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MANIFOLDS WITH REFLECTING BOUNDARY

R. E. STONG

1. Introduction

Let M be a compact oriented C°° manifold of dimension 4k with boundary
B of dimension 4k — 1, and let g be a Riemannian metric on M. Being given
a power series with real coefficients P e R[[xAi]] in variables xH, i = 1, 2,
one may replace Jt4i by the real 4/-form Pt which gives the /-th Pontrjagin
class βPi of M, expressed in the standard way in terms of the curvature 2-forms
Ωjk of the Riemannian metric g, and integrate the component of dimension
4k over M to obtain a real number

P(M,g) = f

If M is closed, z.e., B is empty, then P(M, g) is independent of the Rieman-
nian metric g, and many be obtained by replacing xH by the i-th Pontrjagin
class 0i

i of M, and evaluating the 4k-dimensional component of the resulting
cohomology class on the fundamental homology class of M; i.e.,

P(M,g) = <P(0f

190
f

i, >),[Ml> •

In [5], C. C. Hsiung has introduced another class of manifolds for which
these numbers are well behaved, which he calls manifolds with reflecting
boundary. Specifically, one considers a manifold M together with an orientation
reversing involution π: B —* B. For such a pair (M, π) one considers a "nice"
Riemannian metric g on M, which satisfies the conditions that π is an isometry
of the manifold B with induced Riemannian metric g/B and that, on a tubular
neighborhood B x [0,1) of B = B X 0 in M, g is given by a product metric.
Such metrics always exist.

Proposition 1. // (M, π) is a manifold with reflecting boundary with nice
Riemannian metric g, then P(M, g) is independent of the nice metric. Further,

a) // P e Z[[xAJ] is a power series with integral coefficients, then P(M, g)
belongs to \Z,

b) if P is a power series of the form QL where Q,L are the rational
power series given by considering xu as the i-th elementary symmetric function
in variables yj (of dimension 2), with Q any symmetric polynomial over the
integers in the variables eVj + e~Vj — 2 and with L the product of the classes
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then P(M,g) belongs to Z[%], and
c) // P is the power series L, then P(M, g) is an integer.
Proof. Let N be the closed 4k-manifold obtained from M x {0,1} by

identifying (b,0)eB x 0 with (π(b), 1) e B x 1, using the differentiable
structure arising from the tubular neighborhood B x [0,1) of B in M, with
the Riemannian metric obtained from g on each copy of M (note that π is an
isometry and that the metric is compatible with the product structure near B)
and with the orientation obtained from the given orientation on each copy of
M. Then the induced metric h on N is symmetric in the sense of Hsiung, and
one has

2P(M,g) = ([ + ί W 1 ? P 2 , •••)
\J MXO J Mxl/

= ί P(Pι,P2, ) = P(N,h)
J N

which is independent of the metric. Part a) follows from integrality of the
Pontrjagin classes of N, while part b) is the condition P(N, h) e Z[^] coming
from the Riemann-Roch theorem (see [7, p. 204]), and finally, part c) is im-
mediate from Hsiung's result that P(M,g) is the signature sign (M,B) of the
manifold M with boundary B. q.e.d.

While part b) of the proposition may seem unwieldy and dull, it has one
intriguing consequence.

Corollary. Suppose that (M, π) is a manifold with reflecting boundary with
nice Riemannian metric g. Then there is a closed manifold M with metric g
for which P(M,g) = P(M\g/) for all P if and only if P(M,g) is integral for
all power series with integral coefficients.

Proof. As noted in [7, p. 207] all relations among the Pontrjagin numbers
of closed manifolds follow from the Riemann-Roch theorem and integrality of
the Pontrjagin classes, q.e.d.

Another way to phrase this is to say that there is a closed manifold M'
with metric g/ so that P(M, g) = P(M\ g/) for all P if and only if all Pontrjagin
numbers <β>u - - ^ < r , [N]}, iλ + + ir = k, are even.

