ALMOST CONTACT MANIFOLDS WITH KILLING STRUCTURES TENSORS. II

D. E. BLAIR \& D. K. SHOWERS

1. Introduction

Almost contact manifolds with Killing structure tensors were defined in [2] as nearly cosymplectic manifolds, and it was shown normal nearly cosymplectic manifolds are cosymplectic (see also [4]). In this note we study a nearly cosymplectic structure (φ, ξ, η, g) on a manifold $M^{2 n+1}$ with η closed primarily from the topological viewpoint, and extend some of Gray's results for nearly Kähler manifolds [5] to this case. In particular on a compact manifold satisfying some curvature condition we are able to distinguish between the cosymplectic and non-cosymplectic cases. In addition, we show that if ξ is regular, $M^{2 n+1}$ is a principal circle bundle $S^{1} \rightarrow M^{2 n+1} \rightarrow K^{2 n}$ over a nearly Kähler manifold $K^{2 n}$, and moreover if $M^{2 n+1}$ has positive φ-sectional curvature, then $M^{2 n+1}$ is the product $K^{2 n} \times S^{1}$.

2. Almost contact structures

A $(2 n+1)$-dimensional C^{∞} manifold $M^{2 n+1}$ is said to have an almost contact structure if there exist on $M^{2 n+1}$ a tensor field φ of type (1,1), a vector field ξ and a 1 -form η satisfying

$$
\eta(\xi)=1, \varphi \xi=0, \eta \circ \varphi=0, \varphi^{2}=-I+\xi \otimes \eta,
$$

Moreover, there exists for such a structure a Riemannian metric g such that

$$
\eta(X)=g(\xi, X), \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y),
$$

where X and Y are vector fields on $M^{2 n+1}$ (see e.g., [14]). Now define on $M^{2 n+1} \times R$ an almost complex structure J by

$$
J\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f \xi, \eta(X) \frac{d}{d t}\right),
$$

where f is a C^{∞} function on $M^{2 n+1} \times R$, [15]. If this almost complex structure is integrable, we say that the almost contact structure is normal ; the condition for normality in terms of φ, ξ and η is $[\varphi, \varphi]+\xi \otimes d \eta=0$, where $[\varphi, \varphi]$ is the

[^0]Nijenhuis torsion of φ. Finally the fundamental 2-form Φ is defined by $\Phi(X, Y)$ $=g(X, \varphi Y)$.

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic, if it is normal and both Φ and η are closed [1]. (Our notion of a cosymplectic manifold differs from the one given by P. Libermann [9].) The structure is said to be nearly cosymplectic if φ is Killing, i.e., if $\left(\nabla_{X} \varphi\right) Y+\left(\nabla_{Y} \varphi\right) X=0$, where V denotes the Riemannian connexion of g. The structure is said to be closely cosymplectic if φ is Killing and η is closed.

Proposition 2.1. On a nearly cosymplectic manifold the vector field ξ is Killing.

Proof. It suffices to show that $g\left(\nabla_{X} \xi, X\right)=0$ for X belonging to an orthonormal basis. Clearly $g\left(\nabla_{\xi} \xi, \xi\right)=0$, so we may assume that X is orthogonal to ξ. Thus

$$
\begin{aligned}
g\left(\nabla_{X} \xi, X\right) & =g\left(\varphi \nabla_{X} \xi, \varphi X\right)=-g\left(\left(\nabla_{X} \varphi\right) \xi, \varphi X\right)=g\left(\left(\nabla_{\xi} \varphi\right) X, \varphi X\right) \\
& =\frac{1}{2}(\xi g(\varphi X, \varphi X)-\xi g(X, X))=0 .
\end{aligned}
$$

Remark. (1) From Proposition 2.1 it is clear that on a closely cosymplectic manifold we have $\nabla_{X} \eta=0$.
(2) If an almost contact metric structure is normal and $\nabla_{X} \varphi=0$, then it is cosymplectic ; conversely on a cosymplectic manifold $\nabla_{X} \varphi=0$, [1].
(3) Since ξ is parallel on a closely cosymplectic manifold, it is clear that $\left(\nabla_{X} \varphi\right) \xi=0$, from which, since φ is Killing, $\nabla_{\xi} \varphi=0$.

