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EINSTEIN METRICS ON PRINCIPAL FIBRE BUNDLES

GARY R. JENSEN

Introduction

The following construction of Riemannian metrics on principal fibre bundles
is well known. (See B. O'Neill [7] and A. Gray [1].) Let M be a manifold
with Riemannian metric ds2, and π: P —> M be a principal fibre bundle over
M with structure group G. Let γ be any connection form on P, and let <( , >
denote a bi-invariant metric on G. Then g = π*ds2 + f(j, γy, for any t > 0,
is a Riemannian metric on P with respect to which π becomes a Riemannian
submersion. In [4], S. Kobayashi proved that if (M,ds2) is a Kaehler-Einstein
space of positive scalar curvature, then, for proper choices of P, γ and /, g
becomes an Einstein metric. In this paper we generalize this result by showing
that the above construction can be used to obtain examples of many homo-
geneous Einstein spaces.

In the first section we compute the Riemann and Ricci curvature tensors
for the metric g. Although the Riemann curvature tensor has been computed
in detail for such metrics by B. O'Neill [7] and A. Gray [1], we have repeated
it here because it is necessary for our purposes to have an explicit expression
for the Ricci tensor. Furthermore, we have carried out the computations in
terms of forms on the bundle of frames, a technique considerably different
from that used in [1] and [7], and one which can be used to great advantage
in the applications considered in the second section.

In the second section we consider a class of principal bundles over homo-
geneous spaces, which are analogous to the example of the spheres 5 4 n + 3 ci
Qn+ί, Q = quaternions, represented as the quotient spaces Spin + 1)/Sp(ri).
At any point p € Sin+3, the tangent space decomposes into the direct sum of a
4n-dimensional subspace and a 3-dimensional subspace, each invariant under
the linear isotropy representation of Spin), and furthermore such that the
linear isotropy action on the three dimensional subspace is trivial. Hence, by
varying the scale of the metric on this three dimensional subspace, the Rieman-
nian metric on 54w+3 is changed in such a way that it remains invariant under
the action of Spin + 1 ) . We show that in many such examples the scale on
the trivial-action subspace can be chosen in such a way that the resulting
metric is Einsteinian. For example, for 54w+3 one choice of scale just gives the
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constant curvature metric, but we show that there is precisely one other choice
of scale which defines an Einstein metric of nonconstant sectional curvature
on S4n+\

Some other examples contained in this class are listed in a table near the end
of section two. Einstein metrics on the real Stieίϊel manifolds SO(p + q)/SO(q)
were found by Sagle in [8] using quite different methods.

Finally, this construction also gives some left-invariant (non-bi-invariant)
Einstein metrics on most compact simple Lie groups. Those left-invariant
Einstein metrics found in [3] are among the ones obtained here, but the con-
struction presented here yields some additional examples.

1. We take as given a Riemannian manifold M with metric ds2, a principal
bundle P(M, G) over M with structure group G, a bi-invariant Riemannian
metric < , > on G, and a connection form γ on P. Then g = π*ds2 + t\γ, γ}
is a Riemannian metric on P, where t > 0 is an arbitrary (fixed) parameter,
and π:P->M is the projection map. Explicitly, if ueP, X,YePu, then
g(X, Y) = ds2(π*X9π*Y) + t\γ(X), γ(Y)}. Recall that a connection form on
P takes values in the Lie algebra of G.

The following properties of g are easily verified.
Proposition 1. i) g is invariant under the right action of G on P,
ii) with respect to g on P and ds2 on M, the projection map π: P —> M is

a Riemannian submersion.
One would expect from the definition of g that the connection form, the

curvature tensor and the Ricci tensor of g can be expressed in terms of the
curvature tensors of ds2 and γ. This is indeed the case, and we proceed now
to determine the appropriate formulas.

The following convention for indices will be used: \<ί,j,k,m<n — dim M
and n + 1 < a,b,c,d,f < n + r, where r = dim G.

Let Xn+19 - - ,Xn+r be an orthonormal (o.n) frame field of left invariant
vector fields on G with respect to < , ) , i.e., an o.n frame in the Lie algebra
8 of G. Set [Xa,Xb] = ΣcCcabXc Since < , > is bi-invariant, the structure
constants {Ce

ab} are skew-symmetric in every pair of indices. Then γ= J]a γaXa,
where the γa are 1-forms on P.

From the right action of G on P, the vectors {Xa} induce r fundamental
vertical vector fields, (see [5, Vol. I, p. 51] for basic definitions), X*+1, ,
X*+r on P which are linearly independent at every point of P. It is convenient
to consider the set of adapted frames on P, denoted A(P), which consists of
all orthonormal frames for g on P of the form X19"-9 Xn, t~ιX*+19 , r 1 Z * + r .
Namely, at each point of P, the vectors X19 , Xn can be any orthonormal
set of n horizontal vectors, with respect to γ.

It is quite evident that A(P) is a subbundle of the bundle of orthonormal
frames over P, and has structure group O(n).

