COMPLEX PARALLELISABLE MANIFOLDS AND THEIR SMALL DEFORMATIONS

IKU NAKAMURA

Introduction

By a complex parallelisable manifold we mean a compact complex manifold with the trivial holomorphic tangent bundle. Wang [8] showed that a complex parallelisable manifold is the quotient space of a simply connected, connected complex Lie group by one of its discrete subgroups.

It is known that if the Lie group corresponding to a parallelisable manifold is semi-simple and does not contain $\mathrm{SL}(2 C)$ as a component, then the first Betti number vanishes and its small deformation is rigid, [2], [5], [6].

In this paper we consider the similar problems in the case where the corresponding Lie group is solvable, and obtain quite different results. We note that a simply connected, connected solvable complex Lie group is biholomorphically equivalent to C^{n} as a complex manifold where $n=\operatorname{dim}_{C} G$. If a complex parallelisable manifold has a solvable Lie group as the universal covering, it is called a complex solvable manifold.

In § 1 we summarize some known results and give three lemmas. In $\S 2$ by numerical invariants we classify three-dimensional complex solvable manifolds into four classes III-(1), III-(2), III-(3a), III-(3b), and construct some examples in all cases.

In § 3 we construct Kuranishi families of deformations of three-dimensional complex solvable manifolds constructed in $\S 2$. The base spaces of these Kuranishi families which are reduced complex spaces are irreducible in the cases of III-(2) and III-(3a) but reducible in for case of III-(3b), about which we shall give explicit descriptions.

For a compact complex manifold X we denote by \mathcal{O} and Ω^{p} the sheaves of germs over X of holomorphic functions and p-forms respectively. Recall $h^{p, q}$ $=\operatorname{dim}_{C} H^{q}\left(X, \Omega^{p}\right)$ and $P_{m}(X)=\operatorname{dim} H^{0}\left(X,\left(\Omega^{n}\right)^{\otimes m}\right)$ where $n=\operatorname{dim}_{C} X$. Also we denote by r, κ and b_{i} respectively the number of linearly independent closed holomorphic 1 -forms, Kodaira dimension of X and the i-th Betti number.
S. Iitaka proposed a problem whether all P_{m} and κ are deformation invariants [1]. However computing the numerical characters of small deformations obtained in the above examples we have

Theorem 2. $h^{p, q}$ for $(p, q) \neq(0,0), r, P_{m}$ and κ are not necessarily invari-

[^0]ant under small deformations.
On the other hand we note that small deformations of a complex parallelisable manifold are not necessarily parallelisable.

In $\S 4$ and $\S 5$ we prove the following theorems.
Theorem 3 (Kodaira). Let X be parallelisable such that the corresponding Lie group is nilpotent. Then $h^{0,1}=r$.

Theorem 4. For a complex solvable manifold whose Lie algebra has the Chevalley decomposition (§ 2) we have $b_{1}=2 r$.

We remark that a complex solvable manifold has \boldsymbol{C}^{n} as its universal covering.
Theorem 5. If an n-dimensional complex solvable manifold satisfies the equality $h^{0,1}=r$, then any small deformation has C^{n} as its universal covering.

In Theorem 5 we cannot remove the assumption that $h^{0,1}=r$. In fact, in the case of III-(3b) where we have $h^{0,1}>r$, there exist small deformations whose universal covering are not analytically homeomorphic to C^{3}.

In § 6 , following the algorithm shown in § 1 we classify complex solvable manifolds of four and five dimensions.

The author would like to express his deep appreciation to Professor K. Kodaira, Professor S. Iitaka and Mr. K. Akao for valuable advices and encouragement during his preparation of the paper.

1. Preliminaries

Let X be a compact complex manifold of dimension n.
Definition 1.1. $\quad X$ is parallelisable if the holomorphic tangent bundle of X is complex analytically trivial.

This condition is written in the following ways:
(1) $\Theta \cong \mathcal{O}^{n}$, where Θ is the sheaf of germes of holomorphic vector fields, and \mathcal{O} is the structure sheaf of X.
(2) There exist n holomorphic vector fields $\theta_{1}, \cdots, \theta_{n}$ on X which are linearly independent at every point on X.
(3) $\Omega^{1} \cong \mathcal{O}^{n}$, where Ω^{1} is the sheaf of germs of holomorphic 1-forms.
(4) There exist n holomorphic 1-forms $\varphi_{1}, \cdots, \varphi_{n}$ on X which are linearly independent at every point on X.

It is obvious that $\Omega^{p} \cong \mathcal{O}^{\left({ }_{p}^{n}\right)}$. Hence $H^{0}\left(X, \Omega^{p}\right)$ is spanned by $\left\{\varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{p}}\right.$, $\left.1 \leq i_{1}<\cdots<i_{p} \leq n\right\}$ and $h^{p, 0}=\binom{n}{p}$.

Theorem (Wang [6]). Let X be paralletisable. Then there exist a simply connected, connected complex Lie group G and a discrete subgroup Γ of G such that $X \cong G / \Gamma$.

In particular, $H^{0}(X, \Theta) \cong \mathfrak{g}$ where g is the Lie algebra of G.
Definition 1.2. A complex parallelisable manifold X is solvable (respectively nilpotent) if the corresponding Lie group G is solvable (respectively nil-
potent).
Let G be a connected complex Lie group, and Γ one of its discrete subgroups.
Definition 1.3. $\quad \Gamma$ is uniform in G if G / Γ is compact.
Theorem (Mostow [4]). Let G be a connected solvable complex Lie group, and Γ a uniform subgroup of G. Let N be the connected, maximal nilpotent normal subgroup of G. Then $\Gamma \cap N$ and $\Gamma N / N$ are uniform in N and G / N respectively.

The original form of this theorem is not restricted to the complex case. This theorem means that for any solvable manifold $X=G / \Gamma$, there is the decomposition $\pi: X \rightarrow B$, where $B=(G / N) /(\Gamma N / N)$, and (X, π, B) is a holomorphic fiber bundle with a typical fiber $F \cong N / \Gamma \cap N$. We shall call this decomposition the Mostow decomposition of X. If G is solvable, the commutator group $G^{\prime}=[G, G]$ is nilpotent. G^{\prime} is contained in the maximal nilpotent normal subgroup N, so that G / N is abelian. Therefore the base space B is a complex torus.

In an obvious way, we define the pairing

$$
H^{0}\left(X, \Omega^{p}\right) \times H^{0}\left(X^{p} \wedge \Theta\right) \rightarrow C, \quad \varphi \times \theta \backsim(\varphi, \theta)
$$

The exterior differentiation $d: H^{0}\left(X, \Omega^{p-1}\right) \rightarrow H^{0}\left(X, \Omega^{p}\right)$ induces an adjoint map ${ }^{t} d: H^{0}\left(X^{p} \wedge \Theta\right) \rightarrow H^{0}\left(X^{p-1} \wedge \Theta\right)$. Then we obtain

Lemma 1.1. (1) $\left.\quad{ }^{(t} d\right)\left(\theta \wedge \theta^{\prime}\right)=-\left[\theta, \theta^{\prime}\right], \theta, \theta^{\prime} \in H^{0}(X, \Theta)$.
(2) $\quad\left({ }^{t} d\right)\left(\theta \wedge \theta^{\prime} \wedge \theta^{\prime \prime}\right)=-\theta \wedge\left({ }^{t} d\right)\left(\theta^{\prime} \wedge \theta^{\prime \prime}\right)-\theta^{\prime} \wedge\left({ }^{t} d\right)\left(\theta^{\prime \prime} \wedge \theta\right)$

$$
-\theta^{\prime \prime} \wedge\left(^{t} d\right)\left(\theta \wedge \theta^{\prime}\right), \theta, \theta^{\prime}, \theta^{\prime \prime} \in H^{0}(X, \Theta)
$$

We omit the proof.
(1) of Lemma 1.1 shows

$$
\begin{equation*}
\left(d \varphi, \theta \wedge \theta^{\prime}\right)=-\left(\varphi,\left[\theta, \theta^{\prime}\right]\right) \tag{1.1}
\end{equation*}
$$

for $\theta, \theta^{\prime} \in H^{0}(X, \Theta)$, and $\varphi \in H^{0}\left(X, \Omega^{1}\right)$. (1) and (2) show that $d^{2}=0$ is equivalent to the Jacobi's identity.

Let \mathfrak{g} be a solvable Lie algebra defined over \boldsymbol{C}. Then by virtue of Lie's theorem we have a C-basis of $\mathfrak{g}: \varphi_{1}, \cdots, \varphi_{n}\left(n=\operatorname{dim}_{C} \mathfrak{g}\right)$ such that

$$
\begin{equation*}
d \varphi_{\nu}=\xi_{\nu} \wedge \varphi_{\nu}+\eta_{\nu}, \quad \nu=1, \cdots, n \tag{1.2}
\end{equation*}
$$

where ξ_{ν}, η_{ν} are represented by $\varphi_{1}, \cdots, \varphi_{\nu-1}$. Since $d^{2} \varphi_{\nu}=0$, we have $d \xi_{\nu}=0$, i.e., ξ_{ν} is a closed holomorphic 1 form. There it follows from (1.3) that $\xi_{\nu}=$ $\sum_{\mu=1}^{s} a_{\nu \mu} \varphi_{\mu}$ for some constants $a_{\nu \mu}$.

Lemma 1.2. Let X be a compact complex manifold of dimension n, and φ a holomorphic $(n-1)$-form on X. Then $d \varphi=0$.

Proof. If $d \varphi \neq 0$, then $i^{-n^{2}} \int_{X} d \varphi \wedge d \bar{\varphi}>0$. On the other hand,

$$
i^{-n^{2}} \int_{X} d \varphi \wedge d \bar{\varphi}=i^{-n^{2}} \int_{X} d(\varphi \wedge d \bar{\varphi})=0, \text { a contradiction. }
$$

From Lemma 1.2 we infer readily
Lemma 1.3. Let $\left\{\varphi_{\gamma}\right\}$ be a basis of $H^{0}\left(X, \Omega^{1}\right)$ which satisfies (1.2). Then

$$
\begin{equation*}
\sum_{\nu=r+1}^{n} \xi_{\nu}=0 . \tag{1.3}
\end{equation*}
$$

Proposition 1.4. Let G be a simply connected, connected solvable complex Lie group. Then G is biholomorphically equivalent to C^{n}, where $n=\operatorname{dim}_{c} G$.

Proof. When $\operatorname{dim} G=1$, we can prove the proposition easily. By induction on $\operatorname{dim} G$ we shall prove the proposition. When $\operatorname{dim} G \geq 2$, there exists a connected normal Lie subgroup N of $\operatorname{dim} 1$. $(G, \pi, G / N)$ is a holomorphic fiber bundle with fiber N. Calculating homotopy exact sequences of this fiber bundle, we infer readily that N and G / N are simply connected, connected and obviously solvable. By the hypothesis of the induction, G / N and N are biholomorphically equivalent to C^{n-1} and C respectively. From Oka's principle it follows that G is biholomorphically equivalent to C^{n}.

2. Classification of three-dimensional complex solvable manifolds and construction of examples

In this section we shall classify three-dimensional complex solvable manifolds, and use an algorithm to classify higher-dimensional complex solvable manifolds. Let $X=G / \Gamma$ be a three-dimensional solvable manifold, and φ_{1}, φ_{2} φ_{3} be a basis of $H^{0}\left(X, \Omega^{1}\right)$, which satisfies (1.2).

By an elementary calculation together with Lemma 1.4, solvable manifolds X are classified into the following three classes:

$$
\begin{array}{ll}
\text { III-(1): } & d \varphi_{2}=0, \quad \lambda=1,2,3, \\
\text { III-(2): } & d \varphi_{1}=0, \quad d \varphi_{2}=0, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \\
\text { III-(3): } & d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{3} .
\end{array}
$$

Dualizing III (1)-(3) by virtue of (1.1) we can determine the structures of the Lie algebra g of G.

$$
\begin{array}{ll}
\text { III-(1)' }: & {\left[\theta_{\lambda}, \theta_{\nu}\right]=0, \quad \lambda, \nu=1,2,3,} \\
\text { III-(2) }: & {\left[\theta_{1}, \theta_{2}\right]=-\left[\theta_{2}, \theta_{1}\right]=\theta_{3}, \quad\left[\theta_{\lambda}, \theta_{\nu}\right]=0 \quad \text { otherwise },} \\
\text { III-(3) }: & {\left[\theta_{1}, \theta_{2}\right]=-\left[\theta_{2}, \theta_{1}\right]=-\theta_{2},} \\
& {\left[\theta_{1}, \theta_{3}\right]=-\left[\theta_{3}, \theta_{1}\right]=\theta_{3}, \quad\left[\theta_{2}, \theta_{3}\right]=0 .}
\end{array}
$$

Case III-(1). It is well known that X is a complex torus.
Case III-(2). In view of Proposition 1.4, C^{3} is the universal covering of X.

Let 0 be the origin of \boldsymbol{C}^{3}. We set $\Phi_{\nu}(z)=\int_{0}^{z} \varphi_{\nu}, \nu=1,2$. Then Φ_{ν} is a single valued holomorphic function on \boldsymbol{C}^{3}, and $\varphi_{\nu}=d \Phi_{\nu}, \nu=1,2$. Thus $d \varphi_{3}=$ $-d \Phi_{1} \wedge d \Phi_{2}$, i.e., $d\left(\varphi_{3}+\Phi_{1} d \Phi_{2}\right)=0$. We set $\Phi_{3}(z)=\int_{0}^{z} \varphi_{3}+\Phi_{1} d \Phi_{2} . \Phi_{3}$ is a single valued holomorphic function on \boldsymbol{C}^{3}, and $\varphi_{3}=d \Phi_{3}-\Phi_{1} d \Phi_{2}$. For $g \in \Gamma$, we set $z^{\prime}=z \cdot g$. Since φ_{λ} is Γ-invariant, $d \Phi_{\nu}\left(z^{\prime}\right)=d \Phi_{\nu}(z)(\nu=1,2)$. Thus we have $\Phi_{\nu}\left(z^{\prime}\right)=\Phi_{\nu}(z)+\omega_{\nu}(g)$, where $\omega_{\nu}(g)$ is a constant depending only on g. Since

$$
\begin{aligned}
\varphi_{3}\left(z^{\prime}\right) & =d \Phi_{3}\left(z^{\prime}\right)-\Phi_{1}\left(z^{\prime}\right) d \Phi_{2}\left(z^{\prime}\right) \\
& =d \Phi_{3}\left(z^{\prime}\right)-\left(\Phi_{1}(z)+\omega_{1}(g)\right) d \Phi_{2}(z)
\end{aligned}
$$

we obtain

$$
\Phi_{3}\left(z^{\prime}\right)=\Phi_{3}(z)+\omega_{1}(g) \Phi_{2}(z)+\omega_{3}(g),
$$

for some constant $\omega_{3}(g)$ depending only on g. Define a multiplication $*$ of C^{3} by

$$
\left(z_{1}, z_{2}, z_{3}\right) *\left(y_{1}, y_{2}, y_{3}\right)=\left(z_{1}+y_{1}, z_{2}+y_{2}, z_{3}+y_{1} z_{2}+y_{3}\right) .
$$

This multiplication $*$ makes \boldsymbol{C}^{3} a nilpotent complex Lie group with the Lie algebra of type III-(2)'. Hence G is isomorphic to $\left(\boldsymbol{C}^{3}, *\right)$ as a complex Lie group.