The main result of this paper is a converse to Proposition 1, namely,
Proposition 2. // φ: (R[xu])ik —> R is a homomorphism of real vector

spaces defined on the homogeneous polynomials of degree 4k in variables xAi9

and satisfying
a) φ(P) is in \Z if P has integral coefficients,
b) // P is the Ak-dimensional component of a power series Q-Las in Prop-

osition 1 b), then φ(P) 6 Z[J], and
c) // P is the Ak-dimensional component of L, then φ(P) is integral,

then there is a manifold with reflecting boundary (M, π) of dimension Ak with
nice metric g, so that φ(P) = P(M, g) for all P.
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This is, of course, a completely dishonest statement. Since 2φ is given by
2φ(P) = P(N\ hf) for some closed manifold N'9 by [7, p. 207], with N' having
even index by c), one is really showing:

Proposition 2'. Every closed Ak-dimensional oriented manifold with even
index has the same Pontrjagin numbers as the "double in the sense of Hsiung"
of some manifold with reflecting boundary.

The author is indebted to Larry Smith for introducing him to the recent
work on characteristic numbers via differential forms, and to the National
Science Foundation for financial support during this work.

2. Cobordism groups

Consider pairs (M, π) where M is a compact oriented C°° manifold of di-
mension n with boundary B of dimension n — 1, and π: B —> B is an orienta-
tion reversing involution on B. Two pairs (M, π) and (M',7rO will be said to
be equivalent or cobordant if there is a compact oriented manifold V with
orientation reversing involution p with the boundary of V being the disjoint
union of B and — B', i.e.,2?' with opposite orientation, so that ρ\B = π,p\B'
= π\ and if the closed oriented manifold W obtained from M U ( - F ) L ) (—Mf)
by identifying the two copies of B and the two copies of Br is the boundary
of some compact oriented manifold X. The set of equivalence classes of man-
ifolds with reflecting boundary becomes an abelian group using the operation
induced by taking the disjoint union, with inverse given by reversing orientation.
This group will be denoted Ωn(Z2 — d).

One has a boundary homomorphism d: Ωn(Z2 — d) -+ Ωn_1(Z2 —) into the
cobordism group of oriented manifolds with orientation reversing involution
(denoted Θ~_x in [6, p. 206]), assigning to (M, π) the class of (B, π). One has
a forgetful homomorphism, augmentation, ε: Ωn(Z2 —) —• Ωn into the ordinary
oriented cobordism group assigning to (B, π) the class of B, and a forgetful
homomorphism /: Ωn —• Ωn(Z2 — d) assigning to a closed manifold M the pair
(M,φ) where φ is the "empty" involution on the boundary of M, which is
empty. The sequence

- ΩJZt - 9)

is then exact; i.e., Ω*(Z2 — 9) is the relative cobordism theory associated to
oriented manifolds and oriented manifolds with orientation reversing involution
in the sense of [7, p. 9].

Being given a manifold with reflecting boundary (M, TΓ), one may as above
form the closed oriented manifold N from M x {0,1} by identifying (b, 0) €
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B X 0 with (;r(Z>), 1) <= B x 1. If (M,ττ) and (M',τr') are equivalent, then in
the notation used for equivalence, one has a compact manifold with boundary
T obtained from X x {0,1} by identifying O,0) e V X 0 with (p(v), 1) e
V X 1 and the boundary of T is the disjoint union of N and — N'. Thus the
doubling construction defines a homomorphism

The composite D o i: β n —> Ωn is clearly multiplication by 2.
One now recalls that the graded group Ω* is actually a commutative graded

ring with the product [M]-[N] = [M x JV]. Then ^3^(22 —) and ^ ^ ( Z ^ — a)
are modules over Ω% given a closed manifold β and manifold with involution
(M, π),Q X M has the involution 1 x π, (1 X 7τ)(<?, m) = (ςr, τr(m)), while if
7r is only an involution on the boundary of M, 1 x π is an involution on the
boundary of Q x M. Each of the homomorphisms 5, ε, i, and D is easily seen
to be an Ω* module homomorphism.