Let O(M) denote the principal O(«)-bundle of orthonormal frames on M
with respect to ds2. There is a natural map πx: A(P) -> O(M) defined by
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sending the adapted frame X19 , Xn9 Γ\SΓ*+1, , rιX*+r at the point xeP
to the orthonormal frame π*X19 , π*Xn at the point π(x) e M. Then A(P)
is a principal G-bundle over O(M), if we use the right action of G on A(P)
given by: the element z <= G sends the above frame at x € P to the frame
Λβ*^i, , Rz*Xn, ϊ~ιX*+19 , r x Z * + r at xz β P, where Rz denotes the right
action of G on P.

We now have the following commuting diagram:

( 1 ) G

O(M) > M

where π2 and τr3 denote the obvious projections.
The connection and curvature forms for g are defined on the bundle of

orthonormal frames on P, aud hence they can be restricted to the subbundle
A(P). The above diagram indicates how the geometry of γ and ds2 will enter
into the calculations of these forms. We begin by finding the canonical form
on A(P). (See [5, Vol. I] for definitions.) Let θ denote the canonical form on
O(M). Thus θ is an /?w-valued 1-form which, in terms of the standard basis
e19 , en on Rn, may be expressed as θ = Σt θieί> where the θι are ordinary
1-forms on O(M).

Proposition 2. Let φ denote the canonical form on A(P). φ is an Rn+r-
valued form which we can decompose into ψ = {ψl9 φ2) with respect to the
decomposition Rn+r = Rn X Rr. Then ψγ = πfθ and <p2 = tπfγ, where in the
latter expression we have identified the Lie algebra g with Rr via the ortho-
normal basis Xn+ί, , Xn+r fixed above. In terms of components we have

( 2 ) φ = Σ (flfθfyi + t Σ (πίγa)Xa .
ί a

To avoid excessive notation we will frequently omit the πf and πf in (2).
Proof. The proof is an elementary application of the definitions of canoni-

cal forms and connection forms together with the commutativity of the diagram
(1). We omit the details.

The curvature form Γ of γ can be expressed as Γ = Σa ΓaXa, where Γa

is a horizontal 2-form on P (in the sense of [5, Vol. I, p. 75]), and πfΓa is
a horizontal 2-form on A(P), for a = n + 1, , n + r.

Lemma 1. π*Γa = Σij HΐMi^) Λ (πfgj), where the Hfj are functions
on A(P) satisfying the relations Hfj + H^ = 0. It is convenient to omit the
πf and πf.

Proof. Recall that at any point of a subbundle of the bundle of frames on
a manifold, the kernel of the canonical form at that point consists precisely
of the vertical vectors at that point, i.e., the vectors tangent to the fibre at that
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point. Thus, since πfΓa is horizontal for each a, it follows from (2) that πfΓa is
at each point a linear combination of the forms I) πfθί A πfθj, II) πfθ1 A πfγc,
and III) πfγc A πfγb at that point, for all i, /, c and b. But, take M ζ / ( P ) ,
X, Y <= A(P)U, and suppose (π*θι)(X) = 0 for all /. Then ;rl5iJr is vertical on
O(M), i.e., ^ T Γ ^ A T = 0. Since ππ2 = πzπ19 it follows that π^π^X — 0, i.e.,
that π2*X is vertical on P, and thus Γa(π2*X, π2*Y) = 0, since Γa is horizontal.
But this implies that πfΓa must be a linear combination of only those forms
of type I) above. Hence π*Γa = Σt,j H^πfiθ1 A θj), for some functions Hfj
on A(P), which we may assume satisfy Hfj + Ha

όi = 0.

Let ψ denote the Riemannian connection form on A(P) for g. It is an
Φ(n + revalued 1-form on A(P). Continuing to use our indexing conventions,
the component forms of ψ will be denoted by ψ}, ψi, ψ£, with skew-symmetry
in each pair of indices. Let ω = (ωj) denote the 0(rc)-valued Riemannian con-
nection form on O(M) for ds2.

Proposition 3.
i) Ψi^πfωi-fΣaHϊjπfr*,

ra — J, V Ca τr*rc

Proof. Let β be the Φ{n + r)-valued 1-form on A{P) defined by i), ii) and
iii). To show that β = ψ, it suffices to show that /3O4*) = A for every funda-
mental vertical vector field A* generated by A e Φ(ή) c θ(n + r), and that
dψ = —β A φ. For, having shown this, the usual uniqueness proof for the
Riemannian connection shows that /3 = ψ, (cf. [5, Vol, I, p. 159]).

Using (2), it is an elementary exercise to show that dψ = — β A ψ. Let
A = (A)) β (P(ή), let ueA(P)9 and let σM: O(n)->A(P) be defined by σu(B) = uB.
Then ^4* = σu*Ae, where ^ = identity of O(n). But ^ 0 ^ ( 5 ) = πλ(uB) =
^ ( M ) ^ = σπ i ( M )(5), where σffl(M): O(«) -• O(M) is defined in the same way.
Thus π^A* = π^Ou^Ae = ̂ l ( M )^^4 e is a vertical vector to O(M) at π^u).
Hence (πfώfiA* = ωΐiπ^A*) = y4}, since ω is a connection form on O(M).
Furthermore, π2*A* = 0 since A* is vertical, and thus (πfγa)(A*) = 0. Hence,
from i), fi(A*) = A) and from iii), β*(A*) = 0. Finally, from ii), βf(A*) = 0
since πrlί(ί/4* is vertical and so θJ(π14ίA*) = 0. Hence βG4*) = ̂ 4, for every
u € v4(P), and any A <= ^(«) c θ(n + r). q.e.d.

