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WHEN IS A GEODESIC FLOW OF ANOSOV TYPE? II

PATRICK EBERLEIN

Introduction

A complete Riemannian manifold M has no focal points if no maximal
geodesic σ of M has focal points along any perpendicular geodesic, where a is
regarded as a 1-dimensional submanifold of M. The simply connected Rie-
mannian covering H of M also has no focal points and satisfies the following
property: Let σ be a maximal geodesic of H, and p a point of H not lying
on the point set a. Then there exists a unique perpendicular geodesic from p
to σ. If q is a point on σ closest to p, then the unique geodesic from p to q is
perpendicular to σ. Let P: H —> σ denote the map which sends each point p
in H to the unique point q on σ which is closest to p. The map P is C°°.

A complete Riemannian manifold M is compactly homogeneous if there
exists a compact set B (Z M such that the union of the images £>(£), where ^
is an isometry of M, is the entire manifold M. If M is homogeneous or admits
a compact Riemannian quotient, then M is compactly homogeneous.

In this paper we prove the following result. For a definition of Anosov flow
see [1] or [4].

Theorem. Let M be a complete Riemannian manifold of dimension m > 2,
without focal points, whose simply connected Riemannian covering H is com-
pactly homogeneous. The following conditions are equivalent and imply that
the geodesic flow in the unit tangent bundle of M is of Anosov type. Further-
more, if M has nonpositive sectional curvature, then the following conditions
are equivalent to the condition that the geodesic flow be of Anosov type.

1) There exists a positive constant t0 with the following property: Let σ be
a maximal geodesic in H, let P: H —» σ denote the projection map, and let v
be a nonzero vector tangent to H at a point p such that d{p, σ) > t0. Then
\\dP(v)\\ < \\v\\.

2) There exist positive constants a and c with the following property: Let
σ be a maximal geodesic in H, let P: H —• σ denote the projection map, and
let v be a vector tangent to H at a point p. Then \\dP(v)\\ < ae~ct\\v\\, where
t = d(p,σ).

3) There exists a positive constant ί0 with the following property: Let Y
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be a perpendicular Jacobί vector field on a unit speed geodesic γ of M such
that Y(0) Φ 0 and <Γ(0), Y'(0)> = 0. Then \\Y{t)\\ > || Y(0)| | for t > t0.

4) There exist a point p and positive constants c and ί0 with the following
property: Let Y be a perpendicular Jacobί vector field on a unit speed geodesic
γ such that γ(0) = p, Y(0) = 0 and Y'(0) φ 0. Then {log|| Y||2}'(ί) > c for
t > t0.

5) There exist positive constants c and ί0 with the following property: Let
Y be a perpendicular Jacobi vector field on a unit speed geodesic γ of M such
that Y(0) = 0 and Y'(0) Φ 0. Then {log|| Y||2}'(/) > c for t > t0.

6) There exist positive constants c and t0 with the following property: Let
Z be a nontrivial perpendicular Jacobi vector field on a unit speed geodesic γ
of M such that <Z(0),Z/(0)> > 0. Then {log||Z||2}'(/) > c for t > t0.

The constants c and t0 are not necessarily the same in each of the six con-
ditions.

A few remarks on the above conditions will be appropriate. Conditions 4),
5) and 6) represent a sharpened form of Corollary 3.3 of [4]. The conditions
1), 2) and 3) represent a geometric expression, not considered in [4], of the
Anosov conditions for a geodesic flow. The idea of dropping perpendiculars
from a point to a (geodesic) line or to a more general set is discussed in [3, pp.
6-8]. It is proved there that if M is a complete Riemannian manifold with non-
positive sectional curvature, and A Cl M is a closed subset with the property
{total convexity) that it contains all geodesic segments joining each pair of its
points, then for any point p not in A there exists a unique perpendicular
geodesic from p to A. One may therefore define a continuous projection map
P: M —> A exactly as above. Condition 1) of the theorem may now be com-
pared with the following result, proved below in § 1, which is an infinitesimal
version of Lemma 3.2 of [3]: Let H be a complete simply connected Rie-
mannian manifold with nonpositive sectional curvature and dimension m > 2.
Let σ be a maximal geodesic of H, and let P: H —> σ denote the projection
map. Then \\dP(v)\\ < \\v\\ for any vector v tangent to H.