Case III-(3). Set

$$
\Phi_{1}(z)=\int_{0}^{z} \varphi_{1}, \quad \Phi_{2}(z)=\int_{0}^{z} e^{-\Phi_{1}} \varphi_{2}, \quad \Phi_{3}(z)=\int_{0}^{z} e^{\omega_{1}} \varphi_{3}
$$

Since $d \varphi_{1}=d\left(e^{-\Phi_{1}} \varphi_{2}\right)=d\left(e^{\Phi_{1}} \varphi_{3}\right)=0, \Phi_{\lambda}$ are single valued holomorphic functions on \boldsymbol{C}^{3} and we have $\varphi_{1}=d \Phi_{1}, \varphi_{2}=e^{\Phi_{1}} d \Phi_{2}, \varphi_{3}=d^{-\Phi_{1}} d \Phi_{3}$. By the same argument as in the case of III-(2), we have

$$
\begin{aligned}
& \Phi_{1}\left(z^{\prime}\right)=\Phi_{1}(z)+\omega_{1}(g) \\
& \Phi_{2}\left(z^{\prime}\right)=e^{-\omega_{1}(g)} \Phi_{2}(z)+\omega_{2}(g), \\
& \Phi_{3}\left(z^{\prime}\right)=e^{\omega_{1}(g)} \Phi_{3}(z)+\omega_{3}(g)
\end{aligned}
$$

where $z^{\prime}=z \cdot g$ for $g \in \Gamma$, and $\omega_{\nu}(g)$'s are constants depending only on g. Define a multiplication $*$ of \boldsymbol{C}_{3} by

$$
\left(z_{1}, z_{2}, z_{3}\right) *\left(y_{1}, y_{2}, y_{3}\right)=\left(z_{1}+y_{1}, e^{-y_{1}} z_{2}+y_{2}, e^{y_{1}} z_{3}+y_{3}\right) .
$$

The multiplication $*$ makes C^{3} a solvable complex Lie group with the Lie algebra of type III-(3)', so that G is isomorphic to $\left(C^{3}, *\right)$.

Examples. Case III-(2). Set

$$
\begin{gathered}
G=\left\{\left(\begin{array}{ccc}
1 & z_{2} & z_{3} \\
0 & 1 & z_{1} \\
0 & 1 & 1
\end{array}\right) ; z_{i} \in \boldsymbol{C}\right\} \cong \boldsymbol{C}^{3}, \\
\Gamma=\left\{\left(\begin{array}{ccc}
1 & \omega_{2} & \omega_{3} \\
0 & 1 & \omega_{1} \\
0 & 0 & 1
\end{array}\right) ; \omega_{i} \in \boldsymbol{Z}+\boldsymbol{Z} \sqrt{-1}\right\} .
\end{gathered}
$$

The multiplication is defined by

$$
\left(\begin{array}{ccc}
1 & z_{2} & z_{3} \\
0 & 1 & z_{1} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \omega_{2} & \omega_{3} \\
0 & 1 & \omega_{1} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & z_{2}+\omega_{2} & z_{3}+\omega_{1} z_{2}+\omega_{3} \\
0 & 1 & z_{1}+\omega_{1} \\
0 & 0 & 1
\end{array}\right)
$$

$X=G / \Gamma$ is called Iwasawa manifold.
Case III-(3a). We take an algebraic integer α satisfying the equation $\alpha^{2}+$ $5 \alpha+7=0$. Let E be an elliptic curve with fundamental periods $\{1, \alpha\}$. Let H be a group of analytic automorphisms of $C \times E \times E$ generated by two automorphisms:

$$
\begin{aligned}
& \sigma_{1}:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}+2 \pi i, z_{2}, z_{3}\right), \\
& \sigma_{2}:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}+\beta,(-\alpha-2) z_{2},(\alpha+3) z_{3}\right),
\end{aligned}
$$

where $\beta=\log \alpha$, and $\left(z_{1}, z_{2}, z_{3}\right)$ are global coordinates of $C \times E \times E$. H acts on $C \times E \times E$ properly discontinuously, and its action has no fixed points. The quotient manifold $X=C \times E \times E / H$ is a parallelisable manifold of type III-(3) with $h^{0,1}=\operatorname{dim}_{C} H^{1}(X, \mathcal{O})=1$.

Case III-(3b). We take a unimodular matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with trace $A \geq 3$. Let α be an eigenvalue of A, and $\beta=\log \alpha>0$. Let E be an elliptlc curve with fundamental periods $\{1, \tau\}$. Let H be a group of analytic automorphisms of $C \times E \times E$ generated by two automorphisms :

$$
\begin{aligned}
& \sigma_{1}:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}+2 \pi i, z_{2}, z_{3}\right), \\
& \sigma_{2}:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}+\beta, a z_{2}+b z_{3}, c z_{2}+d z_{3}\right),
\end{aligned}
$$

where $\left(z_{1}, z_{2}, z_{3}\right)$ denotes the system of global coordinates of $C \times E \times E$. H operates on $C \times E \times E$ properly discontinuously, and its action has no fixed points. The quotient manifold $X=C \times E \times E / H$ is a parallelisable manifold of type III-(3) with $h^{0,1}=3$.

By virtue of Theorems 3 and 4 and the proof of Theorem 4, it can be checked that $h^{0,1} \neq 2$ for a solvable manifold of type III-(3). Thus we obtain

Theorem 1. Three-dimensional solvable manifolds are classified into the following four classes:

Lie group	b_{1}	r	$h^{0,1}$	Structure (Albanese mapping)
(1) abelian	6	3	3	complex torus
(2) nilpotent	4	2	2	T^{1}-bundle over T^{2}
(3a) solvable	2	1	1	T^{2}-bundle over T^{1}
(3b) solvable	2	1	3	T^{2}-bundle over T^{1}

where T^{1} and T^{2} denote complex tori of dimensions 1 and 2 respectively.
In this section, we have shown how to determine the structures of \boldsymbol{C}^{3} as solvable Lie groups. Proposition 2.2 and the statement below show that this algorithm is valid for higher dimensional cases.

Let G be a simply connected, connected solvable complex Lie group of $\operatorname{dim} n$.
Definition. A solvable Lie algebra \mathfrak{g} has the Chevalley decomposition if there exist a commutative subalgebra \mathfrak{a} and the maximal nilpotent ideal \mathfrak{n} of g such that $\mathfrak{g}=\mathfrak{a}+\mathfrak{n}$ (direct sum as vector spaces).

Assume g to have the Chevalley decomposition. Then by definition we can choose a basis $\left\{\theta_{\chi}\right\}$ of \mathfrak{g} such that

$$
\begin{align*}
& {\left[\theta_{\lambda}, \theta_{\nu}\right]=\sum_{\mu \geq \max (\lambda, \nu)} c_{\mu \lambda \nu}^{\prime} \theta_{\mu},} \\
& {\left[\theta_{\lambda}, \theta_{\nu}\right]=0 \quad(1 \leq \lambda, \nu \leq s),} \tag{2.1}\\
& {\left[\theta_{\lambda}, \theta_{\nu}\right]=\sum_{\mu>\max (\lambda, \nu)} c_{\mu \nu \nu}^{\prime} \theta_{\mu} \quad(s+1 \leq \lambda, \nu \leq n),}
\end{align*}
$$

where $c_{\mu \lambda \nu}^{\prime}=-c_{\mu \nu \lambda}^{\prime}$.
Dualizing (2.1) by (1.1) we conclude that there exists a basis $\left\{\varphi_{\chi}\right\}$ of right (or left) invariant 1 -forms on G such that

$$
\begin{equation*}
d \varphi_{\mu}=\sum c_{\mu \lambda \nu} \varphi_{\lambda} \wedge \varphi_{\nu} \tag{2.2}
\end{equation*}
$$

where $c_{\mu \lambda \nu}=-c_{\mu \nu \lambda} . c_{\mu \lambda \nu}=0$ if " $1 \leq \lambda, \nu \leq s$ " or " $s+1 \leq \lambda, \nu$ and $\mu \leq$ $\max (\lambda, \nu)$ " or " $\mu<\max (\lambda, \nu)$ ".

Furthermore we can arrange $d \varphi_{\mu}$ in the following order:

$$
Q_{1}: \quad d \varphi_{1}=0, \cdots, d \varphi_{r}=0, \text { where } r=\operatorname{dim} H^{0}(X, d \mathcal{O})
$$

$d \mathcal{O}$ denoting the sheaf of germs of closed holomorphic 1 -forms on X;

$$
\begin{align*}
Q_{l}: \quad d \varphi_{\lambda}=\operatorname{sum} \text { of } \varphi_{\nu} \wedge \varphi_{\mu} & \text { 's for }(\nu, \mu) \in \bigcup_{\rho=1}^{l-1} Q_{l-\rho} \times Q_{\rho} \tag{2.3}\\
& (l=2,3, \cdots)
\end{align*}
$$

$$
Q=\bigcup Q_{k} \text { and } Q_{\infty}=\{1, \cdots, n\}-Q=\{m+1, \cdots, n\} ;
$$

any nontrivial linear combination of $d \varphi_{m+1}, \cdots, d \varphi_{n}$ cannot be represented by a linear combination of $d \varphi_{1}, \cdots, d \varphi_{m}$.

Proposition 2.1. Assume g to have the Chevalley decomposition, and let $\left\{\varphi_{\lambda}\right\}$ be a basis of right invariant holomorphic 1-forms on G which satisfy (2.2). Then there exist holomorphic functions $\Phi_{1}, \cdots, \Phi_{n}$ on G such that

$$
\begin{align*}
& \varphi_{\lambda}=d \Phi_{\lambda} \quad(1 \leq \lambda \leq r), \\
& \varphi_{\lambda}=\sum_{\nu=s+1}^{\lambda} F_{\lambda \nu}(\Phi) d \Phi_{\nu} \quad(r+1 \leq \lambda \leq n), \tag{2.4}
\end{align*}
$$

where $F_{\lambda v}(\Phi)=\sum_{a} F_{\lambda v a}(\Phi) \exp \left(a_{1} \Phi_{1}+\cdots+a_{s} \Phi_{s}\right), F_{\lambda v a}(\Phi)$ is a polynomial in $\Phi_{1}, \cdots, \Phi_{\lambda-1}$, and $F_{\lambda \lambda}(\Phi)=\exp \left(a_{1}^{2} \Phi_{1}+\cdots+a_{s}^{\lambda} \Phi_{s}\right)$.

Proof. By induction on $n=\operatorname{dim} G$ we shall prove the proposition, which is obvious for $n=1$. Assume (2.1) to be valid for $\nu \leq n-1$. Since $\xi_{n}=$ $\sum_{\rho=1}^{s} a_{\rho}^{n} \varphi_{\rho}$,

$$
\begin{aligned}
& d\left(\exp \left(-\sum_{\rho=1}^{s} a_{\rho}^{n} \Phi_{\rho}\right) \varphi_{n}\right) \\
& \quad=-\exp \left(-\sum a_{\rho}^{n} \Phi_{\rho}\right) \xi_{n} \wedge \varphi_{n}+\exp \left(-\sum a_{\rho}^{n} \Phi_{\rho}\right)\left(\xi_{n} \wedge \varphi_{n}+\eta_{n}\right) \\
& \quad=\sum_{1 \leq \lambda<\nu \leq n-1} F_{\lambda \nu}^{*}(\Phi) d \Phi_{\lambda} \wedge d \Phi_{\nu}
\end{aligned}
$$

By the hypothesis of the induction together with (2.1), (2.2) and (2.3) we have

$$
\begin{aligned}
& F_{\lambda \nu}^{*}(\Phi)=0 \quad(1 \leq \lambda, \nu \leq s), \\
& F_{\lambda \nu}^{*}(\Phi)=\sum_{a} F_{\lambda \nu a}^{*} \exp \left(a_{1} \Phi_{1}+\cdots+a_{s} \Phi_{s}\right),
\end{aligned}
$$

wheae $F_{\lambda \nu a}^{*}(\Phi)$ is a polynomial in $\Phi_{1}, \cdots, \Phi_{n-2}$. Take G_{ν} such that

$$
\begin{gathered}
\partial G_{\nu} / \partial \Phi_{n-1}=F_{\nu n-1}^{*} \quad(\nu>s), \quad \partial G_{\nu} / \partial \Phi_{\nu}=F_{\nu n-1}^{*} \quad(\nu \leq s), \\
d\left(\exp \left(-\sum_{\nu} a_{\rho}^{n} \Phi_{\rho}\right) \varphi_{n}+\sum_{\nu>s} G_{\nu} d \Phi_{\nu}-\sum_{\nu \leq s} G_{\nu} d \Phi_{n-1}\right) \\
=\sum_{\lambda<\nu} F_{\lambda \nu}^{*} d \Phi_{\nu} \wedge d \Phi_{\nu}-\sum_{\nu>s} F_{\nu n-1}^{*} d \Phi_{\nu} \wedge d \Phi_{n-1}-\sum_{\nu \leq s} F_{\nu n-1}^{*} d \Phi_{\nu} \wedge d \Phi_{n-1} \\
\quad+\left(\operatorname{terms} \text { of } d \Phi_{\lambda} \wedge d \Phi_{\nu}, \lambda, \nu \leq n-2\right) \\
=\sum_{\lambda<\nu \leq n-2} F_{\nu \nu}^{* *} d \Phi_{\lambda} \wedge d \Phi_{\nu}, \quad \text { where } F_{\nu \nu}^{* *}=F_{\nu \nu}^{* *}\left(\Phi_{1}, \cdots, \Phi_{n-1}\right) .
\end{gathered}
$$

Since $0=d\left(\sum_{\lambda<\nu \leq n-2} F_{\lambda \nu}^{* *} d \Phi_{\lambda} \wedge d \Phi_{\nu}\right)=\frac{\partial F_{\lambda \nu}^{* *}}{\partial \Phi_{n-1}} d \Phi_{n-1} \wedge d \Phi_{\lambda} \wedge d \Phi_{\nu}+\cdots$, we
have $\partial F_{\lambda \nu}^{* *} / \partial \Phi_{n-1}=0$. Hence $F_{\lambda \nu}^{* *}=E_{\lambda \nu}^{* *}\left(\Phi_{1}, \cdots, \Phi_{n-2}\right)$. Obviously $F_{\lambda \nu}^{* *}=0$ ($1 \leq \lambda, \nu \leq s$), etc. Thus we obtain the proposition by induction. q.e.d.