Let Ω = (£?}) denote the Riemannian curvature form of ds2, which is an
0(n)-valued 2-form on O{M). Let Ψ denote the Riemannian curvature form
of g on A(P), which is an θ(n + ^-valued 2-form with components Ψ), Ψι

a

and Ψ%9 all skew-symmetric in their indices. In the following proposition we
again omit the πf's and τr2*'s.

Proposition 4. The Riemannian curvature form of g on A(P) is given by:
•Λ Wi _ Qi __ 42 y i (Tja ΈJa ι ZJa ZJa \βk A βm

- t Σa,m Hΐr,mθm A ίγa

+ Σα,6 (t2 Σ* HfMj ~ i Σe mPaύtf Λ tγ\
») VI = tΣ3,mHtr,mθjAθm+ΣJA-t2Σ^H1!cmj + i ΣcHl£%WAtγ\
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where

iv)

Wi = T
* b — LΛ—

v-i Tja

i,j \ l Zjk
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+ Σk(b

. y i ZJC fa \f

ZJC ΓLiiί^cb)^
A tγ',

l%ω\ - H?ka

f A

)ϊ) -' Σδ,c
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-H%m, and HfJ;m + Hlί;J + Ha

jmί = 0. Γ/î  coπ/^/ 0/ iv) w //zα/ /Aβ right
hand side is a 1-form contained in the span of θι, -θn.

Proof. The curvature forms are defined by the equations:

ψ) = dψ) + Σ Ψi Λ ψj + Σ Ψί Λ ψj ,
A; α.

n = -y? = dfi + Σ Ψ̂  Λ ft + Σ Ψi Λ Va ,
k b

ψi = ώp t + Σ ψ? Λ I J + Σ; Ψ? Λ ΨC

6 .
i c

Thus, using iv) and Proposition 3, it is a straightforward, but lengthy, calcula-
tion to derive i), ii) and iii).

To prove iv), one takes the exterior derivative on A(P) of the two
expressions

1) Γa = dγa + I Σ M Ctjb A rc, 2) Γα - Σu tlijθ1 Λ ^',
and then equates the right hand sides. The rest is an elementary exercise in
the algebra of exterior differential forms together with an application of the
Jacobi identity of g.

On O{M) we have Ω) = J Σ f c f T O Kίjkmθk Λ θm, where the Kίjkm are func-
tions on O(M) satisfying, among other identities, Kίjkm = —Kjίkm = —Kίjmk,
(cf. [5, Vol. I, p. 145]).

Similarly, on A(P) we have

( 3 ) Wi = iΣ RABtmθ* A θm + Σ RABlcaθ* A tf + J Σ ^ABa^ A tf ,

where the RABCD
 a r e functions on A(P) satisfying, among other identities,

RABCD — —RBACD — —RABDO 1 < A, B,C,D < n -\τ r.

Skew-symmetrizing the coefficients of Ψi in Proposition 4 and comparing
them to those in (3), we obtain the components of the Riemann curvature
tensor of g expressed in terms of the curvatures of ds2 and γ.

Proposition 5.
Σa

iii) Rijab = ?Σk (mkHlj - H\kHD - Σc H\pah,

iv) RiaJb - -?Σk H>tkHi, + \ Σ e WjCΐb9

V) Rabic = 0,

vi) Rabca = ir2ΣfCa

bfC{d.

All the components of the curvature tensor can be obtained from these using

the identities RABCD = —RBACD = —RABDORABCD = RCDAB, a n d RABCD +
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The components of the Ricci tensor of ds2 on O(M) and g on A(P), re-

spectively, are given by Ktj = Σk Kkikj and RAB = Σΐ=ι RSASB
Proposition 6.

i) RJk = KJk + 2i*Zi.aH%Hik9

ii) RJa = -tΣiHϊj.ti,
iii) Rab = -t2 Σuu n«kHli ~ \r* B(Xa, Xb),

where B denotes the Killing form of g.
Proof. Recall that B(Xa, Xh) = Σca Cc

adC
d

bc. With this, everything follows
directly from Proposition 5.

2 The computations and formulas of section one provide a useful tool for
studying a certain class of homogeneous spaces, many of which provide new
examples of Einstein spaces, which are analogous to the spheres 5 4 n + 3 =
Sp{n + ΐ) I Spin) described in the introduction.

Let K be a compact connected Lie group with Lie algebra ϊ, and let H be
a closed connected subgroup with Lie algebra ϊ). Suppose that H is locally the
direct product of two closed normal subgroups Hι and H2, with dim H1> 1.
This means that rj = \ © ϊ)2, (direct sum of ideals), where \ and \ are the
Lie algebras of Hλ and H2, respectively, and \ Φ 0.