Similarly, there exist unoriented versions of each of these groups, in which
it is only necessary to forget all mention of orientation and consider involutions,
without using the adjective "orientation reversing". Gne then obtains an exact
sequence

Jf*

and a homomorphism

Λ*ΛZ2)

with D o i being doubling, which is zero.
Ignoring the orientation defines a restriction homomorphism, generically de-

noted p, and one has commutative diagrams:

i — > fl#(Za - 3)

β*(z2 - a)

1'
D

D

Ω
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In the unoriented case one may understand all of the homomorphisms quite
easily. First, the homomorphism ε: J^^(Z2) —> Jί\ is epic with a splitting
homomorphism s: Jί^ —> Jί ^(Z2) given by sending the class of M to the class
of M with the trivial involution 1: l(ra) = m. Obviously εs = identity. Thus
one has a short exact sequence

0 > ̂ n+ι(Z2d) - ^ ^n(Z2) -Ujrn > 0

which is split.
One may then define a homomorphism U': J^n(Z2) —• Jίn+ι for which D

= DΌd by D'(x) = D{d~ι{x + sε(x))).
Lemma. The homomorphism D'': Jf *(Z2)-+Jf ^ is the homomorphism

Kλ defined by Conner and Floyd [2], which assigns to the manifold M with
involution t the class of the manifold (M X Sι)/(t X a) obtained from M x Sι

by identifying (t(m), —z) with (ra,z).
Proof. If x = [M, t], sε(x) is the class of [M, 1], and (M, t) U (M, 1) is the

boundary of M x [0,1]. Joining boundaries on two copies of M x [0,1] by
t along M x 0 and by the identity along M χ l gives (M X S1)^ X a).

Note. U is zero on the image of s, so D' and D have the same image,
which was completely analyzed by Conner and Floyd [2]. The image of D
consists of all classes with even Euler characteristic.

Understanding the oriented case will be somewhat more difficult, and one
will need to make use of some of the results of Wall [9] on the structure of Ω^.

First, recall that assigning to a closed 4/:-manifold N the Pontrjagin number
(β*ix &ir, [ΛΠ> € Z, ix + + ir = k, defines a homomorphism Ωik —>
Z with kernel containing the torsion subgroup, and in fact two closed oriented
manifolds have the same Pontrjagin numbers if and only if they represent the
same element of β^/Tor. According to Wall, β^/Tor is a polynomial ring
over Z on generators yH of dimension 4/.

Letting q: Ω* —> β^/Tor be the quotient homomorphism, one sees that the
image of qD contains 2(Ω*/Tor), and one is then interested in the image of
qD in ( β J T o r ) (x) Z 2.

According to Wall, (β^/Tor) (x) Z2 is the polynomial ring over Z2 on the
classes yH, and one can take yH to be the class of the complex projective space
CP(2/) The class of a manifold in (β^/Tor) (x) Z2 is determined by the
Pontrjagin numbers reduced mod 2. Since the mod 2 reduction of the Pontrjagin
class βPt is the Stiefel-Whitney class w2ί

2, the Stiefel-Whitney numbers <w2ίl

2

• w2ΐΛ [ΛΠ> define homomorphisms of β^/Tor into Z2, or of (β^/Tor) ® Z2

into Z2 agreeing with the mod 2 reductions of the Pontrjagin numbers.

There exists a universal polynomial st{al9 ,σi) with integral coefficients
which expresses the symmetric function Σ « C in terms of the elementary sym-
metric functions GJ of the variables ta. A manifold N of dimension Ak is an
indecomposable in (β^/Tor) (x) Z2 if and only if (sk{β>λ, , ̂ f c ) , [N]> is odd,
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or equivalently (sk(w2, , w2k

2), [ΛΠ> Φ 0 in Z 2.
Now the index defines a ring homomorphism /: Ω^-*Z sending the torsion

subgroup to zero, and reducing mod 2 defines a homomorphism /2: (β^/Tor)
(x) Z2 -H> Z2. Since the index of CP(2/) is 1, the kernel of I2 is the ideal generat-
ed by the classes CP(2/) — (CP(2))% and may also be described as the ideal
generated by any set of indecomposables Zu, i > 1, of (β^/Tor) ® Z2, which
lie in the kernel of I2.