By the same way as stated above we can contruct a multiplication $*$ of C^{n}. In order to show that this multiplication defines a Lie group structure of C^{n} we have only to check the associative law. We can easily do this by using the fact that φ_{λ} is a right invariant 1 -form on G and the multiplication is written explicitly (see below). Hence the multiplication $*$ makes \boldsymbol{C}^{n} a complex Lie group, and $\left(\boldsymbol{C}^{n}, *\right)$ is isomorphic to the Lie group G.

The multiplication $*$ is defined by

$$
\begin{aligned}
\left(z_{1}, \cdots, z_{n}\right) *\left(y_{1}, \cdots, y_{n}\right)= & \left(z_{1}+y_{1}, \cdots, z_{r}+y_{r}, \cdots,\right. \\
& \left.\exp \left(-a_{1}^{\nu} y_{1}-\cdots-a_{s}^{\nu} y_{s}\right) z_{\nu}+y_{\nu}+F_{\nu}(z, y), \cdots\right),
\end{aligned}
$$

where $F_{\nu}(z, y)$ is expressed in $z_{1}, \cdots, z_{\nu-1}, y_{1}, \cdots, y_{\nu-1}$. Therefore we obtain
Proposition 2.2. Assume g to have the Chevalley decomposition. Let $\left\{\varphi_{\lambda}\right\}$ be a basis of right invariant 1 -forms on G which satisfy (2.3). By an appropriate choice of a system of coordinates $\left(z_{1}, \cdots, z_{n}\right)$ of $\boldsymbol{C}^{n},\left\{\varphi_{\lambda}\right\}$ are represented as follows:

$$
\varphi_{\lambda}= \begin{cases}d z_{\lambda}, & 1 \leq \lambda \leq r \tag{2.5}\\ \sum_{\nu=s+1}^{\lambda} F_{\lambda \nu}(z) d z_{\nu \nu}, & r<\lambda\end{cases}
$$

where $F_{\lambda \nu}(z)=\sum_{a} F_{\lambda \nu a}(z) \exp \left(\sum_{\rho=1}^{s} a_{\rho} z_{\rho}\right), F_{\lambda \nu a}$ is a polynomial in $z_{1}, \cdots, z_{\lambda-1}$, and $F_{\lambda 2}=\exp \sum_{\rho=1}^{s} a_{\rho}^{\lambda} z_{\rho}$.

Dualizing Proposition 2.3 by means of (1.1), we obtain
Proposition 2.3. Let $\left\{\theta_{\lambda}\right\}$ be a dual basis of right invariant vector fields of $\left\{\varphi_{\lambda}\right\}$. Then by the same system of coordinates of \boldsymbol{C}^{n} as in Proposition 2.2, $\left\{\theta_{\lambda}\right\}$ are represented as follows:

$$
\theta_{\lambda}= \begin{cases}\partial / \partial z_{\lambda}, & 1 \leq \lambda \leq r \tag{2.6}\\ \sum_{\nu=\lambda}^{n} G_{\lambda \nu}(z) \partial / \partial z_{\lambda}, & r<\lambda\end{cases}
$$

where $G_{\lambda \nu}(z)=\sum_{a} G_{\lambda \nu a}(z) \exp \left(\sum_{\rho=1}^{s} a_{\rho} z_{\rho}\right)$ and $G_{\lambda \nu a}$ is a polynomial in z_{1}, \cdots, $z_{\nu-1}$.

3. Construction of Kuranishi families of deformations of three-dimensional complex solvable manifolds

In this section we shall calculate small deformations of three-dimensional
complex solvable manifolds constructed in $\S 2$. In these cases we see that several numerical characters, such as $h^{p, q}(p, q) \neq(0,0), r, P_{m}(m \geq 1)$ are not necessarily invariant under small deformations. Moreover, in the case of III-(3b) there are small deformations whose universal covering are not biholomorphically equivalent to \boldsymbol{C}^{3}.

Kodaira first calculated small deformations of Iwasawa manifold. In the first part of this section we shall introduce his result.

Case III-(2) Let $X=C^{3} / \Gamma$ be Iwasawa manifold. $g \in \Gamma$ operates on C^{3} as follows:

$$
z_{1}^{\prime}=z_{1}+\omega_{1}, \quad z_{2}^{\prime}=z_{2}+\omega_{2}, \quad z_{3}^{\prime}=z_{3}+\omega_{1} z_{2}+\omega_{3}
$$

where $g=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ and $z^{\prime}=z \cdot g$. There exist holomorhpic 1 -forms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ which are linearly independent at every point on X and are given by

$$
\varphi_{1}=d z_{1}, \quad \varphi_{2}=d z_{2}, \quad \varphi_{3}=d z_{3}-z_{1} d z_{2}
$$

so that

$$
d \varphi_{1}=d \varphi_{2}=0, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}
$$

On the other hand we have holomorphic vector fields $\theta_{1}, \theta_{2}, \theta_{3}$ on X given by

$$
\theta_{1}=\partial_{1}, \quad \theta_{2}=\partial_{2}+z_{1} \partial_{3}, \quad \theta_{3}=\partial_{3},
$$

where ∂_{λ} denotes $\partial / \partial z_{\lambda}$. It is easily seen that

$$
\left[\theta_{1}, \theta_{2}\right]=-\left[\theta_{2}, \theta_{1}\right]=\theta_{3}, \quad\left[\theta_{2}, \theta_{3}\right]=\left[\theta_{1}, \theta_{3}\right]=0
$$

In view of Theorem $2(\S 4), H_{\overrightarrow{3}}^{0,1}(X)$ is spanned by $\bar{\varphi}_{1}, \bar{\varphi}_{2}$. Since Θ is isomorphic to $\mathcal{O}^{3}, H_{\bar{\partial}}^{0,1}(X, \Theta)$ is spanned by $\theta_{i} \bar{\varphi}_{i}, i=1,2,3, \lambda=1,2$.

For vector (0,1)-forms Ψ, τ, we define

$$
[\psi, \tau]=\sum_{\alpha, \beta}\left(\psi^{\alpha} \wedge \partial_{\alpha} \tau^{\beta}+\tau^{\alpha} \wedge \partial^{\alpha} \psi^{\beta}\right) \partial_{\beta}
$$

where $\psi=\sum \psi^{\alpha} \partial_{\alpha}$ and $\tau=\sum \tau^{\beta} \partial_{\beta}$. (Cf. [3].) We have

$$
\left[\theta_{i} \bar{\varphi}_{i}, \theta_{k} \bar{\varphi}_{\nu}\right]=\left[\theta_{i}, \theta_{k}\right] \bar{\varphi}_{\nu} \wedge \bar{\varphi}_{\nu} .
$$

We shall construct a vector $(0,1)$-form ψ such that

$$
\begin{equation*}
\bar{\partial} \psi-\frac{1}{2}[\psi, \psi]=0 . \tag{3.1}
\end{equation*}
$$

Set $\psi=\sum_{\alpha=1}^{\infty} \psi_{\alpha}(t)$, where $\psi_{1}(t)=\sum_{i=1}^{3} \sum_{k=1}^{2} t_{i \lambda} \theta_{i} \bar{\varphi}_{k}$, and $\psi_{\alpha}(t)$ is the homogeneous term of total degree α in $t_{i \lambda}$. Then

$$
\bar{\partial} \psi_{2}(t)=\frac{1}{2}\left[\psi_{1}(t), \psi_{1}(t)\right]=\left(t_{11} t_{22}-t_{21} t_{12}\right) \theta_{3} \bar{\varphi}_{1} \wedge \bar{\varphi}_{2} .
$$

Set $\psi_{2}(t)=-\left(t_{11} t_{22}-t_{21} t_{12}\right) \theta_{3} \bar{\varphi}_{3}$. Thus we obtain a solution of (3.1) given by

$$
\psi(t)=\sum_{i=1}^{3} \sum_{k=1}^{2} t_{i \lambda} \theta_{i} \bar{\varphi}_{\lambda}-\left(t_{11} t_{22}-t_{21} t_{12}\right) \theta_{3} \bar{\varphi}_{3} .
$$

This proves the existence of a locally complete complex analytic family of deformations X_{t} of X depending on 6 effective parameters $t_{i \lambda}$, [3].

Next, by solving the system of differential equations

$$
\begin{equation*}
\bar{\partial} \zeta_{\nu}-\psi(t) \zeta_{\nu}=0, \quad \nu=1,2,3 \tag{3.2}
\end{equation*}
$$

under the initial condition $\zeta_{\nu}(0)=z_{\nu}$, we have the solutions :

$$
\begin{aligned}
& \zeta_{1}=z_{1}+\sum_{\lambda=1}^{2} t_{1 \lambda} \bar{z}_{\lambda}, \quad \zeta_{2}=z_{2}+\sum_{\lambda=1}^{2} t_{2 \lambda} \bar{z}_{\lambda} \\
& \zeta_{3}=z_{3}+\sum_{\lambda=1}^{2}\left(t_{3 \lambda}+t_{2 \lambda} z_{1}\right) \bar{z}_{\lambda}+A(\bar{z})-D(t) \bar{z}_{3}
\end{aligned}
$$

where

$$
D(t)=t_{11} t_{22}-t_{21} t_{12}, \quad A(\bar{z})=\frac{1}{2}\left(t_{11} t_{21} \bar{z}_{1}^{2}+2 t_{11} t_{22} \bar{z}_{1} \bar{z}_{2}+t_{12} t_{22} \bar{z}_{2}^{2}\right) .
$$

Since

$$
\begin{aligned}
& d \zeta_{1} \wedge d \zeta_{2} \wedge d \zeta_{3} \wedge d \bar{\zeta}_{1} \wedge d \bar{\zeta}_{2} \wedge d \bar{\zeta}_{3} \\
& \quad=c(t) d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \bar{z}_{1} \wedge d \bar{z}_{2} \wedge d \bar{z}_{3}
\end{aligned}
$$

where $c(t)$ is a differentiable function in $t_{i \lambda}$ with $c(0)=1$, it follows that $\Phi:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ is a diffeomorphism of C^{3} if $\sum_{i, \lambda}\left|t_{i \lambda}\right|<\varepsilon$ for sufficiently small positive number ε.

Since π is a covering map, $\pi_{t}=\varphi \circ \pi \circ \Phi^{-1}$ is also a covering map from C^{3} to X_{t}. Therefore C^{3} is the universal covering of X_{t}, that is, $X_{t}=C^{3} / \Gamma_{t}$ for a group Γ_{t} of analytic automorphisms of C^{3}. The group Γ_{t} is defined by

$$
\zeta_{1}^{\prime}=\zeta_{1}+\tilde{\omega}_{1}(t), \quad \zeta_{2}^{\prime}=\zeta_{2}+\tilde{\omega}_{2}(t),
$$

$$
\zeta_{3}^{\prime}=\zeta_{3}+\tilde{\omega}_{3}(t)+\omega_{1} \zeta_{2}+\left(\sum_{\lambda=1}^{2} t_{2 \lambda} \bar{\omega}_{\lambda}\right) \zeta_{1}+A(\bar{\omega})-D(t) \bar{\omega}_{3}
$$

where $\widetilde{\omega}_{i}(t)=\omega_{i}+t_{i 1} \bar{\omega}_{1}+t_{i 2} \bar{\omega}_{2}$ for $\left(\omega_{1} \omega_{2} \omega_{3}\right) \in \Gamma$.
Now we summarize the numerical characters of deformations. The deformations are divided into the following three classes:
i) $t_{11}=t_{12}=t_{21}=t_{22}=0, X_{t}$ is a parallelisable manifold of type III-(2).
ii) $D(t)=0$ and $\left(t_{11} t_{12} t_{21} t_{22}\right) \neq(0,0,0,0), X_{t}$ is not parallelisable.
iii) $\quad D(t) \neq 0, X_{t}$ is not parallelisable.

	r	$h^{1,0}$	$h^{0,1}$	$h^{2,0}$	$h^{1,1}$	$h^{0,2}$	$h^{3,0}$	$h^{2,1}$	$h^{1,2}$	$h^{0,3}$	$P_{m}(m \geq 1)$
i)	2	3	2	3	6	2	1	6	6	1	1
ii)	2	2	2	2	5	2	1	5	5	1	1
iii)	2	2	2	1	5	2	1	4	4	1	1

$h^{3-p, 3-q}=h^{p, q}$
Next we shall calculate small deformations of a solvable manifold of type III-(3) constructed in § 2. As stated before, $h^{0,1}(X)=1$ or 3 (see the proof of Theorem 3).