It will follow from the discussion in § 1 that M has no focal points if and
only if it satisfies the following condition, which one may compare with con-
dition 5): Let Y be a not necessarily perpendicular Jacobi vector field on a
unit speed geodesic γ of M such that Y(0) = 0 and Y7(0) Φ 0. Then
{log|| Y||2}'(0) > 0 for / > 0. E. Hopf in [6] proved that the geodesic flow on
the unit tangent bundle of a compact surface satisfying condition 5) is ergodic.
Anosov [1] has remarked that the condition 5) for compact surfaces implies
that the geodesic flow in the unit tangent bundle is of Anosov type and ergodic
as a consequence.

For the definitions of geodesic flow, Jacobi vector field, focal points and
other basic concepts not defined here, see, for example, § 1 of [4].
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1. Basic facts

Before proceeding to the proof of the theorem we establish notation and list
some essential facts. Let M always denote a complete Riemannian manifold of
arbitrary dimension m > 2. For any point p in M, let Mp denote the tangent
space to M at p. For any vector v tangent to M, let π(v) denote the point of
tangency of v. Let <(,> denote the inner product, and d the Riemannian
metric in M.

Let γn be a sequence of (constant speed) geodesies in M, and Yn a Jacobi
vector field on γn for each integer n. We say that the sequence Yn converges
to a Jacobi vector field Y on a geodesic γ if fjfi) -> /(0), Yn(0) -> Y(0) and
Yί,(0) —• Y'(0), where Y^ and Y' denote the covariant derivative of Yn and Y
along fw and γ respectively. Let un be a sequence of numbers converging to
a finite number u, and Yw a sequence of Jacobi vector fields converging to a
Jacobi vector field Y. Then Y'n(un) -> Y'(M) and Yn(wn) -* Y(κ) this assertion
is a consequence, for example, of Proposition 1.7, 2) of [4]. The following
fact, which is Proposition 1.11 of [4], will be used often:

Proposition 1. Let M be compactly homogeneous. For each positive integer
n, let Yn be a Jacobi vector field on a geodesic γn with initial velocity vn. If
each of the sequences \\vn\\, || Yra(0)||, || Yw(0)|| ^ uniformly bounded above,
then we can find a sequence φn of ίsometries of M and a Jacobi vector field Z
on a geodesic γ such that Zn — dφnYn —• Z by passing to a subsequence.

A manifold M has no conjugate points if no nontrivial Jacobi vector field Y
along a geodesic γ of M vanishes at two distinct points. If M has no conjugate
points, then the simply connected Riemannian covering H has the property
that each exponential map exp p: Hp —> H is a difϊeomorphism therefore there
exists a unique geodesic joining any two distinct points of H. It is shown in
§ 1 of [4] that M has no focal points if and only if it satisfies the following
property: Let Y be a not necessarily perpendicular Jacobi vector field on a
unit speed geodesic γ of M such that Y(0) = 0 and Y'(0) Φ 0. Then {|| Y\\2}'(i)
> 0 for t > 0. Clearly, the condition that γ have unit speed can be dropped.
This characterization shows that manifolds without focal points have no con-
jugate points. If M has no focal (conjugate) points, then any Riemannian
covering of M has no focal (conjugate) points. A complete Riemannian mani-
fold with nonpositive sectional curvature has no focal points.