Let b denote a positive definite bi-invariant metric on K, with respect to
which \ is orthogonal to \. If we let m denote the orthogonal complement
of ζ in ϊ, then m is ad(//)-invariant. For any t > 0, the inner product
g = b |m X m + t2b\ \ x \ is ad(H2)-invariant, (note that the adjoint action
of H2 on Eh is trivial), and hence induces a j£-invariant metric, also denoted
g, on X/H2.

It is our aim to show that for certain choices involved, the parameter t can
be chosen so that g becomes an Einstein metric. To do this, we place these
spaces into the context of section one. For the rest of this section let P = K/H2,
M = K/H, G = H19 and let π: K/H2 -> K/H be the natural projection, i.e.,
πikH2) = kH, for k € K. Then P is a principal fibre bundle over M with
projection π and structure group G. In fact, H1 acts on K/H2 on the right by:
RhikH2) = khH2, for Λ € //1? k ζ K. This action is well defined since elements
of # ! commute with elements of H2. The local triviality of P over M is well-
known.

Observe that m is an ad(//) invariant subspace of ϊ, and that ^ + m is an
ad(//2)-invariant subspace of ϊ. We identify the tangent space at e-H of M
with m via the natural projection ττ3: K —> £ / # , and identify the tangent space
at e H2 of P with ^ + m via the natural projection π2: K —> K/H2. Then the
metric ώ 2 = & | m x m makes M into a naturally reductive homogeneous
space, (cf. [5, Vol. II, p. 202] for definitions). Taking g on P and ds2 on M
makes TΓ: P —> M a Riemannian submersion. It is not difficult to see that, if
the adjoint representation of H on m is faithful, which we henceforth assume,
then g is a naturally reductive metric on P if and only if / = 1.

We explain how, in the present context, diagram (1) can be replaced with
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the commutative diagram:

( * )

K/H

Lemma. // Y e ^ , then π2*Y is a well-defined vector field on P, and
equals the fundamental vertical vector field Y* on P generated by Y.

Proof. Take u = xH2 β P, where x <= K, and let σ: H1 -± P be defined by
σ(h) = uh = xhH2. Then Y* = σ*Ye- Let Lfc denote left action of k e K on
either K or K/H2. Then 7Γ2 © LΛ = Lkoπ2 for every k e K, and <7(ft) = 7r2Cxή)
= τr2 o Lx(h) for every ft € Hί9 i.e., σ — (7r2o Lx) \Hx. Hence π2*Yx = T^L.,.* Ye

= (j* Ye = Y* for every Y e ^ . Therefore τr2;ii Y = Y* proving the lemma.

Corollary. If k ε K and Y e ϊ)19 ίfterc L^Y* = Y*.
Choose and fix an orthonormal basis X19 , Xn+r on m + \ with respect

to b such that the first n vectors are in m and the remaining r vectors are in
§!, where n = dim m and r = dim ^ . Let ^4(P) be the set of adapted frames
on P for g with respect to Γ\Y*+1, , Γ"\SL*+r. Namely, the adapted
frames at p <= P are all orthonormal frames at p in which the last r vectors are
r x X* + 1 , , ΓιX*+r at p, (cf. section one).

By the corollary, Lk^ sends adapted frames to adapted frames for every
kεK. Thus setting uQ — π2^{Xx, , Xn9 t~1Xn+1, , t~ιXn+r)e, an adapt-
ed frame at π2(e), then Lk*u0 is an adapted frame at π2(k), for any k e K, and
therefore we have a map X —> A(P) defined by k ι-> Lk^uQ. It is not difficult
to verify that this map is a bundle monomorphism of the principal bundle
X(P, H2) into A(P)(P, O(n))9 i.e., £ is a subbundle of 4(P) .

1£ is also a subbundle of O(M), the bundle of orthonormal frames on M with
respect to ds2. In fact, letting vQ denote the fixed orthonormal frame
π3*(Xί9 ',Xn)e at 7r3(e), then L^^T O is an orthonormal frame at πz(k) and
the map K-+ O(M) given by k >-• Lfĉ ô is a bundle monomorphism of K(M, H)
into O(M)(M,O(n)).

The map πλ: ^4(P)—>O(M), as defined in (1) of section one, when restricted
to KCZA(P) is just the identity map onto K cz O(M). Hence restricting to K,
diagram (1) becomes the commutative diagram (*). Thus we can restrict the
canonical forms and connection forms on A(P) and O(M) to K, obtaining, as
we shall see, left invariant forms on K.

To apply the results of section one, we must express g in terms of some
connection on P(M,H^). Recall that a connection γ on P is ^-invariant if
Lfγ = γ for every k β K.