First we shall consider the case where $h^{0,1}=3$. Let $X=C^{3} / \Gamma$ be a solvable manifold constructed in Example III-(3b). By an appropriate linear transformation of z_{2} and $z_{3}, g \in \Gamma$ operates on \boldsymbol{C}^{3} as follows:

$$
z_{1}^{\prime}=z_{1}+\omega_{1}, \quad z_{2}^{\prime}=e^{-\omega_{1}} z_{2}+\omega_{2}, \quad z_{3}^{\prime}=e^{\omega_{1}} z_{3}+\omega_{3}
$$

There exist holomorphic 1-forms $\dot{\varphi}_{1}, \varphi_{2}, \varphi_{3}$ on X given by

$$
\varphi_{1}=d z_{1}, \quad \varphi_{2}=e^{z_{1}} d z_{2}, \quad \varphi_{3}=e^{-z_{1}} d z_{3}
$$

so that

$$
d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{3}
$$

On the other hand, there exist holomorphic vector fields $\theta_{1}, \theta_{2}, \theta_{3}$ given by

$$
\theta_{1}=\partial_{1}, \quad \theta_{2}=e^{-z_{1}} \partial_{2}, \quad \theta_{3}=e^{z_{1}} \partial_{3}
$$

such that

$$
\left[\theta_{1}, \theta_{2}\right]=-\left[\theta_{2}, \theta_{1}\right]=-\theta_{2}, \quad\left[\theta_{1}, \theta_{3}\right]=-\left[\theta_{3}, \theta_{1}\right]=\theta_{3}, \quad\left[\theta_{2}, \theta_{3}\right]=0
$$

$H_{\bar{\partial}}^{0,1}(X)$ is generated by $\varphi_{1}^{*}=d \bar{z}_{1}, \varphi_{2}^{*}=e^{z_{1}} d \bar{z}_{2}$ and $\varphi_{3}^{*}=e^{-z_{1}} d \bar{z}_{3}$ (see the proof of Theorem 3). Since $\varphi_{2}^{*}=e^{z_{1}-z_{1}} \bar{\varphi}_{2}$ and $\varphi_{3}^{*}=e^{-z_{1}+z_{1}} \bar{\varphi}_{3}, H_{\partial}^{0,1}(X, \Theta)$ is spanned by $\theta_{i} \varphi_{\lambda}^{*}, i=1,2,3, \lambda=1,2,3$. We shall construct a vector (0,1)-forms ψ satisfying (3.1).

Set $\psi(t)=\sum_{\alpha=1}^{\infty} \psi_{\alpha}(t)$, where $\psi_{1}(t)=\sum_{i=1}^{3} \sum_{\lambda=1}^{3} t_{i \lambda} \theta_{i} \varphi_{\lambda}^{*}$ and $\psi_{\alpha}(t)$ is the homogeneous term of total degree α in $t_{i \lambda}$. Then we have

$$
\begin{aligned}
{\left[\theta_{\lambda} \varphi_{1}^{*}, \theta_{\mu} \varphi_{2}^{*}\right] } & =\left(\delta_{11} \theta_{\mu}+\left[\theta_{\lambda}, \theta_{\mu}\right]\right) \varphi_{1}^{*} \wedge \varphi_{2}^{*}, \\
{\left[\theta_{\lambda} \varphi_{1}^{*}, \theta_{\mu} \varphi_{3}^{*}\right] } & =\left(-\delta_{1 \lambda} \theta_{\mu}+\left[\theta_{\lambda}, \theta_{\mu}\right]\right) \varphi_{1}^{*} \wedge \varphi_{3}^{*} \\
{\left[\theta_{\lambda} \varphi_{2}^{*}, \theta_{\mu} \varphi_{3}^{*}\right] } & =\left(-\delta_{12} \theta_{\mu}-\delta_{1_{\mu}} \theta_{\lambda}+\left[\theta_{\lambda}, \theta_{\mu}\right]\right) \varphi_{2}^{*} \wedge \varphi_{3}^{*}, \\
\frac{1}{2}\left[\psi_{1}, \psi_{1}\right] & =\eta_{1} \theta_{1}+\eta_{2} \theta_{2}+\eta_{3} \theta_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta_{1}=-t_{11} t_{13} \varphi_{1}^{*} \wedge \varphi_{3}^{*}+t_{11} t_{12} \varphi_{1}^{*} \wedge \varphi_{2}^{*}-2 t_{12} t_{13} \varphi_{2}^{*} \wedge \varphi_{3}^{*} \\
& \eta_{2}=\left(t_{21} t_{13}-2 t_{11} t_{23} \varphi_{1}^{*} \wedge \varphi_{3}^{*}+t_{12} t_{21} \varphi_{1}^{*} \wedge \varphi_{2}^{*}-2 t_{12} t_{23} \varphi_{2}^{*} \wedge \varphi_{3}^{*}\right. \\
& \eta_{3}=-t_{13} t_{31} \varphi_{1}^{*} \wedge \varphi_{3}^{*}+\left(2 t_{11} t_{32}-t_{31} t_{12}\right) \varphi_{1}^{*} \wedge \varphi_{2}^{*}-2 t_{13} t_{32} \varphi_{2}^{*} \wedge \varphi_{3}^{*}
\end{aligned}
$$

Since $\bar{\partial} \psi_{2}=\frac{1}{2}\left[\psi_{1}, \psi_{1}\right]$, it follows that η_{v} is cohomologous to zero in $H_{\bar{\partial}}^{0,2}(X)$.
Lemma 3.1. Set $\eta=A \varphi_{1}^{*} \wedge \varphi_{3}^{*}+B \varphi_{1}^{*} \wedge \varphi_{2}^{*}+C \varphi_{2}^{*} \wedge \varphi_{3}^{*}$, and assume that η is cohomologous to zero in $H_{\partial, 2}^{0,2}(X)$. Then $A=B=C=0$.

Proof. $\varphi_{1}^{*} \wedge \varphi_{3}^{*}=e^{z_{1}-z_{1}} \bar{\varphi}_{1} \wedge \bar{\varphi}_{3}, \varphi_{2}^{*} \wedge \varphi_{3}^{*}=\bar{\varphi}_{2} \wedge \bar{\varphi}_{3}, \varphi_{1}^{*} \wedge \varphi_{2}^{*}=e^{z_{1}-z_{1}} \bar{\varphi}_{1}$ $\wedge \bar{\varphi}_{2}, \bar{\partial}\left(\varphi_{2}^{*} \wedge \varphi_{v}^{*}\right)=0$. If f_{1}, f_{2}, f_{3} are functions in z_{1}, \bar{z}_{1}, then

$$
\vartheta\left(f_{1} \bar{\varphi}_{2} \wedge \bar{\varphi}_{3}+f_{2} \bar{\varphi}_{1} \wedge \bar{\varphi}_{3}+f_{3} \bar{\varphi}_{1} \wedge \bar{\varphi}_{2}\right)=-\left(\partial_{1} f_{2}+f_{2}\right) \bar{\varphi}_{3}-\left(\partial_{1} f_{3}-f_{3}\right) \bar{\varphi}_{2}
$$

where ϑ is the adjoint operator of $\bar{\partial}$ (see the proofs of Theorems 2 and 3). Thus $\vartheta\left(\varphi_{1}^{*} \wedge \varphi_{3}^{*}\right)=\vartheta\left(\varphi_{1}^{*} \wedge \varphi_{3}^{*}\right)=\vartheta\left(\varphi_{1}^{*} \wedge \varphi_{2}^{*}\right)=0$, and $\varphi_{2}^{*} \wedge \varphi_{2}^{*}$ is harmonic. Hence $\eta=0, A=B=C=0$. q.e.d.

It follows from Lemma 3.1 that

$$
\begin{array}{lll}
t_{11} t_{13}=0, & t_{11} t_{12}=0, & t_{12} t_{13}=0 \\
t_{21} t_{13}-2 t_{11} t_{23}=0, & t_{12} t_{21}=0, & t_{12} t_{23}=0 \tag{3.3}\\
t_{31} t_{13}=0, & 2 t_{11} t_{32}-t_{31} t_{12}=0, & t_{13} t_{32}=0
\end{array}
$$

Consequently $\psi=\psi_{1}$.
By solving (3.2) we have the solutions:

$$
\begin{aligned}
& \eta_{1}=z_{1}+t_{11} \bar{z}_{1}-\log \left(1-t_{12} e^{z_{1}} \bar{z}_{2}\right)+\log \left(1+t_{13} e^{-z_{1}} \bar{z}_{3}\right) \\
& \eta_{2}=z_{2}+t_{22} \bar{z}_{2}-t_{21} t_{13} e^{-2 z_{1}} \bar{z}_{1} \bar{z}_{3}-\frac{t_{21}}{t_{11}} e^{z_{1}}\left(e^{-t_{11} z_{1}}-1\right)+\frac{t_{23} e^{-2 z_{1}} \bar{z}_{3}}{1-t_{13} e^{-z_{1}} \bar{z}_{3}} \\
& \zeta_{3}=z_{3}+t_{33} \bar{z}_{3}+t_{12} t_{31} e^{2 z_{1}} \bar{z}_{1} \bar{z}_{2}+\frac{t_{31}}{t_{11}} e^{z_{1}}\left(e^{t_{11} z_{1}}-1\right)+\frac{t_{32} e^{2 z_{1}} \bar{z}_{2}}{1-t_{12} e^{e_{1}} \bar{z}_{2}}
\end{aligned}
$$

Four cases may occur. If $t_{12}=t_{13}=0$, we infer that C^{3} is the universal covring of X_{t} by the same argument as in the case of III-(2).

Case 1: $\quad t_{11} \neq 0, \quad t_{12}=t_{13}=t_{23}=t_{32}=0, \quad \zeta_{1}=z_{1}+t_{11} \bar{z}_{1}$,

$$
\begin{aligned}
& \zeta_{2}=z_{2}+t_{22} \bar{z}_{2}-\frac{t_{21}}{t_{11}} e^{-z_{1}}\left(e^{-t_{11} \bar{z}_{1}}-1\right) \\
& \zeta_{3}=z_{3}+t_{33} \bar{z}_{3}+\frac{t_{31}}{t_{11}} e^{z_{1}}\left(e^{t_{11} z_{1}}-1\right)
\end{aligned}
$$

C^{3} is the universal covering of X_{t}, i.e., $X_{t}=C^{3} / \Gamma_{t}$ for a group Γ_{t} of analytic automorphisms of \boldsymbol{C}^{3}; the group Γ_{t} is defined by

$$
\begin{aligned}
& \zeta_{1}^{\prime}=\zeta_{1}+\tilde{\omega}_{1} \\
& \zeta_{2}^{\prime}=e^{-\omega_{1}} \zeta_{2}+\tilde{\omega}_{2}+\frac{t_{21}}{t_{11}} e^{-\zeta_{1}-\omega_{1}}\left(1-e^{-t_{11} \bar{\omega}_{1}}\right), \\
& \zeta_{3}^{\prime}=e^{\omega_{1} \zeta_{3}}+\tilde{\omega}_{3}-\frac{t_{31}}{t_{11}} e^{\zeta_{1}+\omega_{1}}\left(1-e^{t_{11} \bar{\omega}_{1}}\right),
\end{aligned}
$$

where $\tilde{\omega}_{i}=\omega_{i}+t_{i i} \bar{\omega}_{i}$ for $\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \Gamma$.
Case 2: $\quad t_{11}=t_{12}=t_{13}=0, \quad \zeta_{1}=z_{1}$, $\zeta_{2}=z_{2}+t_{22} \bar{z}_{2}+t_{21} e^{-z_{1}} \bar{z}_{1}+t_{23} e^{-2 z_{1}} \bar{z}_{3}$, $\zeta_{3}=z_{3}+t_{33} \bar{z}_{3}+t_{31} e^{z_{1}} \bar{z}_{1}+t_{32} e^{2 z_{1}} \bar{z}_{2}$.
C^{3} is also the universal covering of X_{t}, i.e., $X_{t}=C^{3} / \Gamma_{t} ; \Gamma_{t}$ is defined by

$$
\begin{aligned}
& \zeta_{1}^{\prime}=\zeta_{1}+\omega_{1} \\
& \zeta_{2}^{\prime}=e^{-\omega_{1}} \zeta_{2}+\tilde{\omega}_{2}+t_{21} \bar{\omega}_{1} e^{-\zeta_{1}-\omega_{1}}+t_{23} \bar{\omega}_{3} e^{-2 \zeta_{1}-2 \omega_{1}} \\
& \zeta_{3}^{\prime}=e^{\omega_{1} \zeta_{3}}+\tilde{\omega}_{3}+t_{31} \bar{\omega}_{1} e^{\zeta_{1}+\omega_{1}}+t_{32} \bar{\omega}_{1} e^{2 \zeta_{1}+2 \omega_{1}}
\end{aligned}
$$

where $\tilde{\omega}_{i}=\omega_{i}+t_{i i} \bar{\omega}_{i}, i=2,3$ for $\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \Gamma$.
Case 3 (Kodaira): $t_{12} \neq 0, \quad t_{11}=t_{13}=t_{21}=t_{23}=t_{31}=0$,

$$
\begin{aligned}
& \zeta_{1}=z_{1}-\log \left(1-t_{12} e^{z_{1} \bar{z}_{2}}\right), \quad \zeta_{2}=z_{2}+t_{22} \bar{z}_{2} \\
& \zeta_{3}=z_{3}+t_{33} \bar{z}_{3}+\frac{t_{32} e^{2 z_{1}} \bar{z}_{2}}{1-t_{12} 2^{z_{1}} \bar{z}_{2}}
\end{aligned}
$$

Set

$$
\begin{aligned}
& w=e^{-z_{1}}, \quad \eta_{1}=w-t_{12} \bar{z}_{2}, \quad \eta_{2}=z_{2}+t_{22} \bar{z}_{2}, \\
& \eta_{3}=z_{3}+t_{33} \bar{z}_{3}-\frac{t_{32}}{t_{12}} \frac{1}{w} .
\end{aligned}
$$

Any $g \in \Gamma$ induces a transformation g_{t} of W_{t} as follows:

$$
\eta_{1}^{\prime}=e^{-\omega_{1}}\left(\eta_{1}-t_{12} \bar{\omega}_{2}\right), \quad \eta_{2}^{\prime}=e^{-\omega_{1}}\left(\eta_{2}+\tilde{\omega}_{2}\right), \quad \eta_{3}^{\prime}=e^{\omega_{1}}\left(\eta_{3}+\tilde{\omega}_{3}\right),
$$

where $W_{t}=\left\{\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in C^{3} ;\left(1-\left|t_{22}\right|^{2}\right) \eta_{1}+t_{12}\left(\bar{\eta}_{2}-\overline{t_{22}} \eta_{2}\right) \neq 0\right\}$ and $\tilde{\omega}_{i}=\omega_{i}+$ $t_{i i} \bar{\omega}_{i}, i=2,3$ for $\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \Gamma$. Set $\Delta_{t}=\left\{g_{t} ; g \in \Gamma\right\}$. Then we have $X_{t}=W_{t} / \Delta_{t}$ for $\sum_{i, 2}\left|t_{i \lambda}\right|<1$ and $X=X_{0}=W_{0} / \Delta_{0}$. For $t_{12} \neq 0, W_{t}$ is not a domain of holomorphy. In fact, by virtue of the edge of the wedge theorem [6] any multivalued holomorphic function on W_{t} extends to \boldsymbol{C}^{3}. In particular the universal covering manifold \tilde{W}_{t} of W_{t} cannot be imbedded into C^{n} for any n.