If γ is a unit speed geodesic in a manifold M without conjugate points, then
we may define an (m — 1)-dimensional vector space Js(γ) of stable perpendi-
cular Jacobi vector fields along γ. Let v be a nonzero vector in M r ( 0 ) which is
orthogonal to f(0). For each positive number t, let Yt be the unique Jacobi
vector field on γ such that Yt(0) = v and Yt(t) — 0. Then it is shown in [4]
or [5] that there is a perpendicular Jacobi vector field Y on γ such that Yt —>
Y as t —> + oo, in the sense defined above. The set of perpendicular Jacobi
vector fields Y constructed in this manner forms an (m — l)-dimensional vector
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space Js(γ) for every vector v orthogonal to f(0) there is a unique Y e Js(γ)
such that Y(0) = v. If Y is a perpendicular Jacobi vector field along γ such
that || Y(i)\\ is bounded above for ί > 0, then Y e Js(γ). The converse assertion
is true if M has no focal points. A complete discussion, with proofs, of the
assertions in this paragraph may be found in § 2 of [4].

We next elaborate on some of the assertions concerning manifolds without
focal points, which were made in the introduction. The following result is
known, but does not seem to be in the literature.

Proposition 2 Let H be a complete simply connected Riemannian manifold
of arbitrary dimension m > 2 without conjugate points. Then H has no focal
points if and only if for every maximal geodesic σ of H and every point p of
H not lying on σ, there exists a unique geodesic from p to σ, which is perpendi-
cular to σ.

Proof. Suppose that the unique perpendicular property holds in H. Let a
maximal geodesic σ and a point p not on σ be given. If q is a point on σ nearest
to p, then a first variation argument shows that the unique geodesic from p to
q is perpendicular to σ. Now let γ be any unit speed geodesic such that γ(0)
lies on σ and γ is perpendicular to σ. If γ{a) is a focal point of σ along γ for
some number a > 0, then d(γt, σ) < / for any number / > a. Therefore for
any / > a there exist two perpendiculars from γ(t) to σ. This contradiction
shows that σ has no focal points along γ, and since σ and γ are arbitrary, H
has no focal points. To prove that H satisfies the unique perpendicular property
if it has no focal points, we shall need the following result.

Lemma 1. Let H be a complete simply connected Riemannian manifold
without focal points. Then for any point p in H the function q —> d\p, q) is a
strictly convex C°° function in H, where d denotes the Riemannian metric in H.

A real valued C°° function / on a manifold M is strictly convex if for every
maximal geodesic γ of M, (/ o γ)"(i) > 0 for every t € R.

Proof of Lemma 1. For any point p in H, f(q) = llexp-^g) ||2 is a C°° func-
tion since expp: Hp —• H is a diffeomorphism. To verify the strict convexity of
/ it suffices to consider unit speed geodesies in the definition above. Let a point
p in H and a maximal unit speed geodesic γ of H be given. We need to show
that g"(t) > 0 for every / e R, where g(i) = (foγ)(t) = d\p, γt). If p lies on
γ, then g"(i) Ξ 2 so we may assume that p does not lie on γ. Define a curve
φ: R —> Hp by the formula <p(t) = (expp)~γ(0, and define a C°° variation r:
R X JR —• H by setting r(u,v) = expp(uφ(v)). Define the vector functions
ru(u, v) = dr(d/du)(u, v) and rv(u, v) = dr(d/dv)(u, v). We observe that g(v) =

(ru,ru}(u,v)du. A computation shows that g'(y) — 2(ru, rv}(l, v), and
Jo

therefore g" = 2<Vrru, rv}(l, v) = 2<Vrjυ, rv}(l, v) since the curve v -•
r(l,v) = γ(v) is a geodesic. If we define Yv(u) = rυ(u,v) for every v, then
Yv is a Jacobi vector field on the nonconstant geodesic u —> r(u, v) such that
Yβ(0) - 0 and Y;(0) Φ 0. Then g"(v) = 2<Y£(1), Y,(l)> > 0 by the equi-
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valent formulation of the no focal point property which appears above.
We complete the proof of Proposition 2. Let H have no focal points, and let

there be given a maximal geodesic σ of H and a point p of H not lying on σ.
Give σ a unit speed parametrization so that σ(0) is a point on σ closest to p, and
let g(s) = d\p, σs). The formula above for g'{s) shows that the unique geodesic
from p to σ{s) is perpendicular to σ if and only if g\s) = 0. By assumption,
g'(0) = 0, and by Lemma 1, g"(s) > 0 for every s e R. Therefore g'(s) Φ 0
for s Φ 0, and it follows that there is exactly one perpendicular from p to σ.

