fiber F is a
complex torus of dimension 3,

X = O/Γ , g = (ω15 ω2, ω3, ω4) € Γ ,

and g: F —> F is given by

ω2, ω4) .

Lemma 6.1 shows that eωi is a root of 1. This contradicts the fact that {ωx

(ω19 ω29ω3, ω4) e Γ} are periods of the elliptic curve B.
Similarly it can be proved that a parallelisable manifold of type V-15 or V-

18 does not exist.
The author does not know whether there exist parallelisable manifolds of

types IV-5, V-l l , V-13, V-16, V-19, V-20. In other cases we can construct
examples of each type. Now we summarize the results. In the following table
we omit Zι + y% for simplicity. For example, z*y = (z3 + y3 + yλz2) implies

to + yi9 z2 + y2, z3 + y3 + yxz2).

Type IV

1

2

3

4

5

6

abelian

nilpotent

nilpotent

solvable

solvable

solvable

Z4+J4+J2Z3

-̂ 3 + ̂ 3 + ̂ 1^2, Z4 + J4 + 2>ΊZ3 + ^Z2

e-yiz2+y2, e-ayizs+yz e^+^yiz^+y^

e-y*Z2+y2, eyizz+y*, Zi+y4 + eyiy2Z3
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Type V

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

19

20

abelian

nilpotent

nilpotent

nilpotent

nilpotent

nilpotent

solvable

nilpotent

nilpotent

nilpotent

solvable

solvable

solvable

solvable

solvable

solvable

solvable

solvable

zδ+yδ+y5Zi

Zδ + y5 + ylZs + y2Z/ί

Z4i+y±+yiZ2, Zδ+ys+y

Zt+yι+y%Zz, zδ+y5+2

e-y*z±+y±, ev*za+y6

?3 + ̂ ^ t t + p
TZ^yZ^lTylVl
Z3+ys+yiZ2, e-yizί+y

e-yιZz + yZί e-y2z^ + yij

e-y^Zz+ys, e-ay^Zi+yi

e~y*Z3+y3, eyzzi+y*,

e-yiZΆ+y3y eyizt+y*,

e-viz3, eyizB+yz, e~vκ

e~yiz2+y2, e-y^zz+yz-

z * y

lZs

yizz+ylz*.

nZylz2,

tl+yϊz2,
Ϋ2)Zz + yizl + (yl+2yιy2)z2

4, eviZδ+yδ

ey1+y2Zb + yδ

f e(l+a)y2Zδ + y5

Zδ + y5 + eyly3Z/ί + ylZ2

, e-βvizi+y*, e<i + «+β)zt+y6

Zi + e-yiy^, eyiZs + ya + eviyiZz

v-e~y-^y1z2, e~ayiZ4+y4,

Complex solvable manifolds of dimensions 4, 5 are classified as follows:

IV: 1

2

3

4

5

6

V: 1

2

3

4

5

6

7

8

r

4

3

2

2

1

1

5

4

4

3

3

3

3

2

4

3

2

2,4

1,2,4

1,3

5

4

4

3

3

3

3,5

2

structure (Albanese mapping)

complex torus

Ji-bundle over Γ3

Γ2-bundle over T2

Γ2-bundle over T2

Γ3-bundle over Γ1?

(IΠ-2)-bundle over Γ1

complex torus

Ji-bundle over T4

T1-bundle over Γ4

T2-bundle over T3

Γ2-bundle over Γ3

T2-bundle over T3

T2-bundle over J 3

Γ3-bundle over Γ2
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9

10

11

12

13

15

16

17

19

20

r

2

2

2

2

2

2

2

1

1

1

2

2

2,4

2,3,5

2,3,5

2,4

2,4

1,2,3,5

1,3

1,2,4

structure (Albanese mapping)

T3-bundle over T2

TMπmdle over T2

T3-bundle over Γ2?

T3-bundle over T2

Γ3-bundle over T2?

(IΠ-2)-bundle over Γ2

(ΠI-2)-bundle over T2?

T4-bundle over T1

Γ4-bundle over T1?

T4-bundle over T1?

Here r = dim H\X,dΘ), h°>1 = dim Hι{X,0), Tn = a complex torus of

dimension w.

Remark. 4̂ solvable manifold of dimension 4 or 5 has a Lie algebra with

the Chevalley decomposition, and so from Theorem 3 it follows that bι — 2r.
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