Case 4: $\quad t_{12} \neq 0, \quad t_{11}=t_{12}=t_{21}=t_{31}=t_{32}=0$.
By the transformation: $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(-z_{1},-z_{2},-z_{3}\right),\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right) \mapsto\left(-\zeta_{1}\right.$, $-\zeta_{2},-\zeta_{3}$), we can reduce Case 4 to Case 3 .

Now we summarize the numerical characters of small deformations in Case 3.

		r	h^{10}	h^{01}	h^{02}	h^{30}	h^{03}	h^{31}	h^{32}	$P_{m}(m \geq 1)$	κ
i)	$t_{\lambda i}=0$ $i, \lambda=1,2,3$	1	3	3	3	1	1	3	3	1	0
ii)	$t_{12} \neq 0$	0	0	2	1	0	0	2	1	0	$-\infty$

Thus we obtain
Theorem 2. $h^{p, q}(p, q) \neq(0,0), r, P_{m}(m \geq 1)$ and κ are not necessarily invariant under small deformations.

Secondly we shall consider the case where X is of type III-(3) with $h^{0,1}=1$. Holomorphic 1-forms and vector fields on X are given as follows:

$$
\begin{aligned}
& \varphi_{1}=d z_{1}, \quad \varphi_{2}=e^{z_{1}} d z_{2}, \quad \varphi_{3}=e^{-z_{1}} d z_{3} \\
& \theta_{1}=\partial_{1}, \quad \theta_{2}=e^{-z_{1}} \partial_{2}, \quad \theta_{3}=e^{z_{1}} \partial_{3}
\end{aligned}
$$

$H^{0,1}(\Theta)$ is spanned by $\theta_{1} \bar{\varphi}_{1}, \theta_{2} \bar{\varphi}_{1}, \theta_{3} \bar{\varphi}_{1}$, and the vector (0,1)-form ψ satisfying (3.1) is given by $\psi(t)=\sum_{i=1}^{3} t_{i} \theta_{i} \bar{\varphi}_{1}$. We can construct a locally complete complex analytic family of deformations of X depending on 3 effective parameters t_{i}.

Case 1: $\quad t_{1} \neq 0, \quad \zeta_{1}=z_{1}+t_{1} \bar{z}_{1}$,

$$
\zeta_{2}=z_{2}-\frac{t_{2}}{t_{1}} e^{-z_{1}}\left(e^{-t_{1} \varepsilon_{1}}-1\right), \quad \zeta_{3}=z_{3}+\frac{t_{3}}{t_{1}} e^{z_{1}}\left(e^{t_{1} \varepsilon_{1}}-1\right)
$$

$X^{t}=C^{3} / \Gamma_{t}$, and the group Γ_{t} is defined by

$$
\zeta_{1}^{\prime}=\zeta_{1}+\omega_{1}+t_{1} \bar{\omega}_{1}, \quad \zeta_{2}^{\prime}=e^{-\omega_{1}} \zeta_{2}+\frac{t_{2}}{t_{1}} e^{-\xi_{1}-\omega_{1}}\left(1-e^{-t_{1} \bar{\omega}_{1}}\right)
$$

$$
\zeta_{3}^{\prime}=e^{\omega_{1} \zeta_{3}}-\frac{t_{3}}{t_{1}} e^{\zeta_{1}+\omega_{1}}\left(1-e^{t_{1} \bar{\omega}_{1}}\right) \quad \text { for }\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \Gamma
$$

Case 2: $\quad t_{1}=0, \quad \zeta_{1}=z_{1}, \quad \zeta_{2}=z_{2}+t_{2} e^{-z_{1}} \bar{z}_{1}, \quad \zeta_{3}=z_{3}+t_{3} e^{z_{1}} \bar{z}_{1}$. $x^{t}=C^{3} / \Gamma_{t}$, and the group Γ_{t} is defined by

$$
\begin{aligned}
& \zeta_{1}^{\prime}=\zeta_{1}+\omega_{1}, \quad \zeta_{2}^{\prime}=e^{-\omega_{1}} \zeta_{2}+\omega_{2}+t_{2} \bar{\omega}_{1} e^{-\zeta_{1}-\omega_{1}} \\
& \zeta_{3}^{\prime}=e^{\omega_{1} \zeta_{3}}+\omega_{3}+t_{3} \bar{\omega}_{1} e^{\zeta_{1}+\omega_{1}} \quad \text { for }\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \Gamma .
\end{aligned}
$$

4. Proofs of Theorems 2 and 3

The following theorem is due to Kodaira.
Theorem 3. If X is nilpotent, then $h^{01}=r$.
Proof. We shall calculate the dimension of harmonic (0,1)-forms by the Dolbeault isomorphism $H^{1}(X, \mathcal{O}) \cong H_{\bar{\partial}}^{01}(X)$. Let $\left\{\varphi_{\lambda}\right\}$ and $\left\{\theta_{\lambda}\right\}$ be a basis of $H^{0}\left(X, \Omega^{1}\right)$ and $H^{0}(X, \Theta)$ dual to each other with respect to (1.1), which satisfy (2.1) and (2.2) respectively. Let φ be a differentiable (0.1)-form on X. Then $\varphi=\sum_{\lambda=1}^{n} f_{i} \bar{\varphi}_{i}$, where f_{λ} 's are differentiable function on X, so that

$$
\bar{\partial} \varphi=\sum_{\lambda, \nu}\left(\bar{\theta}_{\nu} f_{\nu}\right) \bar{\varphi}_{\nu} \wedge \bar{\varphi}_{\lambda}+\sum_{\lambda=1}^{n} f_{\lambda} d \bar{\varphi}_{\lambda}=\sum_{\nu<\lambda}\left(\bar{\theta}_{\lambda} f_{\nu}-\bar{\theta}_{\lambda} f_{\nu}+2 \sum_{\mu=1}^{n}{\overline{c_{\mu \nu}} f_{\mu}}\right) \bar{\varphi}_{\nu} \wedge \bar{\varphi}_{\lambda}
$$

For a differentiable $(0,1)$-form $\gamma=\sum_{i=1}^{n} g_{i} \bar{\varphi}_{\lambda}$ we define

$$
(\varphi, \lambda)=\int_{x} \sum_{\lambda=1}^{n} f_{\lambda} \bar{g}_{\lambda} d x
$$

where $d X=i^{-n^{2}} \varphi_{1} \wedge \cdots \wedge \varphi_{n} \wedge \bar{\varphi}_{1} \cdots \wedge \bar{\varphi}_{n}$.
Let ϑ be the adjoint operator or $\bar{\partial}$ with respect to the inner (,). For a differentiable function g we have

$$
(\vartheta \varphi, g)=(\varphi, \bar{\partial} g)=\int_{X} \sum_{\lambda=1}^{n} f_{\lambda} \theta_{\lambda} \bar{g} d X=-\int_{X}\left(\sum \theta_{\lambda} f_{\lambda}\right) \bar{g} d X
$$

Hence $\vartheta \varphi=-\sum_{\lambda=1}^{n} \theta_{\lambda} f_{\lambda}$. Assume that φ is harmonic so that $\bar{\partial} \varphi=0, \vartheta \varphi=0$. Consequently

$$
\bar{\theta}_{\nu} f_{\lambda}-\bar{\theta}_{\lambda} f_{\nu}+2 \sum_{\mu=1}^{n} \overline{c_{\mu \nu \lambda}} f_{\mu}=0, \quad \sum_{\lambda=1}^{n} \theta_{\lambda} f_{\lambda}=0 .
$$

Define the Laplacian

$$
\square=\vartheta \bar{\partial}+\bar{\partial} \vartheta
$$

Then $\square f=0$ implies $\bar{\partial} f=0$ for a function f. Hence f is holomorphic on X, and is constant.

$$
\square f_{\nu}=-2 \sum_{\lambda, \mu=1}^{n} \overline{c_{\mu \nu \lambda}} \theta_{\lambda} f_{\mu}
$$

Since X is nilpotent, we have $c_{\mu \nu \lambda}=0(\nu \geq \mu$ or $\lambda \geq \mu)$. Thus $\square f_{n}=0$, which implies that f_{n} is constant. From this it follows that

$$
\square f_{n-1}=-2 \sum_{\lambda=1}^{n} \overline{c_{n n-1 \lambda}} \theta_{\lambda} f_{n}=0
$$

Thus f_{n-1} is constant. Inductively we conclude that any f_{ν} is constant. Since $\bar{\partial}=0, f_{\lambda}=0(r<\lambda)$. Hence $\varphi=\sum_{\lambda=1}^{n} f_{\lambda} \bar{\varphi}_{\lambda}$ where f_{λ} 's are constant, i.e., $h^{0,1}=r$.

Theorem 4. If X is solvable and its Lie algebra has the Chevalley decomposition, then we have $b_{1}=2 r$.

Proof. First we assume X to be nilpotent. Consider the following exact sequence:

$$
0 \longrightarrow C \longrightarrow \mathcal{O} \xrightarrow{d} d \mathcal{O} \longrightarrow 0 .
$$

Then we hove

$$
0 \rightarrow H^{0}(X, d \mathcal{O}) \rightarrow H^{1}(X, C) \rightarrow H^{1}(X, \mathcal{O}) \rightarrow \cdots
$$

From theorem 3 it follows that $b_{1} \leq 2 r$, while in general $b_{1} \geq 2 \operatorname{dim}_{c} H^{\circ}(X, d \mathcal{O})$. Hence we complete the proof in case that X is nilpotent.

Now we assume X not to be nilpotent. Then the Mostow decomposition (X, π, B) is nontrivial. Set $\operatorname{dim} B=s(\geq 1)$ and $\operatorname{dim} X=n$. Then we can take a system of coordinates $\left(z_{1}, \cdots, z_{n}\right)$ of the universal covering C^{n} of X satisfying the following two conditions:
(1) π is the projection to the first s factors, and (X, π, B) is a holomorphic fiber bundle with nilpotent F as fiber:

(2) $\theta_{\nu}, \varphi_{\nu}$ are represented in the forms (2.5) and (2.6), and $g_{1} \in \Gamma_{1}$ induces an analytic automorphism of F and Alb F; hence g_{1} operates on $\left(z_{s+1}, \cdots\right.$, $\left.z_{s+r(F)}\right)$ as an affine transformation.

Denoting the ν-th coordinate of $z \cdot g_{1}$ by $\left(z \cdot g_{1}\right)_{\nu}=z_{\nu}{ }^{\prime}$, we have $z_{\nu}{ }^{\prime}=\sum_{\mu=s+1}^{\nu} a_{\nu \mu} z_{\nu}$ $+c_{\nu}, s+1 \leq \nu \leq s+r(F)$, where $a_{\nu \mu}$ is constant and $c_{\nu}=c_{\nu}\left(z_{1}, \cdots, z_{s}, g_{1}\right)$. By induction on ν we can check that any c_{ν} is constant depending only on g_{1}
in view of the representation (2.5) of φ_{ν}. Consider the following spectral sequence:

$$
E_{2}^{p, q}=H^{p}\left(B, R^{q} \pi_{*} \mathcal{O}_{X}\right) \Rightarrow H^{p+q}(X, \mathcal{O})
$$

Then we have the exact sequence:

$$
\begin{gathered}
0 \rightarrow H^{1}\left(B, O_{B}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(B, R^{1} \pi_{*} \mathcal{O}_{x}\right) \rightarrow \cdots \\
H_{\bar{\partial}}^{0,1}(X)
\end{gathered}
$$

Since F is nilpotent, $H_{\bar{\partial}}^{0,1}\left(F, O_{F}\right)$ is generated by $d \bar{z}_{s+1}, \cdots, d \bar{z}_{s+r(F)}$, and therefore any element ψ of $H^{0}\left(B, R^{1} \pi_{*} \mathcal{O}_{X}\right)$ can be written in the form $\psi=$ $\sum_{\lambda=s+1}^{s+r(F)} f_{\lambda}(z) d \bar{z}_{\lambda}$ where $f_{\lambda}(z)$ is holomorphic in z_{1}, \cdots, z_{s}. By the above arguments, ψ can be viewed as a $(0,1)$-form on X, and can therefore be written as $\psi=$ $\sum_{\lambda=s+1}^{n} g_{\lambda} \bar{\varphi}_{\lambda}$ where $g_{\lambda}=g_{\lambda}\left(z_{1}, \cdots, z_{s}, \bar{z}_{1}, \cdots, \bar{z}_{n}\right)$ is antiholomorphic in z_{s+1}, \cdots, z_{n}.