One now wishes to exhibit such indecomposables lying in the image of D.
Let CP(1) be the complex projective space consisting of complex lines in C2,
and let λ be the complex line bundle over CP(1) whose total space consists of
pairs (a, x), where a is a complex line in C2 and x is a vector in the line a.
Form the real projective space bundle KP(λ 0 4(k — 1)) consisting of the real
one-dimensional subspaces of the fibers of the Whitney sum of λ and a trivial
real bundle of dimension 4(k — 1), k > 1. This is a closed oriented manifold
of dimension 4k - 1. Considering λ © 4(k - 1) as {λ © (4k - 5)} φ 1 one
has an involution given by multiplication by 1 in the fibers of λ © (4k — 5)
and by — 1 in the fibers of the last summand 1. This induces an orientation
reversing involution π on RP(Λ 0 4(k — 1)).

The manifold R P U 0 4(fc — 1)) bounds. In fact, one may fiber R P U 0
4(k — 1)) over the complex projective space bundle CP(λ 0 2(k — 1)) con-
sisting of complex lines in the fibers of the Whitney sum of λ and a trivial
complex bundle of dimension 2(k — 1) with fiber S1. If η is the complex line
bundle over CPU © (2k — 1)), whose total space consists of pairs (a, x) where
a is a complex line in a fiber and x ς. a, then KP(λ 0 4(k — 1)) is in fact the
unit sphere bundle of the complex line bundle η ® c η, (see [8, p. 297]). Thus
RP(Λ © 4(k — 1)) is the boundary of the oriented manifold D(η (x)c η) given
by the unit disc bundle.

Lemma. The image of (D(Ύ)®cη),π) under the homomorphism D is an
indecomposable element in (β^/Tor) ® Z2 of dimension 4k for each k > 1.

Before proceeding to prove this, one may note that this gives Proposition 2'.
The image of qD is clearly an ideal in Ω^/Ύoτ containing 200^/Tor) and a
generator for (β^/Tor) (x) Z2 in each dimension 4k, k > 1. Since it is contain-
ed in the kernel of the homomorphism to Z2 induced by the index, this shows
equality, which is the result desired.

Turning to the proof of the lemma, it suffices to show that the Stiefel-
Whitney number

<sk(w2\ , w2k>), [D(D(V (x)c η), π)]>

is nonzero, but this Stief el-Whitney number is an invariant of the unoriented
cobordism class of the manifold. Then pD(D(η®cη),π) = Dp(D(η®cη),π)
= D'dp(D(η ®c η), π) = D'(KP(λ © 4(k — 1)), π), and one needs only to con-
sider the Stiefel-Whitney number of
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X = RPU Θ 4(Λ - 1)) X Sιl{π X a) .

Now the bundle (R x S1)/^*,*) ~ (-x,-z))-> S'/iz z) is the non-
trivial line bundle 0 over RP(1), and so X may be identified as the real pro-
jective space bundle of lines in the fibers of λ © (4k — 5) 0 θ over CP(1) x
RP(l) X = RPU © (4Jfc - 5) 0 0).

The mod 2 cohomology structure of such a projective space bundle is well-
known, as in [3, p. 61] for example. Letting p: X -> CP(1) X RP(1) be the
projection, one sees that H*(X;Z2) is the free module over //*(CP(1) X
RP(1);Z 2 ) via/?* on l ,c , •• ,c4A:~3 where c is a class in Hι(X\Z2) with
<c4*-3/?*(*), [*]> = <*, [CP(1) X RP(1)]> for x e IP(CP(1) X RP(1) Z2).
Letting or = w2(X) e H2(CP(1) Z2) and ^ = w^ί) € ff (RP(1) Z2), and ignor-
ing all pullback homomorphisms in notation, one finds that c satisfies the
relation

c4A;-2 _|_ βc4k-3 + αC4Λ;-4 + aβC^-5 = Q ?

and the Stiefel-Whitney class of X is

w(X) = (1 + c2 + α ) ( l + c)4fc"5(l + c + 0) .