A plane section of the tangent space $M_{m}^{2 n+1}$ at $m \in M^{2 n+1}$ is called a φ-section if it is determined by a vector X orthogonal to ξ such that $\{X, \varphi X\}$ is an orthonormal pair spanning the section. The sectional curvature $K(X, \varphi X)$ is called a φ-sectional curvature [13].

Given two φ-sections determined, say by unit vectors X and Y, we define the φ-bisectional curvature $B(X, Y)$ by

$$
B(X, Y)=g\left(R_{X \varphi X} Y, \varphi Y\right)
$$

where $R_{X Y}$ denotes the curvature transformation of ∇.
A local orthonormal basis of the form $\left\{\xi, X_{i}, X_{i^{*}}=\varphi X_{i}\right\}, i=1, \cdots, n$ on an almost contact manifold $M^{2 n+1}$ is called a φ-basis. It is well known that such a basis always exists. Let $\left\{\eta, \omega_{i}, \omega_{i^{*}}\right\}$ be the dual basis. A 2-form α is said to be of tridegree $(1,1,0)$ if α satisfies $\alpha(X, \varphi Y)+\alpha(\varphi X, Y)=0$. For a more general discussion of p-forms of tridegree $(\lambda, \mu, \nu), \lambda+\mu+\nu=p$ on almost contact manifolds see [12]. We denote by $H^{110}\left(M^{2 n+1}\right)$ the space of harmonic 2 -forms on $M^{2 n+1}$ of tridegree ($1,1,0$).

3. Closely cosymplectic manifolds

Lemma 3.1. On a closely cosymplectic manifold we have

$$
\left\|\left(\nabla_{X} \varphi\right) Y\right\|^{2}=g\left(R_{X Y} X, Y\right)-g\left(R_{X Y} \varphi X, \varphi Y\right) .
$$

The proof is a long but straightforward computation similar to the proof of the corresponding result on nearly Kähler manifolds [6].

Corollary 3.2. On a closely cosymplectic manifold

$$
g\left(R_{X Y} X, Y\right)=g\left(R_{\varphi X \varphi Y} \varphi X, \varphi Y\right)
$$

Corollary 3.3. On a closely cosymplectic manifold $g\left(R_{\xi x} \xi, X\right)=0$; in particular the sectional curvatures of plane sections containing ξ vanish.

This last corollary generalizes the result for cosymplectic manifolds [1].
Lemma 3.4 [11]. Let α be a 2-form on an almost contact manifold satisfying $\alpha(X, \varphi Y)+\alpha(\varphi X, Y)=0$. Then for any $m \in M^{2 n+1}$, there exists a φ-basis of $M_{m}^{2 n+1}$ such that $\alpha_{i i^{*}}=\alpha\left(X_{i}, X_{i^{*}}\right)$ are the only nonzero components of α.

Proof. For X orthogonal to ξ we have

$$
\alpha(\xi, X)=-\alpha\left(\xi, \varphi^{2} X\right)=\alpha(\varphi \xi, \varphi Y)=0
$$

Now let $S(X, Y)=\alpha(\varphi X, Y)$. Then $S(X, Y)=S(Y, X)$ and $S(\varphi X, \varphi Y)=$ $S(X, Y)$, i.e., S is a symmetric bilinear form invariant under φ. If X_{1} is an eigenvector of S orthogonal to ξ, then so is φX_{1}. Thus we can inductively choose a φ-basis $\left\{\xi, X_{i}, X_{i^{*}}=\varphi X_{i}\right\}$ such that the only nonvanishing components of S are of the form $S_{i i}=S_{i^{*} i^{*}}=\alpha_{i^{*} i}$.

Theorem 3.5. Let $M^{2 n+1}$ be a compact closely cosymplectic manifold having nonnegative φ-bisectional curvature and satisfying $K(X, Y)+K(X, \varphi Y)>0$ for linearly independant $X, Y, \varphi X, \varphi Y$ orthogonal to ξ. Then $M^{2 n+1}$ is cosymplectic or not cosymplectic according as $\operatorname{dim} H^{110}\left(M^{2 n+1}\right)=1$ or 0 .