Proposition 7. // γ is a K-invariant connection on P(M, H^, then πfγ is a
left invariant \-valued 1-form on K satisfying:

i) π*γ(X) = 0 for every X € $2,



606 GARY R. JENSEN

ii) πfγ{X) = X for every X ε §19

iii) πίγ(ad(h)X) = πfγ(X) for every Xeϊandhe H2,
iv) πfγ(ad(h)X) = zd(h)(πfγ(X)) for every XεϊandheH,.
Conversely, if f is a left invariant ^-valued 1-form on K satisfying i)-iv),

then there is a unique K-invariant connection γ on K/H2 such that πfγ = f.
We omit the proof, (cf. [6] or [5, Vol. II, Chapter 10]).
The left invariant \-valued 1-form f on K, defined by f(X) = the ^-com-

ponent of X with respect to the decomposition ϊ = \ + \ + m, satisfies the
properties i)-iv) in Proposition 7, and hence induces a X-invariant connection
γ on K/H2 such that πfγ = f. We call this connection the canonical connection
on P(M, H^. Using this connection on P, we have

( 4 ) g = π*ds2 + t2b(γ, γ) .

Proposition 8. Let γ be the canonical connection on P(M, Hλ), and let Γ
denote its curvature form. Then πfΓ is a left-invariant ^-valued 2-form on
K. Letting Zήl denote the ̂ -component of Z e ϊ, we have

(0, if XorY is in ϊj ,
π}Γ(X, Y) =

(-i[X, Y]5l, if X and Y are in m .

Proof. This proposition follows easily from the equation Γ = dγ — ̂ [γ, γ]
combined with the properties i)-iv) of Proposition 7 satisfied by πfγ.

We need to determine the components of πfΓ with respect to the coframe
on m + \ dual to the above fixed frame X19 -,Xn+r. Denote this dual
coframe by θ\ , θn, γn+\ , γn+r, which all are left invariant 1-forms on
K. We adopt the same index conventions as were used in the first section.
Namely, 1 < /, /, k,m < n and n + 1 < a, b, c, d < n + r. The structure
constants CiG are defined by Cic = b(XA, [XB, Xc]) for 1 < A, B, C < n + r,
and are skew-symmetric in every pair of indices since b is bi-invariant.

If γ is the canonical connection on P(M, Hλ), then πfγ = J]a Xaϊa> If Γ is
its curvature form, then πfΓ = —\ Σa.ij (Cffi* Λ θj)Xa by Proposition 8.
Hence, using the notation of Proposition 6, we now have

( 5 ) ί/?, = - i Q , .

At this point we must digress briefly and consider the Riemannian geometry
of the naturally reductive homogeneous space M = (K/H, ds2). It was observed
above that K c: O(M). The canonical form of O(M) when restricted to K is
just the Rn-valued left-invariant 1-form 2* θίei, where e19 , en is the stand-
ard orthonormal basis on Rn, and θ\ , θn are the same as above. The re-
striction of the Riemannian connection form ω to K is the 0(«)-vaΓued left-
invariant 1-form given by
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i adm(Z), if Z € m ,

adm(Z), if Z e $ ,

where adm(Z) is the endomorphism of m given by adm(Z)Y = [Z, Y]m for
Yexn, (cf. [6] for details). These endomorphisms are skew-symmetric with
respect to the inner product b on m, and thus the matrix of ω(X) with respect
to Z 1 ? , Xn is in Θ(ή). In this sense ω is 0(n)-valued.

If we let 0 n + r + 1 , , βn+r+r2 be an orthonormal coframe on !)2 with respect
to b, then ω is represented by an n x n skew-symmetric matrix (ω)) of left-
invariant 1-forms on K given by

A; α. ί = n + r + l

where the C's are the structure constants of ϊ with respect to the coframe
θ\ - - -, θn, γn+1, , γn+rjβ

n+r+1

:) . . . βn+r+rz^ a n ( j a r e skew-symmetric in every
pair of indices since b is bi-invariant. Furthermore, the relations [ϊ, m] c:
rrt, [ ί̂, EiJ £ \, i = 1,2, and [f)19 ζ2] = 0 imply that:

( ? 0 - Cδ

αi - C'αi = Q,, 0 - C'α6 = Oab = C\s = C?,, and

0 = e α t = Cb

at = Oat, where n + r + 1 < s,t < n + r + r2 .

The curvature form of ω is the ^-valued left-invariant 2-form on K given
by Ω — dω + \\_ω, ω\. Thus we have

1
0, if either Z or Y is in ^ ,

-\ adm (IX, YU ~ έ adm ([Z, Y]ή) + itad m (Z), adm (Y)]

if Z , Y <= m .