For the remainder of this section let H denote a complete simply connected
Riemannian manifold of dimension m > 2 without focal points. Proposition 2
shows that for any maximal geodesic σ and any point p in H there is a unique
point q on a which is closest to p. We define the projection map P: H—>σby
setting P(p) = q. Let σL denote the normal bundle of σ, and exp-1-: σL —• H
the restriction of the exponential map to σ1-. Clearly exp-1- is surjective, and
Proposition 2 shows that exp 1 is injective. The no focal point hypothesis im-
plies that (d exp-1-)̂  is nonsingular for every vector v e σ1-, and therefore exp-1:
σL —• H is a diffeomorphism. If k: σ1- —> σ denotes the natural projection map,
then P = ^©(exp-1)"1; P is therefore a C°° mapping. See also [3, pp. 6-8].

The following two lemmas describe the differential maps dP in terms of
Jacobi vector fields.

Lemma 2. Let σ be a maximal geodesic of H, and let P: H —> σ denote
the projection map. Let v be a vector tangent to H at a point p not on σ, and
let a = d(p, P(p)). Let γ be the maximal unit speed geodesic such that γ(0) =
P(p) and γ(a) = p, and let Y be the unique Jacobi vector field on γ such that
Y(0) = dP(v) and Y(a) = v. Then <Y(0), Y'(0)> = 0.

Lemma 3. Let Y be a perpendicular Jacobi vector field on a unit speed
geodesic γ of H such that Y(0) Φ 0 and <Y(0), Y'(0)> = 0. Let a be the
maximal geodesic tangent to Y(0), and let P.H^σ denote the projection
map. Then for any number a φ 0, dP Y(a) = Y(0).

Proof of Lemma 2. Let σ, P, v, a, γ and Y be as defined in the statement
of Lemma 2. Let σ be given a unit speed parametrization such that σ (O) =
P(p). Let k: σ^-^σ be the natural projection map. We may assume that
v Φ 0, for otherwise Y = 0 and the assertion is trivially true. Let a be the
geodesic such that α'(0) = v, and let Z(t) = (exp-1-)-1^*). Let β(t) = (koZ)(t)
= (Poa)(t) = σ(c(i)), where c: R -> R is a C°° function such that c(0) = 0.
The equations β\t) = &{t)(/{ct) and 0"(ί) = c"(*V(c/) and the fact that Z is
a curve in σ1- imply that <Z(/), /3'(0> = <Z(ί), /3"(/)> = 0 for all /. Differentiat-
ing the expression <Z(/), ^ ( 0 ) ^ 0 we find that < Z / ( / ) , J 8 / ( 0 > Ξ O , where Z7

denotes the covariant derivative of Z along /3. Define a variation r: R x R-^ H
by the formula r(u, t) = Qxp1((u/a)Z(t)). It follows that γ(u) = r(w, 0) and
Y(M) = dr(d/di)(u,0). One may then show that <Y(0), Y^O)) = (1/aχZ'OO),

= 0.
o/ Lemma 3. Let Y, f, σ and P be defined as in the statement of
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Lemma 3. Let k: σ1 —> a be the projection map. The conditions on Y imply
that, in the terminology of [2], Y is an iV-Jacobi field on γ, where N = σ.
Therefore we may find a C°° curve Z in the unit normal bundle of σ such that
Z(0) = /(0) and Y(u) = dr(d/dv)(u,0), where r: 7? X (-ε,ε) -> # is the
variation given by the formula r(u,v) = expλ(uZ(v)). Thus for any number
a ψ 0, Y(fl) = dexpx((d/Λ;)(αZ)|υ_0). Since P = jfco (exp^-)"1, it follows that
JPΓ(α) = dk[(d/dv)(aZ)\v=0] = dk[dZ/dv\v=Q] = Y(0).