Proof. Let α be a 2 -form of tridegree (1, 1, 0). Then by Lemma 3.4 there exists a φ-basis such that the only nonzero components of α are $\alpha_{i i^{*}}=$ $\alpha\left(X_{i}, \varphi X_{i}\right)$. Thus using Lemma 3.1 we have for the Bochner-Lichnerowicz form:

$$
\begin{aligned}
F(\alpha) & =R_{\mu \nu} \alpha^{\mu \lambda_{2} \cdots \lambda_{p}} \alpha_{\lambda_{2} \ldots \lambda_{p}}-\frac{p-1}{2} R_{i \lambda_{\mu} \nu^{*}}{ }^{\kappa \lambda_{3} \cdots \lambda_{p}} \alpha_{\alpha_{3} \ldots \lambda_{p}} \\
& =2 \sum_{i<j}\left(R_{i i^{*} j j^{*}}\left(\alpha_{i i^{*}}-\alpha_{j j^{*}}\right)^{2}+2\left\|\left(\nabla_{X_{i}} \varphi\right) X_{j}\right\|^{2}\left(\alpha_{i i^{*}}^{2}+\alpha_{j j^{*}}^{2}\right)\right),
\end{aligned}
$$

where κ, λ, \cdots range over $1, \cdots, 2 n+1$. Now as $R_{i i^{*} j j^{*}} \geq 0$, we have $F(\alpha) \geq 0$; hence if α is harmonic, then $F(\alpha)=0$ giving

$$
\begin{equation*}
R_{i i^{*} j j^{*}}\left(\alpha_{i i^{*}}-\alpha_{j j^{*}}\right)^{2}+2\left\|\left(\nabla_{x_{i}} \varphi\right) X_{j}\right\|^{2}\left(\alpha_{i i^{*}}^{2}+\alpha_{j j^{*}}^{2}\right)=0 . \tag{*}
\end{equation*}
$$

If now $M^{2 n+1}$ is not cosymplectic, it is clear that $\nabla_{X_{i}} \varphi \neq 0$ for some i, and one can then check that $\left(\nabla_{X_{i}} \varphi\right) X_{j} \neq 0$ for some j. Thus $\alpha_{i i^{*}}=0$ and $\alpha_{j j^{*}}=0$. But if $\left(\nabla_{X_{i}} \varphi\right) X_{k}=0$, then by Lemma 3.1, $R_{i i^{*} k k^{*}}=R_{i k i k}+R_{i k^{*} i k^{*}}>0$ giving $\alpha_{k k^{*}}=\alpha_{i i^{*}}$. Thus $\alpha=0$ and we have $\operatorname{dim} H^{110}\left(M^{2 n+1}\right)=0$.

In the cosymplectic case, the fundamental 2-form $\Phi \in H^{110}\left(M^{2 n+1}\right)$, so that $\operatorname{dim} H^{110}\left(M^{2 n+1}\right) \geq 1$. Therefore, if $\alpha \in H^{110}\left(M^{2 n+1}\right)$, then by a decomposition theorem of [3], $\alpha=\beta+f \Phi$, where $\sum_{i}\left(\iota\left(\omega_{i^{*}}\right) \iota\left(\omega_{i}\right)\right) \beta=0$ and f is a function. Thus $\sum \beta_{i i^{*}}=0$, and by equation ($*$) we have $\beta_{i i^{*}}=\beta_{j j^{*}}$ giving $\beta=0$. Hence $\alpha=f \Phi$, and $\operatorname{dim} H^{110}\left(M^{2 n+1}\right)=1$.

4. Fibration of closely cosymplectic manifolds

Let $M^{2 n+1}$ be a compact almost contact metric manifold on which ξ is regular, i.e., every point $m \in M^{2 n+1}$ has a neighborhood through which the integral curve of ξ through m passes only once. Since $M^{2 n+1}$ is compact, the integral curves of ξ are homeomorphic to circles. If now ξ is parallel, then its integral curves are geodesics, and it follows from a result of Hermann [8] that $M^{2 n+1}$ is a principal circle bundle over an even-dimensional manifold $K^{2 n}\left(S^{1} \longrightarrow M^{2 n+1}\right.$ $\longrightarrow K^{2 n}$).
Theorem 4.1. Let $M^{2 n+1}$ be a compact almost contact metric manifold on which ξ is regular. If $M^{2 n+1}$ is closely cosymplectic (respectively cosymplectic), then $K^{2 n}$ is nearly Kähler (respectively Kähler).