Setting Ω = (β}), a skew-symmetric matrix of left-invariant 2-forms on K,
we have

n ί
m,p = l I fc A;

put

A;,m

where the K)km are constants satisfying K)km + K)mk — 0.
Comparison of (8) with (9) yields a formula for the Riemann curvature

tensor for ds2:
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]ζi _ 1 y f/̂ ί fU fί r<k \ i y r<k fi n y Vi /̂ ί
J^jprn — 4 ZJ v υpl; υmj ^mk^pj) 2 ZJ ̂ pm^kj ZJ ^tj^pm

fc fc ί = n + l

From this follows the Ricci tensor of ds2:

(10) κjm = Σ κ*in = - i Σ c%σmk - Σ nΎ*c%omi.
i i,k i t = n + l

The Ricci tensor involves the Killing form F of ϊ and a certain symmetric
bilinear form T on m. To see this, observe that

F(Xj, XJ = Trace ad (X3) ad ( X J
(11) n + r + r2 n + ?-+r2

— V Cϋ Cs V Cι Ck -U ? V V Γ1* Γ̂
— ZJ ^is^mί — ZJ ̂ i ^ m i ~Γ ^ Zj ZJ ^jt^mi

l ΐfe i l
Combining (10) and (11) gives

κJm = -
i,k

Let T be the symmetric bilinear form on m defined by

(12) Γ(X, Γ) =

Then Γ is negative semi-definite since T(X,X) = — Σ« llt^^ilmlΓ < ° f o r

any X e m. Notice that T(Xj9 XJ = Σi.* Q ^ L = Σ*.* C%Om^
The Ricci tensor of ds2 on M is ̂ -invariant, as it can be regarded as the

symmetric bilinear form .Sonm satisfying S(Xi,Xj) = Kυ, (which are given
by (10)). Then

(12a) S = - i F | π l X m + \T .

We must make one more computation before we can apply Proposition 6
to the present situation. Namely, we must find the covariant derivatives Hfj.k

of the components of Γ given in (5).
Lemma.

(13) H-ij m ~ 4 Σ ^mk^ίj ?
k

(14) Σff?/;« = iTO».-SO)
i

Proof. Combining iv) of Proposition 4 with (5) and (6) gives:

Σ TJa nm

m

= Σ {-*c?»(έ Σ c* .̂" +
k K. \ m b t = n

Σ cijθm + Σ Qjf + n+Σ2 QA) + \
b t l ) b,c
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Applying the Jacobi identity, together with (7), one finds that the coefficients
of the γb and the θι are zero, as we know they must be from Proposition 4,
while the coefficients of the θm yield (13). It is a simple computation to obtain
(14) from (13), (11) and (7).

Proposition 10. Let γ be the canonical connection on P(M, HJ, and g be
the corresponding metric on P given by (4). Retain the notation and indexing
conventions used above. Let Ruυ, 1 < u,v < n + r, denote the com-
ponents of the Ricci tensor of g with respect to the orthonormal frame
X19 , Xn9 t~ Xn+ι, - - , t Xn+r. Then

(15) Rjk = Kjk + \t2 Σ C^Cfj. ,
i,a

(16) Rja= -±tF(Xj,Xa) ,

(17) Rab = -ltΨ(Xa,Xb) + \{f - Γ2)Fλ(Xa,Xb) ,

where F x denotes the Killing form of \.
Proof. (15) follows from Proposition 6, i) together with (5). (16) follows

from Proposition 6, ii) together with (14). From Proposition 6, iii) combined
with (5) we have Rab = -\t2 Σi.icCΆ - ^rΨ^X^X,). But, using (7),
it is easy to see that 2 ί f f c CfkC

b

ki = F(Xa,Xb) — JF 1(Xα,Z 6). Substituting this
into the preceding formula for Rab gives (17).

It will be convenient to have basis free expressions for (15), , (17). Let S
(respectively Sg) denote the Ricci tensor of ds2 on M (resp. of g on P), which
is a symmetric bilinear form on m (resp. on ϊ^ + m). Let aλ (resp. a2) denote the
symmetric bilinear form on m denned by ax{X, Y) = Σί b([X, Xi\, [Xi, Y\x)
(resp. by a2(X, Y) = Σi b([X9Xi\^9 [Xi9 Y]ήa)). It is easy to see that a, and
a2 are negative semi-definite and ad (H)-invariant. These forms are related as
follows.

(18) F\m X m = T + 2a, + 2a2 ,

where F | m X m denotes the restriction of F to m X m, and T was defined
by (12).

Then, since Rjk = Sg(Xj9Xk), Rja - Sg(Xj9 ΓιXa), Rab - S8(rιXa9 ΓιXb)
and Kjk = S(Xj,Xk), we have

(19) Sg\m X m = S + \t2ax ,

(20) rιSg\m X \= -\tF\m x \ ,

(21) Γ2Sg \\ X \ = -\tΨ\ \ X \ + i(t2 - r2)Fx .

It is our intention now to investigate conditions under which g can be an
Einstein metric, that is, when S will be a constant multiple of g. For this
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purpose, the following conditions seem to be quite natural.
Condition 1. b = —F.
Condition 2. ds2 is an Einstein metric, say S = kds2, for some k e R.
If we assume Conditions 1 and 2, then (19) and (20) simplify somewhat to:

(22) ^ | m x m = -kF\ m X m + \t2aλ ,

(23) Sg\ m X \ = 0, since m = ζ 1 with respect to b = — F.