By Proposition 2.3 we see readily that $\bar{\partial} \psi=0, \vartheta \psi=-\sum_{\lambda=s+1}^{n} \theta_{\lambda} g_{\lambda}=0$, and consequently that ψ itself can be viewed as an element of $H^{1}(X, \mathcal{O}) \cong H_{\bar{\partial}}^{0,1}(X)$. Hence $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{1}\left(B, \mathcal{O}_{B}\right) \oplus H^{0}\left(B, R^{1} \pi_{*} \mathcal{O}_{X}\right)$, that is, any element ψ of $H_{\partial}^{0,1}(X)$ can be represented in the form

$$
\psi=\sum_{\lambda=1}^{s} c_{\lambda} d \bar{z}_{\lambda}+\sum_{\lambda=s+1}^{s+r(F)} f_{\lambda}(z) d \bar{z}_{\lambda}=\sum_{\lambda=1}^{s} c_{\lambda} d \bar{z}_{\lambda}+\sum_{\lambda=s+1}^{n} g_{\lambda} \bar{\rho}_{\lambda}
$$

where c_{λ} is constant, and f_{λ}, g_{λ} are the same as above. We shall calculate the dimension of real harmonic 1 -forms on X. Let φ be a real differentiable 1form given by

$$
\varphi=\sum_{\lambda=1}^{n} \bar{g}_{\lambda} \varphi_{\lambda}+\sum_{\lambda=1}^{n} g_{\lambda} \bar{\varphi}_{\lambda},
$$

where g_{λ} is a differentiable function. Set $\psi=\sum_{\lambda=1}^{n} g_{\lambda} \bar{\varphi}_{\lambda}$. Then $\varphi=\bar{\psi}+\psi$. Define d, δ by

$$
d \varphi=(\partial+\bar{\partial})(\psi+\bar{\psi}), \quad \delta \varphi=(\vartheta+\bar{\vartheta})(\psi+\bar{\psi}) .
$$

Assume φ is harmonic. Then $d \varphi=0, \delta \varphi=0$, and therefore $\bar{\partial} \psi=0, \partial \bar{\psi}+$ $\partial \psi=0$. Since $\partial \bar{\psi}+\partial \psi=\sum\left(\theta_{\nu} g_{\lambda}-\bar{\theta}_{\lambda} \bar{g}_{\nu}\right) \varphi_{\lambda} \wedge \bar{\varphi}_{\nu}$, we have

$$
\begin{equation*}
\theta_{\nu} g_{\lambda}=\overline{\theta_{\lambda} g_{\nu}} \tag{4.1}
\end{equation*}
$$

On the other hand,

$$
0=\delta \varphi=-\sum_{\lambda=1}^{n} \overline{\theta_{\lambda} g_{\lambda}}-\sum_{\lambda=1}^{n} \theta_{\lambda} g_{\lambda}=-2 \sum_{\lambda=1}^{n} \theta_{\lambda} g_{\lambda} .
$$

From this it follows that $\vartheta \psi=-\sum_{\lambda=1}^{n} \theta_{\lambda} g_{\lambda}=0$. Since $\bar{\partial} \psi=0$ and $\vartheta \psi=0, \psi$ is an element of $H_{\bar{\partial}}^{0,1}(X)$. Thus $\psi=\sum_{\lambda=1}^{s} c_{\lambda} d \bar{z}_{\lambda}+\sum_{\lambda=s+1}^{n} g_{\lambda} \bar{\varphi}_{\lambda}$ for some constant $c_{\lambda}^{\prime} s$. From (4.1) we conclude that any g_{λ} is constant. Since $d \varphi=0$, we have $g_{\lambda}=0$ $(\lambda>r)$. Accordingly it follows that $\varphi=\sum_{\lambda=1}^{r} c_{\lambda} \varphi_{\lambda}+\sum_{\lambda=1}^{r} \overline{c_{\lambda} \varphi_{\lambda}}$ where $c_{\lambda}^{\prime} s$ are complex numbers. This implies that $\operatorname{dim}_{R} H^{1}(X, R)=2 r$, i.e., $b_{1}=2 r$.

Remark 4.1. In the proof of Theorem 3 we have given an explicit description of elements of $H_{\bar{\partial}}^{0,1}(X)$. Since Θ is isomorphic to $\mathcal{O}^{n}, H_{\bar{\partial}}^{0,1}(X, \Theta)$ is spanned by $\theta_{i} \varphi(i=1, \cdots, n)$ for elements φ of $H_{\vec{\partial}}^{0,0}(X)$.

Remark 4.2. If X is not nilpotent, then $X=C^{r} \times F / \Gamma_{1}$ for a nilpotent manifold F and a group Γ_{1} of analytic automorphisms of $C^{s} \times F$. Any element g of Γ_{1} induces an automorphism g^{*} of $C^{s} \times \operatorname{Alb} F$. Set $\Gamma_{1}^{*}=\left\{g^{*} ; g \in \Gamma_{1}\right\}$. Since Γ_{1} operates on $C^{s} \times F$ properly discontinuously without fixed points, Γ_{1}^{*} operates on $C^{s} \times \operatorname{Alb} F$ in the same way. Thus $X^{*}=C^{s} \times \operatorname{Alb} F / \Gamma_{1}^{*}$ is a compact complex manifold, and is therefore parallelisable and solvable. Using this fact we infer that a parallelisable manifold with the following basis $\left\{\varphi_{\lambda}\right\}$ of $H^{0}\left(X, \Omega^{1}\right)$ does not exist:

$$
\begin{aligned}
& d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=-2(\mu+1) \varphi_{1} \wedge \varphi_{3} \\
& d \varphi_{4}=\mu \varphi_{1} \wedge \varphi_{4}, \quad d \varphi_{5}=(\mu+1) \varphi_{1} \wedge \varphi_{5}+\varphi_{2} \wedge \varphi_{4}
\end{aligned}
$$

where μ is constant, and $\mu(\mu+1) \neq 0$.
Proof. If a parallelisable manifold X of this type exists, X^{*} is a parallelisable manifold with a basis $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ of $H^{0}\left(X^{*}, \Omega^{1}\right)$ such that $d \psi_{1}=0$, $d \psi_{2}=\psi_{1} \wedge \psi_{2}, d \psi_{3}=-2(\mu+1) \psi_{1} \wedge \psi_{3}, d \psi_{4}=\mu \psi_{1} \wedge \psi_{4}$. This contradicts Lemma 1.4.

5. Proof of Theorem $\mathbf{5}$

First for brevity we assume \mathfrak{g} to have the Chevalley decomposition. Let $\left\{\varphi_{\lambda}\right\}$ and $\left\{\theta_{i}\right\}$ be dual bases of $H^{0}\left(X, \Omega^{1}\right)$ and $H^{0}(X, \Theta)$ which satisfy (2.1) and (2.2) respectively. The assumption means that $H_{\bar{\partial}}^{0,1}(X, \Theta)$ is generated by $\theta_{i} \bar{\varphi}_{i}$, $\lambda=1, \cdots, n$, and $i=1, \cdots, r$. Define a $(n-r, n-r)$ matrix $A=\left(A_{i j}\right)$ by

$$
A_{i j}=2 v_{0} \sum_{i<\nu} c_{i+r \lambda_{\nu}} \overline{c_{j+r i v}}, \quad i, j=1, \cdots, n-r,
$$

where $v_{0}=\int_{X} d X=i^{-n^{2}} \int_{X} \varphi_{1} \wedge \cdots \wedge \varphi_{n} \wedge \bar{\varphi}_{1} \wedge \cdots \wedge \bar{\varphi}_{n}$.
Lemma 5.1. $\operatorname{det}\left(A_{i j}\right) \neq 0$.

Proof. $\quad\left(\partial \varphi_{i+r}, \partial \varphi_{j+r}\right)=\left(d \varphi_{i+r}, d \varphi_{j+r}\right)=v_{0} \sum_{\lambda, \nu} c_{i+r_{2 \nu}} \overline{c_{j+r \lambda \nu}}=2 A_{i j} . \quad$ Thus, in order to prove Lemma 5.1, it suffices to show the following:

If for a 1 -form $\psi=\sum_{\lambda=r+1}^{n} c_{\lambda} \varphi_{\lambda},\left(\partial \psi, \partial \varphi_{\nu}\right)=0, \nu=r+1, \cdots, n$, then we have $\psi=0$, where $c_{\lambda}^{\prime} s$ are constant. However this is obvious. q.e.d.

It follows from Lemma 5.1. that there exists $(n-r, n-r)$ matrix $\left(A^{l j}\right)$ such that $\sum_{l=1}^{n-r} A_{k l} A^{l j}=\delta_{k j}$.

Lemma 5.2. For $a(0,2)$-form $\varphi=\sum_{\lambda<\nu} a_{\lambda \nu} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\nu}$ with some constants $a_{\lambda \nu}$, φ is cohomologous to zero in $H_{\bar{\partial}}^{02}(X)$ if and only if $\varphi=\sum_{\lambda=r+1}^{n} a_{\lambda} d \bar{\varphi}_{\lambda}$, where $a_{\lambda}^{\prime} s$ are constants.

Proof. For a (0,2)-form $\varphi=\sum_{i<\nu} a_{\lambda \nu} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\nu}$ the adjoint operator ϑ of $\bar{\partial}$ is defined by

$$
\vartheta \varphi=2 \sum_{\substack{i \\ \lambda<\nu}} c_{i \lambda \nu} a_{\nu \nu} \bar{\varphi}_{i}=2 \sum_{\substack{i \\ i<\nu}} c_{i+r \lambda \nu} a_{\lambda \nu} \bar{\varphi}_{i+r}
$$

Set

$$
H \varphi=\varphi-v_{0} \sum_{\substack{i, j \\ \lambda<\nu}} A^{j i} c_{i+r_{2 v}} a_{2 v} d \bar{\varphi}_{j+r}
$$

If $\bar{\partial} \varphi=0$, then $H \varphi$ is harmonic, i.e., $\bar{\partial}(H \varphi)=0, \vartheta(H \varphi)=0$. In fact, $\bar{\partial}(H \varphi)$ $=\bar{\partial} \varphi=0$. Moreover,

$$
\begin{aligned}
& \vartheta(H \varphi)=2 \sum_{\substack{i \\
\lambda<\nu}} c_{i \lambda_{\nu}} a_{\lambda_{\nu}} \bar{\varphi}_{i}-4 v_{0} \sum_{\substack{i j k \\
\lambda<\nu, \alpha<\beta}} c_{i+\gamma_{\lambda \nu}} a_{\lambda_{\nu \nu}} A^{j i} c_{k+r \alpha \beta} \bar{c}_{j+r \alpha \beta} \bar{\varphi}_{k+r} \\
& =2 \sum c_{i \lambda_{\nu}} a_{\lambda_{\nu}} \bar{\varphi}_{i}-2 \sum c_{i+\gamma_{\lambda \nu}} a_{\lambda \nu} A^{j i} A_{k j} \bar{\varphi}_{k+r}=0 .
\end{aligned}
$$

Since H is nothing but the projection of the harmonic part, we have $H \varphi=0$ if φ is cohomologous to zero. "If" part of the lemma is obvious.

Lemma 5.3. Under some algebraic relations between $t_{i \lambda}(i=1, \cdots, n$, and $\lambda=1, \cdots, r)$, there exists a vector $(0,1)$-form $\psi=\sum_{\alpha=1}^{n_{1}} \psi_{\alpha}(t)$ for some $n_{1} \leq n$ such that

$$
\begin{equation*}
\bar{\partial} \psi-\frac{1}{2}[\psi, \psi]=0 \tag{5.1}
\end{equation*}
$$

where $\psi_{1}=\sum_{i=1}^{n} \sum_{\lambda=1}^{r} t_{i \lambda} \theta_{i} \bar{\varphi}_{\lambda}$, and ψ_{α} is the homogeneous term of total degree α in $t_{i 2}$.

Proof. Set $\psi=\sum_{\alpha=1}^{\infty} \psi_{\alpha}(t)$ and $\psi_{1}=\sum_{i=0}^{n} \sum_{i=1}^{r} t_{i \lambda} \theta_{i} \bar{\varphi}_{i}$, where ψ_{α} is the homo-
geneous term of total degree α in $t_{i \lambda}$. Since $\left[\theta_{i} \bar{\varphi}_{k}, \theta_{k} \bar{\varphi}_{\nu}\right]=\left[\theta_{i}, \theta_{k}\right] \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{k}$, we have ${ }^{1}$

$$
\bar{\partial} \psi_{2}=\frac{1}{2}\left[\psi_{1}, \psi_{1}\right]-\sum_{\substack{i=1 \\ \lambda, v \in Q_{1}}}^{n} \sum_{\lambda \nu i} a_{\lambda i}^{1}(t) \theta_{i} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\nu}
$$

$\eta_{i}^{1}=\sum_{\lambda<\nu} a_{\lambda \nu i}^{1} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\lambda}$ is cohomologous to zero in $H_{\bar{\partial}}^{0,2}(X)$. Hence from Lemma 5.2 it follows ${ }^{2}$ that $\eta_{i}^{1}=\sum_{\mu \in Q_{2}} b_{\mu i}^{1}(t) d \bar{\varphi}_{\mu}$ for some $b_{\mu i}^{1}(t)$ and

$$
\begin{equation*}
a_{\lambda \nu i}^{1}(t)=2 \sum_{\mu} b_{\mu i}^{1}(t) c_{\mu \lambda \nu} . \tag{5.2}
\end{equation*}
$$

(In general (5.2) is nontrivial ; see (3.3).) Then we have

$$
\bar{\partial} \psi_{3}=\left[\psi_{1}, \psi_{2}\right]=\sum_{i=0} \sum_{\substack{\lambda \in Q_{1} \\ \nu \in Q_{2}}} a_{2 \nu i}^{2} \theta_{i} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\nu}
$$

Again from Lemma 5.2 it follows that

$$
\begin{equation*}
\eta_{i}^{2}=\sum_{\substack{\lambda \in Q_{1} \\ \nu \in Q_{2}}} a_{\lambda i}^{2} \bar{\varphi}_{\lambda} \wedge \bar{\varphi}_{\lambda}=\sum_{\beta \in Q_{3}} b_{\mu i}^{2} d \bar{\varphi}_{\mu} \quad \text { for some } b_{\mu i}^{2} \tag{5.2}
\end{equation*}
$$

Inductively we define ψ_{α} and $b_{\mu i}^{\alpha}(t)$ under additional relations (5.2) $)_{2}, \cdots$, (5.2) $)_{n_{1-1}}$. Since $\bigcup_{\mu} Q_{\mu}$ is bounded, we obtain the desired ψ after finite steps of processes. q.e.d.
$(5.2)_{1}, \cdots,(5.2)_{n_{1}-1}$ define an algebraic set A in $C^{n r}$. Set $A_{s}=\left\{\left(t_{i \lambda}\right) \in A\right.$; $\left.\sum_{i=0} \sum_{i=1}\left|t_{i \lambda}\right|<\varepsilon\right\}$ for a sufficiently small positive number ε. Lemma 5.3 implies that there exists a maximal complex analytic family of deformations of X depending on $n r$ parameters $t_{i \lambda} . \mathrm{A}_{c}$ is the Kuranishi space of deformations of X, [3].

Lemma 5.4. The system of differential equations

$$
\begin{equation*}
\bar{\partial} \zeta_{\alpha}-\psi(t) \zeta_{\alpha}=0, \quad \alpha=1, \cdots, n \tag{5.3}
\end{equation*}
$$

can be solved in $C^{n} \times A_{\varepsilon}$ under the initial condition $\zeta_{\alpha}(0)=z_{\alpha}$, where $0 \in A_{\alpha}$ denotes the origin of $C^{n r}$.