If H has nonpositive sectional curvature, we may say even more about the
differential maps dP.

Proposition 3. Let H be a complete simply connected Riemannian manifold
with nonpositive sectional curvature. Let σ be a maximal geodesic of H, and
P: H —> σ the projection map. Then for any vector v tangent to H, \\dP(v)\\

<IMI
Proof. We first consider the case where π(y) is a point of σ. Then v =

^i + v2, where v1 is tangent to σ and v2 is orthogonal to σ. Since P fixes every
point of σ, dP{v) = dP(vλ) + dP(v2) = v19 and \\dP(v)\\2 = \\v.\\2 < \\Vl\\2 +

\\v2\\2 = \\v\\2. If π(v) does not lie on σ, then let a = d(πv,σ). Let γ be the

unique unit speed geodesic such that f(0) = P(πv) and γ(a) = π(v), and let Y
be the unique Jacobi vector field on γ such that Y(0) = dP(v) and Y(a) = ι;.
By Lemma 2, <F(0), y'(0)> - 0. If /(/) = \\Y(t)\\2, then H O - 2{|| Y'(ί)||2 -

KOIiy Λ f\\2(t)} > 0 for every t. Since f(0) = 0, it follows that f(t)
0 for / > 0, and therefore | |^| |2 = f(a) > /(0) = \\dP(v)\\2.

2. The main theorem

We shall prove the theorem stated in the introduction as a series of Pro-
positions 4 through 9. The conditions referred to in the statements of these
propositions are the conditions of the theorem. Since H is locally isometric to
M, it suffices to prove that the conditions 1) through 6) are equivalent in H to
conclude that they are equivalent in M.

Proposition 4. Let M be a manifold without conjugate points, whose simply
connected Riemannian covering H is compactly homogeneous. Then conditions
5) and 6) are equivalent in H, and imply that the geodesic flow in the unit
tangent bundle of M is of Λnosov type.

Proof. Clearly condition 6) implies condition 5). Assume now that con-
dition 5) is satisfied. We first establish the following fact: Let γ be a unit speed
geodesic in M, and Y be a perpendicular Jacobi vector field on γ such that
|| Y(0)|| = 1 and Y e Js(γ) (defined in § 1). Then <Y(0), F'CO)) < - £ c < 0,
where c is the positive constant appearing in condition 5). To prove this as-
sertion, let there be given a unit speed geodesic γ in H and a perpendicular
Jacobi vector field Y e Js(γ) such that ||Y(0)|| = 1. For any number / > t0,
the other constant of condition 5), let Yt be the unique Jacobi vector field on
γ such that ^ ( 0 ) = Y(0) and Yt(t) = 0. Let σt(u) = γ(t - u), and Zt(u) =
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γt(t - u). Then <yί(0), y;(o» = - <zi(/),zί(0> = - J{iog||z,||y(0 < -
\c by condition 5). By the definition of Js(γ) in § 1, Yt —> y as ί —> + oo. It
follows by continuity that <Γ(0), Y'(0)> < — \c.