It is clear from (21) and (22) that if g is an Einstein metric, then ax must
be a multiple of F\ m x m, and F 2 must be a multiple of F\ \ x ljlβ

Condition 3. Fj = cF 11̂  X ^ and αx = αF | m X m, where a,c e R.
In fact, a > 0 and c > 0 since F, Fx and α̂  are all negative semi-definite.
Proposition 11. Suppose Conditions 1, 2 and 3 αr£ satisfied {by the spaces,

metrics, etc. we have been working with in § 2), with k, a and c being the
constants used above. Then

i) ^ | m x m = (\n-ιfr(\ - c) - k)F\ m X m,
ii) Sg\mx^ = 0,

in) Sg\\ x ^ = K - * 2 + c('2 - Γ2))tΨ\ \ X ή1?

g is an Einstein metric if and only if

(25) (2r//i + 1)(1 - c)/4 - 4kt2 + c = 0 ,

« = dim m and r = dim ^ α,s before.
Proof, i), ii) and iii) follow directly from (21), (22), (23) and Con-

dition 3.
Now g is an Einstein metric if and only if Sg is a constant multiple of g.

But, from the definition of g and Condition 1, g | m x m = — F | m x m ,
g\^ x ζj = — ^ F j ^ x ij19 and m is orthogonal to ^ with respect to g
or F. Thus, from i), ii) and iii), g is an Einstein metric if and only if
— (\rrιfrt\ — c) — k) = — J( — t2 + c(t2 — Γ2)). Rewriting this equation
gives (25).

(25) is quadratic in t2. In order to know anything about possible solutions
of (25), we need to have some estimates on the size of c and k, and their
relationship to r and n.

Lemma. Retaining the hypotheses and notation of Proposition 11, we have

(26) i) r(l - c) = an, and 0 < c < 1 ii) ^ 2

Proof, i) F(Xb, Xb) = Σij C^CU + Σa Q Λ , so that £ δ F(Xh, Xb)
= Σ i ^ ή ^ i ) + ΣbF^X^Xb), i.e., —r = —an — re by Conditions 1 and
3. Thus r(l — c) = an, which implies that c < 1. We observed above that
c > 0. Furthermore, from the above expression for F(Xb,Xb), we have
- 1 = - Σi b([Xb, Xj], [Xb, Xj]) - c Hence c = 1 if and only if [Xa, Xj] = 0
for all a and /', i.e., if and only if [E)1? m] = 0. But this last condition implies
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ήi is a nontrivial ideal in ϊ, which contradicts our assumption that K act
essentially on M. Hence c Φ 1.

From (12a) and Condition 2 we get kn= ΣiS(Xi9 Xd = \n + \ ΣiT(Xi9Xt).
By (18) and negative semi-definitness of T, we have 0 > Σt τ(Xi> Xt) > —n.
Hence \ < k < £.

Without making further assumptions it is difficult to determine the solutions
of (25). Thus we consider the special cases: 1) where M is an irreducible
Riemannian symmetric space, and 2) where H2 = {e}.

Proposition 12. Suppose that M is a compact irreducible Riemannian
symmetric space, that b — — F, and that fj2 Φ 0. Suppose also that F1 =
cF\\ X rJ! for some constant c > 0. Then Conditions 1, 2 and 3 are satisfied
and, by Proposition 11, g is an Einstein metric if and only if t satisfies (25).

i) When ^ is nonabelian, (25) has two distinct positive solutions, neither
of which equals 1.

ii) When ^ is abelian, (25) has just one positive solution, which equals 1
only when n — 2 and r = 1.

Remark. The condition F1 = cF \ Ĵ  x \ is certainly satisfied whenever ^
is simple or abelian.

Proof. The invariant metric on an irreducible Riemannian symmetric space
is unique up to a constant multiple. We may assume it is ds2 = — F | m X m.
The irreducibility implies that ds2 is an Einstein metric. Furthermore, M
symmetric means [m, m] C Eι, which implies that T = 0, and thus S = — \F
by (12a), and k = J.

The irreducibility of M means that the adjoint representation of # on m is
irreducible. Thus the ad (H)-invariant bilinear forms aλ and a2 on m are each
multiples of ds2, and Condition 3 is satisfied since Fλ = cF \ ^ x rjx by
assumption.

Hence Conditions 1, 2 and 3 are satisfied.
Consider D = 4k2 — (2r/n + 1)(1 — c)c, the discriminant of (25). Now

- 1 = W , ^ ) - 2a1(Xi9 Xd + 2a2(Xi9 Xt) by (18)

= — 2a + 2a2(Xi,Xi) by Condition 3.

Since a2 is negative semidefinite, la < 1, and therefore 2n~ιr{\ — c) < 1,
by (26). Hence £> = 1 - (2n~ιr(l - c) + 1 - c)c > 1 - (2 - c)c =
(1 _ c)2 > o. On the other hand, from (26) it is clear that D < 1, and D = 1
if and only if c = 0, i.e., Fλ = 0, i.e., ^ is abelian. Hence, if ^ is not
abelian, then 0 < D < 1, and (25) has two distinct positive solutions.