Proof. As $M^{2 n+1}$ is closely cosymplectic, ξ is parallel and we have the fibration $S^{1} \longrightarrow M^{2 n+1} \longrightarrow K^{2 n}$. Again since ξ is parallel and $\nabla_{\xi} \varphi=0$, we have

$$
\left(\mathscr{L}_{\xi} \varphi\right) X=\nabla_{\xi} \varphi X-\nabla_{\varphi X} \xi-\varphi \nabla_{\xi} X+\varphi \nabla_{X} \xi=\left(\nabla_{\xi} \varphi\right) X=0 .
$$

Thus φ is projectable, and we define J on $K^{2 n}$ by $J X=\pi_{*} \varphi \tilde{\pi} X$, where $\tilde{\pi}$ denotes the horizontal lift with respect to the Riemannian connexion on $M^{2 n+1}$. It is easy to see that $J^{2}=-I$ on $K^{2 n}$. Now as ξ is also Killing, the metric g is projectable to a metric g^{\prime} on $K^{2 n}$, i.e., $g^{\prime}(X, Y) \circ \pi=g(\tilde{\pi} X, \tilde{\pi} Y)$. Letting ∇^{\prime} denote the Riemannian connexion on $K^{2 n}$, by a direct computation we obtain $\left(\nabla_{X}^{\prime} J\right) Y=\pi_{*}\left(\nabla_{\tilde{\pi} X} \varphi\right) \tilde{\pi} Y$, from which the result follows.

Theorem 4.2. Let $S^{1} \longrightarrow M^{2 n+1} \xrightarrow{\pi} K^{2 n}$ be the above fibration with $M^{2 n+1}$ closely cosymplectic. If $M^{2 n+1}$ has positive φ-sectional curvature, then $M^{2 n+1}$ is the product space $K^{2 n} \times S^{1}$.

Proof. Since η is harmonic on $M^{2 n+1}$, we have $H^{1}\left(M^{2 n+1}, \boldsymbol{Z}\right) \neq 0$. Secondly, by a direct computation positive φ-sectional curvature on $M^{2 n+1}$ implies positive holomorphic sectional curvature on $K^{2 n}$, and hence $\pi_{1}\left(K^{2 n}\right)=0$ by a result of Gray [5]. We claim a principal circle bundle $S^{1} \rightarrow M \rightarrow K$ with $\pi_{1}(K)=0$ and $H^{1}(M) \neq 0$ is necessarily trivial. Let x be a base point of M, and S_{x}^{1} the fibre over x. Then the sequence

$$
\cdots \longrightarrow H^{1}\left(M, S_{x}^{1}\right) \rightarrow H^{1}(M) \xrightarrow{\iota^{*}} H^{1}\left(S_{x}^{1}\right) \longrightarrow H^{2}\left(M, S_{x}^{1}\right) \longrightarrow \cdots
$$

is exact. First note that $H^{1}\left(S_{x}^{1}\right) \approx Z$. Now by the universal coefficient theorem $H^{1}(M)$ is a free abelian group, and $H^{1}\left(M, S_{x}^{1}\right) \approx$ free $H^{1}\left(M, S_{x}^{1}\right) \approx$ free $H_{1}\left(M, S_{x}^{1}\right)$
\approx free $H_{1}(K)=0$ where the identification of $H_{1}\left(M, S_{x}^{1}\right)$ and $H_{1}(K)$ is made by the Serre sequence of the fibration (see for example, Mosher and Tangora [10]). Hence ι^{*} is a nontrivial monomorphism. Moreover torsion $H^{2}\left(M, S_{x}^{1}\right) \approx$ torsion $H_{1}\left(M, S_{x}^{1}\right) \approx$ torsion $H_{1}(K)=0$. Thus ι^{*} is an isomorphism, and hence the characteristic class of the bundle is zero.

5. Examples

It is well known that S^{6} carries a nearly Kähler structure, so let J denote such an almost complex structure on S^{6} and let θ be a coordinate function on S^{1}. On $S^{6} \times S^{1}$ define φ, ξ, η by

$$
\varphi\left(X, f \frac{d}{d \theta}\right)=(J X, 0), \quad \xi=\frac{d}{d \theta}, \quad \eta=d \theta
$$

where X is tangent to S^{6}. Then as J is not parallel on S^{6} (i.e., S^{6} is not Kählerian), $\nabla \varphi \neq 0$ with respect to the product metric. However it is easy to check that the structure defined on $S^{6} \times S^{1}$ is closely cosymplectic.