Squaring the Stiefel-Whitney class of X and noting a2 = β2 = 0 give

= (1 + c 2) 2(l + c) 2 ( 4 f c - 5 ) (l + c)2

= (1+ c) 8*-* = (1 + c 4 ) 2 *- 1 ,

so that w2ί

2 is the /-th elementary symmetric function in the (2k — 1) variables
c 4. Thus ^fc(w2

2, , >v2A;

2) is (2k - l)cik.

Now

c4k = c2(/3c4fc"3 + acik~4 + aβcik~5)

= βc(cik~2) + acik~2 + aβcik~"

= βc(βcik~3 + acAk~4 + aβcik~5)

+ a(βc4k~3 + acik-' + aβcik~δ) + aβ

and so

(sk(w2\ , >v2fc

2), m > = <3(2A - \)aβ&k-\ [X])

= (aβ, [CP(1) X RP(1)]> = 1
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3. Calculation of the groups

Before ending, it seems desirable to compute the groups Ω^(Z2 —) and
Ω^(Z2 —3). Lee and Wasserman [6] have analyzed Ω*(Z2 —), but their re-
sults stop just short of a clean answer. One follows the procedure established
by Conner and Floyd [4].

To begin one introduces Ω*(Z2 — )(Free), the bordism group of free orien-
tation reversing involutions, and the relative group Ω*(Z2 — )(Free d) of
orientation reversing involutions on compact manifolds with boundary, which
are free on the boundary. One then has an exact sequence

fl#(Z2 - ) — [ - + ΩΛZ2 - ) (Free 3)

β # (Z 2 - ) (Free)

with maps induced by inclusion of types of manifolds and by taking boundaries.
Being given (M, π) with π an orientation reversing free involution, one has

a double cover p: M —• M/Z29 and this may be easily seen to be the orientation
double cover of M/Z2 since π reverses the orientation. Thus assigning to (M, π)
the class of M/Z2 gives an isomorphism Ωn(Z2 — )(Free) = Jίn.

Further, being given (M, π), M x [— 1,1] has a fixed point free orientation
preserving involution π X (— 1) so that M x [— 1, l]/ττ X (— 1) is an oriented
manifold with boundary M. The involution induced by π X 1 or 1 x (— 1)
is then orientation reversing and extends 7r. In fact, (M X [—1, l])/(τr X (—1))
is just the disc bundle of the cover p, and the involution is just multiplication
by —1 in the fibers of this bundle. Assigning to (M, π) the class of (M x
[—l,l])/(ττ X (—1)) with involution induced by π X 1 defines a splitting
homomorphism

σ: Ωn(Z2 -)(Free) — Ωn+ι(Z2 - ) (Free d)

with dσ = 1.
Now turning to Ωn(Z2 — )(Free d), consider an ^-dimensional manifold V

with orientation reversing involution π whose restriction to the boundary of V
is free. The fixed point set of π is then a disjoint union of closed submanifolds
Fk (A -dimensional part) imbedded in the interior of V. If vn~k is the normal
bundle of Fk in V, then a neighborhood oί F = \^J Fk in V may be identified
with the disjoint union of the disc bundles D(vn~k) with the action of π being
identified as multiplication by —1 in the fibers of these disc bundles. Now
each disc bundle D(yn~k) is an oriented manifold, and hence there is a chosen
isomorphism of the determinant bundles άztτFk and άztvn~k of the tangent
bundle of Fk and vn'k (note: τD{v) ^ pullback of τFΘpullback of v). Further,
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since π reverses orientation, and multiplication by —1 in the fibers of vn~k

has degree (— l)n~k, one must have n — k odd. Since n — k is odd, the
bundle (det τFk) ® vn~k is then an oriented bundle ξ71'* over Fk.