Furthermore, substituting t2 = 1 into (25) and using (26), it can be seen
that 1 is a solution if and only if 2a — 1 = 0. But 2a — 1 = 0 if and only if
#2 = 0 by (27), and this means [m, m]ήa = (0) by the definition of a2. Finally,
[m, m] 5 ί = (0) if and only if ϊ)2 = (0), since [m, m] = ξj for a symmetric space
of noneuclidean type. This completes the proof of i).
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To prove ii), observe that when c = 0, (25) becomes i\(2r/n + ΐ)t2 — 2)
= 0, which has only one positive solution. This solution equals 1 if and only
if n — 2r = 2, since r = 1 if \ is abelian.

The irreducible Riemannian globally symmetric spaces satisfying the hypo-
theses of Proposition 12, and for which neither fjj nor \ is trivial, are contained
in the list given in Helgason [2, p. 354]. In the following table we list them
together with the possible choices of \ and ί)2. In each case take Ht to be the
analytic subgroup of H corresponding to \, ί = 1, 2. Then K/H2 has at least
one X-invariant Einstein metric.

K
SU(4)
SU(p + q)

SU(2p)
SO(p + q)

SO(2n)

Sp(n)

Sp(p + q)
E6

E,

E7

E7

Es

F4

G,

•SCK4)
S(UpχUq)

S(UpχUp)
SO{p)χSO(q)

U(n)

U(n)

Sp(p)χSp(q)
SU(6)χSU(2)

50(10) xJ?

SO(12)χSU(2)

eeχR

e7χSU(2)

Sp(3)χSU(2)

SU(2)χSU(2)

SO(3)
SU(p)
R
SU(p)xSU(p)
SO(p)
5O(3)
SC/(n)
R
SU(n)
R
Sp(p)
SU(6)
SU(2)
50(10)
R
SO(12)
SU{2)

R
eΊ

SU(2)
Sp(3)
SU(2)
SU(2)

h
SO(3)
RχSU(q)
SU(p)χSU(q)
R
SO(q)
SO(3)χSO(q)
R
SU(n)
R
SU(n)
Sp(q)
SU(2)
SU(6)
R
50(10)
SU(2)
5O(12)
if

SU(2)
e7

SU(2)
Sp(3)
SU{2)

Conditions

P > 2, q > 1
P > 2, q > 1
P>2
P>2,q>2
p = 4,q>2
n>3

n > 1

P>l,q>l

Two cases because
of the nonequiva-
lent imbedding of
each factor SU(2)

Example. In the introduction we cited the example of S4p+3 =
Sp(p + 1)/Sp(p). In this example, K = Sp(p + 1 ) , H = Sp(p) X 5p(l),

and Hx = Sp(l). Thus r = 3, n - 4p, Λ = J, c = 2/(p + 2),
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and the solutions of (25) are t\ = 2 and t\ = 2/(2/? + 3). For the first solu-
tion, the metric g is the standard metric of constant sectional curvature on
5 4 p + 3 . However, for the second solution, g is an Einstein metric of nonconstant
sectional curvature on SAp+3.

Proposition 13. Retain the hypotheses and notation of Proposition 11. //,
furthermore, H2 = {1}, then t2 = 1 is a solution to (25) and the other solution
is nonnegative, equaling 0 // and only if \ is abelian, and equaling 1 // and
only if c = J( l + r/(n + r)).

Proof. In this case, P = K and g is a left-invariant metric on K. If t = 1,
then g = — F, a bi-invariant metric which is always an Einstein metric on K.
Thus t2 = 1 is a solution of (25). It follows that the other solution is
c/[(2r/n + 1)(1 — c)], which is nonnegative, equals 0 if and only if c = 0,
and equals 1 if and only if C — ^(1 + r/(n + r)).

Under the assumptions of Proposition 13 and the assumption that M be
symmetric, the Einstein metrics coming from solutions of (25) are just the
left-invariant Einstein metrics on K found in [3]. But now this construction
works for a wider class of spaces. For example, the nonsymmetric isotropy
irreducible spaces listed in Wolf [9, pp. 107-110] are all naturally reductive
Einstein spaces, and Condition 3 is satisfied at least whenever ϊ) is simple.
Thus they satisfy the hypotheses of Proposition 13 whenever fj is simple.

For example, let H be any compact simple Lie group of dimension r. Fix
an orthonormal basis X19 , Xr on its Lie algebra ϊ) with respect to the
Killing form Fλ of ϊ). Then the adjoint'representation defines a locally faithful
representation ad: H —> SO(r). Taking K to be SO(r), the space K/ad (H) is,
according to Wolf [9], isotropy irreducible and nonsymmetric, and is a
naturally reductive Einstein space. The Killing form F of K is given by
F(A, B) = (r- 2)Tr ΛB. If X e Ij, then F,(X, X) = Tr(ad (X) ad (X)) =
(r — 2)~1F(ad (X), ad (X)). Hence c = l/(r — 2) in this case. Finally we have
n + r = dim K = Jr(r — 1). By Proposition 13, one of the solutions of (25)
will be unequal to 1 if and only if c Φ \(\ + r / (n + r)). But c = ^(1 + r / (n + r))
in this case if and only if r = 3, i.e., if and only if H = K = SO(3). Hence
wo do obtain some left-invariant Einstein metrics on SO(r), (for certain r),
which were not found in [3].
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