Next we show that there exists a positive number tx with the following pro-
perty : Let Y be a nontrivial perpendicular Jacobi vector field on a unit speed
geodesic γotH such that <Γ(0), Y'(0)> > 0. Then (Y(t), Y'(i)> > 0 for t > ^
If this assertion were false, then for each positive integer n we could find a
unit speed geodesic γn, a perpendicular Jacobi vector field Yn on fTO, and a
positive number ίn such that <yn(0), y'n(0)> > 0, <y n ( ί n ), y'n(ίn)> < 0, and
ίn —> + oo. For every « choose a number ^ such that 0 < sn < in and || yw(*) ||
< || Y ^ J H for every number ί such that 0 < ί < tn. By passing to a sub-
sequence we see that either sn —» oo or ίn — sn —> oo. We consider only the
first case since we obtain a contradiction to the second case in a similar way.
For each n let σ ^ ) = γn(sn — t), and Zn(t) = Yn(sn — /). Then Zn is a Jacobi
vector field on the geodesic σn such that <Zn(0), Z^(0)> = 0 and | |Z n (ί) | | <
| |Zn(0)| | for 0 < / < sn. Multiplying Zn by a constant if necessary, we may
assume that | |Zw(0)| |2 + ||Z'n(0)||2 = 1. Since H is compactly homogenous,
Proposition 1 asserts that there exist a sequence φn of isometries of H and a
Jacobi vector field Z on a unit speed geodesic γ of H such that by passing to
a subsequence, ZJ = dψnZn —» Z. For every integer n and every number /,
we have | |Z*(/)| | = | |Z n(ί) | | , ||Zf(t)\\ = \\Z'n(t)\\ and <Z*(0),Zf(0)> = 0.
Therefore, by continuity, | |Z(0)||2 + HZ^OH2 = 1, <Z(0),Z/(0)> = 0 and
| |Z(0 | | < | |Z(0)|| for t > 0. Since Z is nontrivial it follows that Z(0) Φ 0, and
moreover Z e Js(γ) by the discussion in § 1. This contradicts the first paragraph
of this proof since <Z(0), Z7(0)> = 0.

The previous paragraph also shows that if Y is a Jacobi vector field of the
type considered in condition 6), then Y(ί) Φ 0 for / > ίv It follows that
{log|| YHψα) = 2<y(0, y/(/)>/||y(/)||2 > O for / > tγ. Suppose now that con-
dition 6) does not hold. Then for each positive integer n we can find a unit
speed geodesic γn, a nontrivial perpendicular Jacobi vector field Yn on γn, and
a positive number tn such that <yn(0), r n (0)> > 0, 0 < {log|| Yn \\2}'(tn) < 1 /n,
and ίn -+ + oo. For each «, choose a number sn such that 0 < sn < tn and
IIYJS) II < II ̂ πfe) II for every number * such that 0 < ί < ίn. If sn < tn for all
n, by passing to a subsequence if necessary, then (Yn(sn), Y'n(sn)y = 0 for
every π. Either sn —> + oo or ίw — ^ -+ + oo by passing to a further
subsequence, and we obtain a contradiction exactly as in the previous para-
graph. The remaining case to consider occurs when sn = ίn for sufficiently
large n. In this case let σn(ί) = rw(ίn — /), and Zn(t) = y n(/ n — /) for each
integer π. Then Zn is a nontrivial perpendicular Jacobi vector field on the
geodesic σn such that | |Zn(/)| | < | |Zn(0)| | for 0 < t < ίn. Multiply Zn by a
constant so that | |Zw(0)| |2 + ||Z^(0)||2 = 1; the scalar multiplication changes
neither the inequality above nor the expression {logHZ^HψίO. Note that
2||Zw(0)| |-2<^(0),Zς(0)> = {log||Zn||ψ(0) - - { l o g | | Y J ψ ω . Therefore - ^
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< <Zn(O),Z'n(O)>/||Zn(O)||2 < 0 for every integer n. By Proposition 1 we may
choose a sequence φn of isometries of H and a perpendicular Jacobi vector
field Z on a unit speed geodesic γ such that Z* = dψnZn —> Z, by passing to a
subsequence if necessary. By continuity, | |Z(0)| |2 + | |Z'(0)| |2 = 1 a n d IIZWII <
II 2(0) || for t > 0. Since Z is nontrivial, Z(0) Φ 0, and furthermore Z <= Js(γ)
by the discussion in § 1. However, <Z(0),Z/(0)>/||Z(0)||2 = 0 by continuity,
and this contradicts the assertion in the first paragraph of the proof. Thus
condition 5) implies condition 6).