Assigning to (V, π) the classes of (Fn~2j~ι,ξ2j+ι) defines a homomorphism

[n/2]

/: Ωn(Z2 - )(Free 9) -> φ ^«- 2 i-i(BSO 2 i + 1) ,
j = 0

which is in fact an isomorphism. The inverse to / assigns to (F, ξ) the mani-
fold Z)((det τF) (x) ξ) with involution given by multiplication by — 1 in the
fibers of the disc bundle. Calling this function g, fg is clearly 1, while gf(V, π)
is represented by a neighborhood of F in V, and since the action is free on
the complement of the neighborhood, the two actions are cobordant.

Note. Lee and Wasserman classify the normal bundles vn~k and extend to
(D(i/-*), S(vn~k)) -> ( M O n _ t | J to get Ωn(Z2 - ) ( F r e e 3) = ® Ωn(MO2j+1).
Since Hχ(MO2j+1) has every element of order 2, these groups may be com-
puted, but it is far simpler to compute J^*(BSO2j+ι).

Now note that the term Λ^iCBSOj) is just Jίn_γ (BSC^ is contractible)
and is mapped by d isomorphically onto Ωn_1(Z2 —)(Free), with the splitting
s sending Ωn_λ(Z2 — )(Free) isomorphically to Jfn_fi&O^.

Being given (F71'2^1 ,ξ2j+1) = x,σdx is represented by the disc bundle of
the double cover S((det τF) <g) ξ) —> RP((det τF) (x) ξ) which has the same
boundary as D((det τF) ® ξ). Joining these along the common boundary is the
same as dividing out the antipodal involution on the boundary of D((det τ^)
(x) f), which forms the real projective space bundle RP(((det τF) ® ξ) 0 1),
and the involution may be identified with that induced by (— 1) x 1 (or equi-
valently 1 X (—1)) in the fibers of the Whitney sum.

Note. If p is a line bundle, KP(p (x) η) = RPO?) by assigning to a line / in
7] the line p (g) / in p <g) η. Thus RP(((det τF) ® f ) 0 1 ) is also RP(f 0 det τF)
and the involution may be identified as that induced by - 1 X l o r 1 x - 1 .

Thus one has:
Proposition 3. Taking the fixed data and assigning to (F, ξ) the class of

RP(f 0 det τF) with involution induced by 1 X — 1 give isomorphisms

Ωn(Z2 - ) ^ eV w _ 2 ,_ 1 (BSO 2 , + 1 ) .
. 7 = 1

One may now understand the exact sequence for Ω*(Z2 —3). For this one
has a result of Rosenzweig [10, p. 5].

Proposition 4. The homomorphism ε: Ω^(Z2 —) —> β^ has image precisely
the torsion subgroup.

Proof. If (M, π) is an orientation reversing involution, 1 U π is a diffeo-
morphism of 2M = M U M and M \J —M = d(M X [0,1]), so every element
in image ε is torsion (Note: 1 U π is equivariant so every class in Ω^(Z2 —)
has order 2). On the other hand, P. G. Anderson [1] has shown that every
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class in Tor Ω* is a sum of classes of the manifolds RP(det τF Θ (2k — 1)),
which admits the orientation reversing involution induced by —1 X 1. q.e.d.

Thus one has a short exact sequence

0 -> fiJTor -> Ω*(Z2 -d) — Ker ε -> 0 .

Since ker ε is a Z2 vector space, which has a computable dimension and since
the extensions involved are known from the previous section (i.e., in dimension
Ak — 1 of ker ε, the number of Z2 's which are involved in nontrivial extensions
is the number of partitions of k minus 1, by looking at im qD: Ω^(Z2 — d) —>
β^/Tor), one has:

Proposition 5. Ω^(Z2 —3) is a direct sum of copies of Z and Z2 with the
number of summands being computable (but horrible).

To close, one may note that D: Ω*(Z2 — d) —> β* does not map onto the
torsion subgroup, so that working with β^/Tor was necessary. In fact, one
has Ω4(Z2 - ) ^ ^(BSOg) = 0, so

Ω5(Z2 -)^%Ω5 > Ω5(Z2 -d) > Ω4(Z2 -) = 0

giving Ωδ(Z2 —3) = 0, but Ωδ = Z2 and D cannot be epic.
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