On the other hand, Gray [6] showed that every 4-dimensional nearly Kähler manifold is Kählerian. We now give the corresponding result for closely cosymplectic manifolds.

Theorem 5.1. Every 5-dimensional closely cosymplectic manifold is cosymplectic.

Proof. As the manifold is closely cosymplectic, a direct computation shows that $\left(\nabla_{X} \varphi\right) Y=\varphi\left(\nabla_{X} \varphi\right) \varphi Y$. Now let $\left\{\xi, X_{1}, \varphi X_{1}, X_{2}, \varphi X_{2}\right\}$ be a φ-basis. Then computing $\nabla \varphi$ on this basis we obtain $\nabla \varphi=0$ and hence that the manifold is cosymplectic.

In [2] one of the authors showed that besides its usual normal contact metric structure, S^{5} carries a nearly cosymplectic structure which is not cosymplectic. Consider S^{5} as a totally geodesic hypersurface of S^{6}; then the nearly Kähler structure induces an almost contact metric structure (φ, ξ, η, g) with φ and hence η Killing. In view of Theorem 5.1 this nearly cosymplectic structure is not closely cosymplectic.
Moreover this almost constact structure on S^{5} is also not contact as the following theorem shows.

Theorem 5.2. There are no nearly cosymplectic structures which are contact metric structures.

Proof. Let $M^{2 n+1}$ be a nearly cosymplectic manifold, and suppose that its (almost) contact form η is a contact structure (i.e., $\eta \wedge(d \eta)^{n} \neq 0$ everywhere). Since the structure is contact and ξ is Killing, $M^{2 n+1}$ is K-contact and $-\varphi X=$ $\nabla_{X} \xi$. Now on a K-contact manifold the sectional curvature of a plane section containing ξ is equal to 1 , [7]. Thus if X is a unit vector orthogonal to ξ, then

$$
\begin{aligned}
-1 & =g\left(\nabla_{\xi} \nabla_{X} \xi-\nabla_{X} \nabla_{\xi} \xi-\nabla_{[\xi, X]} \xi, X\right) \\
& =-g\left(\nabla_{\xi} \varphi X-\varphi[\xi, X], X\right)=-g\left(\left(\nabla_{\xi} \varphi\right) X+\varphi \nabla_{X} \xi, X\right) \\
& =g\left(\left(\nabla_{X} \varphi\right) \xi, X\right)+g\left(\varphi^{2} X, X\right)=g\left(\left(\nabla_{X} \varphi\right) \xi, X\right)-1 .
\end{aligned}
$$

Therefore

$$
0=g\left(\left(\nabla_{X} \varphi\right) \xi, X\right)=-g\left(\varphi \nabla_{X} \xi, X\right)=-g\left(\varphi^{2} X, X\right)=g(X, X),
$$

and hence $X=0$, a contradiction.

References

[1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967) 331-345.
[2] - Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971) 285-292.
[3] D. E. Blair \& S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1 (1967) 347-354.
[4] D. E. Blair \& K. Yano, Affine almost contact manifolds and f-manifolds with affine Killing structure tensors, Kōdai Math. Sem. Rep. 23 (1971) 473-479.
[5] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283-309.
[6] -, Almost complex submanifolds of the six-sphere, Proc. Amer. Math. Soc. 20 (1969) 277-279.
[7] Y. Hatakeyama, Y. Ogawa \& S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J. 15 (1963) 42-48.
[8] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960) 236-242.
[9] P. Libermann, Sur les automorphisms infinitésimaux des structures symplectiques et des structures de contact, Colloq. Géométrie Différentielle Globale (Bruxelles, 1958), Louvain, 1959, 37-59.
[10] P. Mosher \& M. Tangora, Cohomology operations and applications in homotopy theory, Harper and Row, New York, 1968.
[11] E. M. Moskal, Contact manifolds of positive curvature, Thesis, University of Illinois, 1966.
[12] - On the tridegree of forms on f-manifolds with applications, to appear.
[13] K. Ogiue, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kōdai Math. Sem. Rep. 16 (1964) 223-232.
[14] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tôhoku Math. J. 12 (1960) 459-476.
[15] S. Sasaki \& Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure. II, Tôhoku Math. J. 13 (1961) 281-294.

[^0]: Communicated by K. Yano, June 29, 1973.