We show that the geodesic flow in the unit tangent bundle of M is of Anosov
type under condition 5). Let Y b e a perpendicular Jacobi vector field on a unit
speed geodesic γ such that Y(0) = 0 and || lr̂ κ(0) || = 1. An argument by con-
tradiction similar to those used above shows that we can find a positive con-
stant B, not depending on Y, such that || Y(/o)|| > B. Condition 5) then implies
that for * > tO9\\Y(t)\\ > (Be-ct°/2)ect/2. Furthermore, || Y(ί)|| > || Y(j)|| for any
numbers ί > s > t0. These relations also hold for the Jacobi vector fields in
M with the same initial conditions. By Theorem 3.2, 5) of [4], the geodesic
flow in the unit tangent bundle of M is of Anosov type.

For the rest of this paper, unless otherwise specified, let M denote a com-
plete Riemannian manifold without focal points, whose simply connected
Riemannian covering H is compactly homogeneous.

Proposition 5 Condition 4) implies condition 6) in H.
Proof. We shall need a preliminary trigonometric result. If H has non-

positive sectional curvature, then the result is an immediate consequence of
the law of cosines. The angle ^(v,w) between two nonzero vectors tangent to a
Riemannian manifold M at the same point is defined to be the unique number
θ such that cos0 = <v, w>/(||v|| ||w||) and 0 < Θ < π.

Lemma 4. Let H be a complete simply connected Riemannian manifold
without focal points. Let there be given a compact subset C CZ H and positive
numbers ε and A. There exists a positive number tQ = ίo(C, ε, A) with the fol-
lowing property: Let γ and σ be two unit speed geodesies such that γ(Q>) = σ(0)
e C and d(γt,σs) < A for some numbers t > t0 and s > t0. Then <£ (f(0),

σ'(0)) < e.
Proof. We first establish the following fact: Let there be given a compact

set C cz H and a positive number R. Then there exists a positive number
ί0 = to(C, R) with the following property: Let γ be a unit speed geodesic such
that f(0) e C, and Y a perpendicular Jacobi vector field on γ such that
Y(0) = 0 and || Y'(0)|| = 1. Then || Y(/)|| > R for t > t0. We recall that be-
cause H has no focal points, the function / —> || Y(ί)\\ is monotone increasing
for t > 0 and any Jacobi vector field Y such that Y(0) = 0 and Y'(0) Φ 0.
Therefore it suffices to find a positive number t0 such that || Y(/o)|| > R for all
perpendicular Jacobi vector fields Y on unit speed geodesies γ such that ^(0) €
C, Y(0) = 0, and || Y\O) || = 1. If this were not the case, then for some compact
set C and some positive number R we could find, for every positive integer n,
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a unit speed geodesic γn, a perpendicular Jacobi vector field Yn on γn and a
positive number ίn such that γn(0) e C, Yn(0) = 0, || Y'n(0)|| = 1, || Yn(*»)|| <
R, and ίn —> + oo. Passing to a subsequence, we can find a unit speed geodesic
γ and a perpendicular Jacobi vector field Y on γ such that τ^(0) —> p'(0), Y^(0)
-> Y'(0) and Yn(0) — Y(0). Then r(0) e C, Y(0) - 0 and || Y'(0)|| = 1 by con-
tinuity. By Proposition 2.9 of [4], || Y(t)\\ —• oo as / —> oo, and therefore we
can find a number T > 0 such that || Y(Γ)|| > 2R. Since Yn(T) -> Y(Γ), it
follows that \\Yn(T)\\ > # for sufficiently large n. Then ίn > T for large n,
and we have R > || Yn(ίn)| | > \\Yn(T)\\ > R, which is a contradiction.