Proof. Since (5.3) is the integrability condition of the system of differential equations (5.3), we can formally solve it by the interation method. To this end we must show that the formal solutions converge in $C^{n} \times A_{\varepsilon}$ for a sufficient small positive number ε.

In view of Propositions 2.3 and 2.4 together with Lemma 5.3, ψ is represented by

[^1]$$
\psi=\sum_{i=1}^{n} \sum_{k=1}^{r} t_{i \lambda} \theta_{i} \bar{\varphi}_{i}+\sum_{k=r+1}^{n} \sum_{\mu=r+1}^{m} \sum_{\beta=2}^{n_{1}} a_{k \mu}^{\beta}(t) \theta_{k} \bar{\varphi}_{\mu},
$$
where $m=\# Q$ (see (1.2)), and $a_{k \mu}^{\beta}$ denotes the homogeneous term of total degree β in $t_{i \lambda}$. Then we have $\sum_{\mu=r+1}^{m} a_{k \mu}^{\beta} \bar{\varphi}_{\mu}=\sum_{\mu=r+1}^{m} b_{k \mu}^{\beta}(t, \bar{z}) d \bar{z}_{\mu}$ for a polynomial $b_{k \mu}^{\beta}(t, \bar{z})$ in $\bar{z}_{1}, \cdots, \bar{z}_{m-1}, t_{i \lambda}$, which is of degree β in $t_{i \lambda}$. Therefore the system of differential equations (5.3) is equivalent to the system of equations:
\[

$$
\begin{align*}
& \bar{\partial}_{1} \zeta=\sum_{i=1}^{n} t_{i 1} \theta_{i} \zeta+\sum_{\beta=2}^{n_{1}} \sum_{i=r+1}^{n} b_{i 1}^{\beta}(t, \bar{z}) \theta_{i} \zeta, \\
& \bar{\partial}_{r} \zeta=\sum_{i=1}^{n} t_{i r} \theta_{i} \zeta+\sum_{\beta=2}^{n_{1}} \sum_{i=r+1}^{n} b_{i r}^{\beta}(t, \bar{z}) \theta_{i} \zeta, \tag{5.4}\\
& \bar{\partial}_{\mu} \zeta=\sum_{\beta=l}^{n_{1}} \sum_{i=r+1}^{n} b_{i \mu}^{\beta} \theta_{i} \zeta \quad \text { for } \mu \in Q_{l}(l \geq 2), \\
& =0 \quad \text { for } \mu \in Q_{\infty} .
\end{align*}
$$
\]

Set $\zeta=\sum_{\beta=0}^{\infty} \zeta_{\beta}$ where ζ_{β} denotes the homogeneous term of total degree β in $t_{i \lambda}$.
Case 1. Assume $\zeta(0)=z_{\alpha}$ or requivalently $\zeta_{0}=z_{\alpha}(\alpha=1, \cdots, r)$. Then we have

$$
\bar{\partial}_{\mu} \zeta_{1}=t_{\alpha \mu}, \quad \mu \leq r ; \quad \bar{\partial}_{\mu} \zeta_{1}=0, \quad \mu>r
$$

Hence setting $\zeta_{1}=\sum_{\mu=1}^{r} t_{\alpha \mu} \bar{z}_{\mu}$, we obtain the solution $\zeta=z_{\alpha}+\sum_{\mu=1}^{r} t_{\alpha \mu} \bar{z}_{\mu}$.
Case 2. Assume $\zeta_{0}=z_{\alpha}(\alpha \in Q)$. Denote by $D_{\lambda}(f)$ the degree of a polynominal f with respect to z_{λ}. Since $\bar{\partial}_{\mu} \zeta_{1}=t_{\alpha \mu}(\mu \leq r), \bar{\partial}_{\mu} \zeta_{1}=0(\mu>r)$, we have $\zeta_{1}=\sum_{\mu=1}^{r} t_{\alpha \mu} \bar{z}_{\mu}$. From Proposition 2.4 it follows that for $\mu(\leq m)$

$$
\theta_{1} z=0(i>\mu \text { or } i \leq s), \quad \theta_{\mu} z_{\mu}=1, \quad \theta_{i} z_{\mu}=G_{i \mu}(\mu>i>s)
$$

where $G_{i \mu}$ is a polynominal in z_{1}, \cdots, z_{i-1}. Hence we have $\left(D_{\alpha}\left(\zeta_{2}\right)=0\right.$, $D_{r}\left(\zeta_{2}\right)=0(\gamma>\alpha)$. If $D_{\alpha-1}\left(\zeta_{2}\right)=N$, then $D_{\alpha-1}\left(\zeta_{3}\right)=N-1, D_{r}\left(\zeta_{3}\right)=0$ $(\gamma \geq \alpha)$. Inductively we obtain $D_{\alpha-1}\left(\zeta_{N+2}\right)=0 D_{r}\left(\zeta_{N+2}\right)=0(\gamma \geq \alpha)$. For a sufficiently large integer N_{1} we have

$$
D_{r}\left(\zeta_{N_{1}+\delta}\right)=0, \quad \gamma=1, \cdots, n, \quad \delta=1, \cdots, n_{1}
$$

so that we may set $\zeta_{\beta}=0$ for any $\beta>N_{1}+\delta$. Hence $\zeta=\sum_{\beta=0}^{N_{1}+\delta} \zeta_{\beta}$ is the desired solution.

Case 3. Assume $\zeta_{0}=z_{\alpha}\left(\alpha \in Q_{\infty}\right.$, i.e., $\left.\alpha \geq m+1\right)$. Similarly, as in Case 2 we have $D_{r}\left(\zeta_{N+\delta}\right)=0, \gamma=s+1, \cdots, n, \delta=1, \cdots, n_{1}$. Therefore the problem is reduced to the case where
$r=s, \quad$ and $\quad \zeta_{0}$ is a polynomial in $e^{z_{1}}, z_{1}, \cdots, z_{r}$,
and it suffices to prove the covergence of the series $\sum_{\beta=0}^{\infty} \zeta_{\beta}$ only for $\zeta_{0}=$ $e^{z_{1}} z_{1}{ }^{e_{1}} \cdots z_{r}{ }^{e_{r}}$. Moreover, the system of differential equations (5.4) takes the form:

$$
\bar{\partial}_{\mu} \zeta=\sum_{\lambda=1}^{r} t_{\mu \lambda} \partial_{\lambda} \zeta .
$$

Define the norms || || by

$$
\|z\|=\sum_{\lambda=1}^{r}\left|z_{\lambda}\right|, \quad\|t\|=\sum_{i=1}^{n} \sum_{\lambda=1}^{r}\left|t_{i \lambda}\right|, \quad\|f\|=\sum_{\beta_{1}, \cdots, \beta_{r}}\left|a_{\beta_{1}} \cdots \beta_{r}\right|\left|z_{1}^{\beta_{1}} \cdots z_{r}^{\beta_{r}}\right|
$$

for a polynomial $f=\sum a_{\beta_{1} \cdots \beta_{r}} z_{1}^{\beta_{1}} \cdots z_{r}^{\beta_{r}}$. Since $\bar{\partial}_{\mu} \zeta_{1}=\sum t_{\mu \lambda} \partial_{\lambda} \zeta_{0}$, we have

$$
\zeta_{1}=\sum t_{\mu \lambda}\left(\partial_{\lambda} \zeta_{0}\right) \overline{z_{\mu}},
$$

and therefore $\left|\zeta_{1}\right| \leq\|t\|\|z\|\left\|\zeta_{0}^{\prime}\right\|, \bar{\partial}_{\mu} \zeta_{2}=\sum t_{\mu \lambda} \partial_{2} \zeta_{1}$. Thus $\left|\zeta_{2}\right| \leq \frac{\|t\|^{2}\|z\|^{2}}{2!}\left\|\zeta_{0}^{\prime \prime}\right\|$. Idductively we have $\left|\zeta_{k}\right| \leq \frac{\|t\|\left\|^{k}\right\| z \|^{k}}{k!}\left\|\zeta_{\substack{(k) \\ 0}}\right\|$, and

$$
\zeta_{0}^{(k)}=\sum_{k_{0}+\cdots+k_{r}=k} \frac{k!}{k_{0}!k_{1}!\cdots k_{r}!} e^{z_{1}\left(z_{1}^{e_{1}}\right)^{\left(k_{1}\right)} \cdots\left(z_{r}^{e_{r}}\right)^{\left(k_{r}\right)}}
$$

Therefore $\quad\left\|\zeta_{0}^{(k)}\right\| \leq \frac{k!}{\left(k-e_{0}\right)!} M \cdot G(z) \quad$ where $\quad e_{0}=\sum_{\nu=1}^{r} e_{\nu}, \quad G(z)=\left|e^{z_{1}}\right|$ $\sum_{0 \leq j_{\nu} \leq e_{\nu}}\left|z_{1}^{j_{1}}\right|\left|z_{2}^{j_{2}}\right| \cdots\left|z_{r}^{j_{r}}\right|$, and M is a sufficiently large positive number independent of k. Hence

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty} \zeta_{k}\right| & \leq\left|\sum_{k=0}^{e_{0}-1} \zeta_{k}\right|+\left|\sum_{k=e_{0}}^{\infty} \zeta_{k}\right| \\
& \leq\left|\sum_{k=0}^{e_{0}-1} \zeta_{k}\right|+M \cdot G(z)(\|t\|\|z\|)^{e_{0}} \sum_{k=0}^{\infty} \frac{1}{k!}\|t\|^{k}\|z\|^{k} \\
& =\left|\sum_{k=0}^{e_{0}-1} \zeta_{k}\right|+M \cdot G(z)(\|t\|\|z\|)^{e_{0}} \exp (\|t\|\|z\|) \text {. q.e.d. }
\end{aligned}
$$

In view of the proof of Lemma 5.4 we have

$$
d \zeta_{1} \wedge \cdots \wedge d \zeta_{n} \wedge d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{n}
$$

$$
=c(t) d z_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n}
$$

where a differentiable function $c(t)$ of $t_{i \lambda}$ is independent of z_{1}, \cdots, z_{n} and satisfies $c(0)=1$. Hence by the same argument as in $\S 3$ we conclude that any small deformation $X_{t}\left(t \in A_{s}\right)$ has C^{n} as the universal covering for a sufficiently small positive number ε.

In the general case we can apply the following lemma which is a weaker form of Propositions 2.2 and 2.3.

Lemma. Let G be a connected solvable complex Lie group. Then we can choose a global coordinate $\left(z_{1}, \cdots, z_{n}\right)$ of $G\left(\cong C^{n}\right)$ and a basis $\left\{\varphi_{\lambda}\right\},\left\{\theta_{\lambda}\right\}$ of right invariant 1 -forms and vector fields respectively such that

$$
\varphi_{\lambda}=\sum_{\nu=1}^{\lambda} F_{\lambda \nu}(z) d z_{\nu}, \quad \theta_{\lambda}=\sum_{\nu=\lambda}^{n} G_{\lambda \nu}(z) \partial / \partial z_{\nu}
$$

where $F_{\lambda \nu}=F_{\lambda \nu}\left(z_{1}, \cdots, z_{\nu-1}\right), G_{\lambda \nu}=G_{\lambda \nu}\left(z_{1}, \cdots, z_{\nu-1}\right)$ and $\left(\theta_{\lambda}, \varphi_{\nu}\right)=\delta_{\lambda \nu}$.
By quite similar arguments we can also prove Theorem 5.

6. Classification of four- and five-dimensional complex solvable manifolds

By an elementary calculation together with Lemma 1.4 and Remark 4.2 we classify four and five-dimensional complex solvable Lie groups which may have uniform subgroups as follows:

Type IV:

1. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 4$.
2. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 3, \quad d \varphi=-\varphi_{2} \wedge \varphi_{3}$.
3. $d \varphi_{1}=0, \quad d \varphi_{2}=0, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{4}=-2 \varphi_{1} \wedge \varphi_{3}$.
4. $d \varphi_{1}=0, \quad d \varphi_{2}=0, \quad d \varphi_{3}=\varphi_{2} \wedge \varphi_{3}, \quad d \varphi_{4}=-\varphi_{2} \wedge \varphi_{4}$.
5. $d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=\alpha \varphi_{1} \wedge \varphi_{3}$,
$d \varphi_{4}=-(1+\alpha) \varphi_{1} \wedge \varphi_{4}, \quad \alpha(1+\alpha) \neq 0$.
6. $d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{4}=-\varphi_{2} \wedge \varphi_{3}$.
7. $d \varphi_{1}=0, d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, d \varphi_{3}=-2 \varphi_{1} \wedge \varphi_{3}$,
$d \varphi_{4}=d \varphi_{1} \wedge \varphi_{4}-\varphi_{1} \wedge \varphi_{2}$.
Type V:
8. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 5$.
9. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 4, \quad d \varphi_{5}=-\varphi_{3} \wedge \varphi_{4}$.
10. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 4, \quad d \varphi_{5}=-\varphi_{1} \wedge \varphi_{3}-\varphi_{2} \wedge \varphi_{4}$.
11. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 3, \quad d \varphi_{4}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{5}=-\varphi_{1} \wedge \varphi_{3}$.
12. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 3, \quad d \varphi_{4}=-\varphi_{2} \wedge \varphi_{3}, \quad d \varphi_{5}=-2 \varphi_{2} \wedge \varphi_{4}$.
13. $d \varphi_{2}=0, \quad 1 \leq \lambda \leq 3, \quad d \varphi_{4}=-\varphi_{1} \wedge \varphi_{2}$, $d \varphi_{5}=-2 \varphi_{1} \wedge \varphi_{4}-\varphi_{2} \wedge \varphi_{3}$.
14. $d \varphi_{\lambda}=0, \quad 1 \leq \lambda \leq 3, \quad d \varphi_{4}=\varphi_{3} \wedge \varphi_{4}, \quad d \varphi_{5}=-\varphi_{3} \wedge \varphi_{5}$.
15. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{4}=-2 \varphi_{1} \wedge \varphi_{3}$, $d \varphi_{5}=-2 \varphi_{2} \wedge \varphi_{3}$.
16. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{4}=-2 \varphi_{1} \wedge \varphi_{3}$, $d \varphi_{5}=-3 \varphi_{1} \wedge \varphi_{4}$.
17. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{4}=-2 \varphi_{1} \wedge \varphi_{3}$, $d \varphi_{5}=-3 \varphi_{1} \wedge \varphi_{4}-\varphi_{2} \wedge \varphi_{3}$.
18. $d \varphi_{2}=0, \quad \lambda=1,2, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{4}=\varphi_{1} \wedge \varphi_{4}$, $d \varphi_{5}=\varphi_{1} \wedge \varphi_{5}$.
19. $d \varphi_{2}=0, \quad \lambda=1,2, \quad d \varphi_{3}=\varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{4}=\varphi_{2} \wedge \varphi_{4}$, $d \varphi_{5}=-\left(\varphi_{1}+\varphi_{2}\right) \wedge \varphi_{5}$.
20. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=\varphi_{2} \wedge \varphi_{3}, \quad d \varphi_{4}=\alpha \varphi_{2} \wedge \varphi_{4}$, $d \varphi_{5}=-(1+\alpha) \varphi_{2} \wedge \varphi_{5}, \quad \alpha(1+\alpha) \neq 0$.
21. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=\varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{4}=-2 \varphi_{1} \wedge \varphi_{4}$, $d \varphi_{5}=\varphi_{1} \wedge \varphi_{5}-\varphi_{1} \wedge \varphi_{3}$.
22. $d \varphi_{2}=0, \quad \lambda=1,2, \quad d \varphi_{3}=\varphi_{2} \wedge \varphi_{3}, \quad d \varphi_{4}=-\varphi_{2} \wedge \varphi_{4}$, $d \varphi_{5}=-\varphi_{3} \wedge \varphi_{4}$.
23. $d \varphi_{\lambda}=0, \quad \lambda=1,2, \quad d \varphi_{3}=\varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{4}=-\varphi_{1} \wedge \varphi_{4}$, $d \varphi_{5}=-\varphi_{3} \wedge \varphi_{4}-\varphi_{1} \wedge \varphi_{2}$.
24. $d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=\alpha \varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{4}=\beta \varphi_{1} \wedge \varphi_{4}$, $d \varphi_{5}=-(1+\alpha+\beta) \varphi_{1} \wedge \varphi_{5}, \quad \alpha \beta(1+\alpha+\beta) \neq 0$.
25. $d \varphi_{1}=0, \quad d \varphi_{2}=-3 \varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=\varphi_{1} \wedge \varphi_{3}$, $d \varphi_{4}=\varphi_{1} \wedge \varphi_{4}-\varphi_{1} \wedge \varphi_{3}, \quad d \varphi_{5}=\varphi_{1} \wedge \varphi_{5}-\varphi_{1} \wedge \varphi_{3}$.
26. $d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=-\varphi_{1} \wedge \varphi_{3}$,
$d \varphi_{4}=\varphi_{1} \wedge \varphi_{4}-\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{5}=-\varphi_{1} \wedge \varphi_{5}-\varphi_{1} \wedge \varphi_{3}$.
27. $d \varphi_{1}=0, \quad d \varphi_{2}=\varphi_{1} \wedge \varphi_{2}, \quad d \varphi_{3}=\varphi_{1} \wedge \varphi_{3}-\varphi_{1} \wedge \varphi_{2}$,
$d \varphi_{4}=\alpha \varphi_{1} \wedge \varphi_{4}, \quad d \varphi_{5}=-(2+\alpha) \varphi_{1} \wedge \varphi_{5}, \quad \alpha(2+\alpha) \neq 0$.
Lemma 6.1. Let A be a 3×3 matrix which induces an automorphism of a complex torus of dimension 3. Assume that A has eigenvalues α, α and α^{-2}. Then α is a root of unity.

Proof. Let Φ be the proper polynomial of A. Then

$$
\Psi(x)=\Phi(x) \overline{\Phi(x)} \in Z[x]
$$

Assume α is not a root of 1 . We shall prove Ψ is irreducible in $Z[x]$. In fact, if Ψ is not irreducible, there exist $\Phi_{1}, \Phi_{2} \in Z[x]$ such that $\Psi=\Phi_{1} \Phi_{2}$. We may assume $\operatorname{deg} \Phi_{1} \geq \operatorname{deg} \Phi_{2} \geq 2$. Two cases may occur. First, we assume $\operatorname{deg} \Phi_{1}=$ 4, $\operatorname{deg} \Phi_{2}=2$. Put $F(x)=(x-\alpha)(x-\bar{\alpha}) \in \boldsymbol{R}[x]$. If $F \mid \Phi_{2}$ in $\boldsymbol{R}[x]$, then $F=$ $\pm \Phi_{2}$. Since the constant term of Ψ equals ± 1, that of Φ_{2} equals ± 1. Hence $|\alpha|=1$. Any conjugate of α has absolute value 1 . Therefore α is a root of 1 . This is a contradiction. If $F \nmid \Phi_{2}$ in $R[x]$, then $F^{2} \mid \Phi_{1}$ in $R[x]$, hence $F^{2}=$ $\pm \Phi_{1}$. Similarly, we are led to the contradiction. In case $\operatorname{deg} \Phi_{1}=\operatorname{deg} \Phi_{2}=3$, we also have a contradiction. Thus Ψ is proved to be irreducible. This contradicts the fact that Ψ has a double root. q.e.d.

Similarly we obtain
Lemma 6.2. Let A be a 4×4 matrix which induces an automorphism of a 4-dimensional complex torus. Assume A has eigenvalues $\alpha, \alpha, \alpha, \alpha^{-3}$. Then α is a root of 1 .

From these lemmas, we conclude that a parallelisable manifold of type IV$6, \mathrm{~V}-14$ or $\mathrm{V}-18$ does not exist. In fact, in the case of IV-7 we consider the Mostow decomposition $\pi: X \rightarrow B$. Then B is an elliptic curve, the fiber F is a complex torus of dimension 3,

$$
X=C^{4} / \Gamma, \quad g=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \in \Gamma
$$

and $g: F \rightarrow F$ is given by

$$
\left(z_{2}, z_{3}, z_{4}\right) \mapsto\left(e^{-\omega_{1}} z_{2}+\omega_{2}, e^{2 \omega_{1}} z_{3}+\omega_{3}, e^{-\omega_{1}} z_{4}+e^{-\omega_{1}} \omega_{1} z_{2}+\omega_{4}\right) .
$$

Lemma 6.1 shows that $e^{\omega_{1}}$ is a root of 1 . This contradicts the fact that $\left\{\omega_{1}\right.$; $\left.\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \in \Gamma\right\}$ are periods of the elliptic curve B.

Similarly it can be proved that a parallelisable manifold of type V-15 or V18 does not exist.

The author does not know whether there exist parallelisable manifolds of types IV-5, V-11, V-13, V-16, V-19, V-20. In other cases we can construct examples of each type. Now we summarize the results. In the following table we omit $z_{i}+y_{i}$ for simplicity. For example, $z * y=\left(z_{3}+y_{3}+y_{1} z_{2}\right)$ implies $z * y=\left(z_{1}+y_{1}, z_{2}+y_{2}, z_{3}+y_{3}+y_{1} z_{2}\right)$.

Type IV		$z * y$
1	abelian	
2	nilpotent	$z_{4}+y_{4}+y_{2} z_{3}$
3	nilpotent	$z_{3}+y_{3}+y_{1} z_{2}, z_{4}+y_{4}+2 y_{1} z_{3}+y_{1}^{2} z_{2}$
4	solvable	$e^{-y_{2} z_{3}+y_{3}, e^{y_{2} z_{4}+y_{4}}{ }^{\text {a }} \text {, }}$
5	solvable	
6	solvable	

Type V		$z * y$
1	abelian	
2	nilpotent	$z_{5}+y_{5}+y_{3} z_{4}$
3	nilpotent	$z_{5}+y_{5}+y_{1} z_{3}+y_{2} z_{4}$
4	nilpotent	$z_{4}+y_{4}+y_{1} z_{2}, z_{5}+y_{5}+y_{1} z_{3}$
5	nilpotent	$z_{4}+y_{4}+y_{2} z_{3}, z_{5}+y_{5}+2 y_{2} z_{4}+y_{2}^{2} z_{3}$
6	nilpotent	$z_{4}+y_{4}+y_{1} z_{2}, z_{5}+y_{5}+2 y_{1} z_{4}+y_{2} z_{3}+y_{1}^{2} z_{2}$
7	solvable	
8	nilpotent	$\begin{aligned} & z_{3}+y_{3}+y_{1} z_{2}, z_{4}+y_{4}+2 y_{1} z_{3}+y_{1}^{2} z_{2}, \\ & z_{5}+y_{5}+2 y_{2} z_{3}+y_{1} z_{2}^{2}+2 y_{1} y_{2} z_{2} \end{aligned}$
9	nilpotent	$\begin{aligned} & z_{3}+y_{3}+y_{1} z_{2}, z_{4}+y_{4}+2 y_{1} z_{3}+y_{1}^{2} z_{2} \\ & z_{5}+y_{5}+3 y_{1} z_{4}+3 y_{1}^{2} z_{3}+y_{1}^{3} z_{2} \end{aligned}$
10	nilpotent	$\begin{aligned} & z_{3}+y_{3}+y_{1} z_{2}, z_{4}+y_{4}+2 y_{1} z_{3}+y_{1}^{2} z_{2} \\ & z_{5}+y_{5}+3 y_{1} z_{4}+\left(3 y_{1}^{2}+2 y_{2}\right) z_{3}+y_{1} z_{2}^{2}+\left(y_{1}^{3}+2 y_{1} y_{2}\right) z_{2} \end{aligned}$
11	solvable	$z_{3}+y_{3}+y_{1} z_{2}, e^{-y_{1} z_{4}+y_{4}, e^{y_{1} z_{5}}+y_{5}{ }^{\text {a }} \text {, }}$
12	solvable	$e^{-y_{1} z_{3}}+y_{3}, e^{-y_{2}} z_{4}+y_{4}, e^{y_{1}+y_{2}} z_{5}+y_{5}$
13	solvable	
15	solvable	$e^{-y_{2}} z_{3}+y_{3}, e^{y_{2}} z_{4}+y_{4}, z_{5}+y_{5}+e^{y_{2} y_{3} z_{4}}$
16	solvable	$e^{-y_{1}} z_{3}+y_{3}, e^{y_{1} z_{4}+y_{4}, z_{5}+y_{5}+e^{y_{1} y_{3} z_{4}+y_{1} z_{2}}{ }^{\text {a }} \text {, }}$
17	solvable	$e^{-y_{1}} z_{2}+y_{2}, e^{-\alpha y_{1}} z_{3}+y_{3}, e^{-\beta y_{1} z_{4}}+y_{4}, e^{(1+\alpha+\beta)} z_{5}+y_{5}$
19	solvable	
20	solvable	$\begin{aligned} & e^{-y_{1} z_{2}+y_{2}, e^{-y_{1}} z_{3}+y_{3}+e^{-y_{1} y_{1} z_{2}}, e^{-\alpha y_{1}} z_{4}+y_{4}} \\ & e^{-(\alpha+2) y_{1}} z_{5}+y_{5} \end{aligned}$

Complex solvable manifolds of dimensions 4,5 are classified as follows:

	r	$h^{0,1}$	structure (Albanese mapping)	
IV : 1	4	4	complex torus	
2	3	3	T^{1}-bundle over T^{3}	
3	2	2	T^{2}-bundle over T^{2}	
4	2	2,4	T^{2}-bundle over T^{2}	
5	1	$1,2,4$	T^{3}-bundle over $T^{1} ?$	
6	1	1,3	(III-2)-bundle over T^{1}	
V: $\quad 1$	5	5	complex torus	
	2	4	4	T^{1}-bundle over T^{4}
3	4	4	T^{1}-bundle over T^{4}	
4	3	3	T^{2}-bundle over T^{3}	
5	3	3	T^{2}-bundle over T^{3}	
6	3	3	T^{2}-bundle over T^{3}	
7	3	3,5	T^{2}-bundle over T^{3}	
8	2	2	T^{3}-bundle over T^{2}	

	r	$h^{0,1}$	structure (Albanese mapping)
9	2	2	T^{3}-bundle over T^{2}
10	2	2	T^{3}-bundle over T^{2}
11	2	2,4	T^{3}-bundle over $T^{2} ?$
12	2	$2,3,5$	T^{3}-bundle over T^{2}
13	2	$2,3,5$	T^{3}-bundle over $T^{2} ?$
15	2	2,4	(III-2)-bundle over T^{2}
16	2	2,4	(III-2)-bundle over $T^{2} ?$
17	1	$1,2,3,5$	T^{4}-bundle over T^{1}
19	1	1,3	T^{4}-bundle over $T^{1} ?$
20	1	$1,2,4$	T^{4}-bundle over $T^{1} ?$

Here $r=\operatorname{dim} H^{0}(X, d \mathcal{O}), h^{0,1}=\operatorname{dim} H^{1}(X, \mathcal{O}), \quad T^{n}=$ a complex torus of dimension n.

Remark. A solvable manifold of dimension 4 or 5 has a Lie algebra with the Chevalley decomposition, and so from Theorem 3 it follows that $b_{1}=2 r$.

References

[1] S. Iitaka, Plurigenera and classification of algebraic varieties, Sugaku 24 (1972) 14-27 (in Japanese).
[2] S. Kaneyuki \& T. Nagano, On the first Betti numbers of compact quotient spaces of complex semi-simple Lie groups by discrete subgroups, Sci. Papers College Gen. Ed. Univ. Tokyo 12 (1962) 1-11.
[3] M. Kuranishi, On the locally complete families of complex analytic structures, Ann. of Math. 75 (1962) 536-577.
[4] G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. 60 (1954) 1-27.
[5] M. S. Raghunathan, Vanishing theorem for cohomology groups associated to discrete subgroups of semi-simple Lie groups, Osaka J. Math. 3 (1966) 243-256.
[6] -, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
[7] V.S. Vladimirov, Methods of the theory of functions of many complex variables, Massachusetts Institute of Technology Press, 1966 (English Translation).
[8] H. C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954) 771-776.

[^0]: Communicated by Y. Matsushima, October 23, 1973.

[^1]: ${ }^{1,2}$ See (1.4) as for Q_{1}, Q_{2}, etc.