Now, let a compact subset C C f l and positive numbers ε and A be given.
Choose a positive number R so that A/R < ε, and let /0 = v4 + tQ(C,R),
where to(C, R) is the constant appearing in the assertion of the previous para-
graph. We claim that t0 has the property stated in the lemma. Let γ and σ be
unit speed geodesies in H such that f(0) = σ(0) = p eC, and let d(γt, σs) < A
for some numbers / > t0 and s > t0. Let a: [0,1] —> 7ϊ be the unique geodesic
segment such that α:(0) = γ(ί) and a(l) = σ(s). Then d(p,av) > to(C,R) for
every v e [0,1]. Let 0: [0, 1] -> //p be defined by β(v) = (expp)' 1 ^^). Define
a C°° variation r: /? x [0,1] —> H by the formula r(u,v) = expp(u[\\β(v)\\
β(v)]). Let ru(u,v) and rυ(u,v) denote the vector functions dr(d/du)(u,v)
and dr(djdv)(u,v). Since α(v) = r(||j8(ι;)||,i;), we see that α/O) =
II/3|Γ(^K(||^)| |,7;) + rυ(||j9(i;)||,i;). By Gauss's Lemma, ru(ju,v) and rv(u,v)
are always orthogonal since the curves w —• r(w, v) are unit speed geodesies
emanating from the point p. Therefore Hα'Oϋ)!! > 11 (̂11 (̂̂ )11,̂ )11. For each v
the vector field Yυ(u) = rv(u, v) is a perpendicular Jacobi vector field on the
geodesic u-*r(u, v) such that Yv(0) = 0. Using the fact proved in the previous
paragraph we see that \\a'(v)\\ > \\rυ(\\β(v)\\,v)\\ = ||Yfl(||i8(i;)||)|| > Λ||Yί(0)| |,
since ||j8(v)|| = d(p,av) > ίQ(R,C). Y'v(0) denotes the covariant derivative at
time zero of Yv along the geodesic u —> r(u, v).

Let E19 - , En be an orthogonal frame field in a neighborhood of p, the
initial point of γ and σ. If φ(v) = β(v)/\\β(v)\\ = ru(0, v), then we may write

n

φ(v) = Σ9ί(v)£<(p). We may regard ψ either as a vector field on the point
i = l

curve {p} = r(0, #) or as a curve with coordinates {ψiiv)} in the unit sphere

of Hp. In these two senses, the covariant derivative of φ along {p} and the

velocity vector field φ'(y) have the same coordinates {ψ[{v)}. Since the covariant

derivative of φ along {p} is the vector field v —> Y ,̂(0), we find that

|| Y ; ( 0 ) | | for all v e [ 0 , 1 ] . K ί = < ( r ' ( 0 ) , < / ( 0 ) ) , t h e n « <
pi Jo

II Y^(0)||di; since θ is the spherical distance between ^(0) and σ^O), and φ

joins /(0) to (/(0). Finally, A > d(γt,σs) = Γ | | t f » | | Λ ; > i? Γ| |Y;(0)| |dv

Jo Jo
> Rθ, oτθ < A/R < e.

Now let condition 4) hold in H. It will follow (by the identical argument used
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in Proposition 4) that condition 6) holds in H, once we have established the
following assertion: Let Y be a perpendicular Jacobi vector field on a unit
speed geodesic γ in H such that Y e Js(γ) and || Y(0) || = 1. Then < Y(0), Y'(0)>
< — j c, where c is the positive constant appearing in condition 4).

Let there be given a point pinH and positive constants c and ί0 which satisfy
the hypotheses of condition 4). If φ is an isometry of H, then φ(p) and the
constants c and ί0 also satisfy the hypotheses of condition 4). Let there be given
a unit speed geodesic γ in H and a perpendicular Jacobi vector field Y on γ
such that Y € /s(j) and || Y(0)|| = 1. Since H is compactly homogeneous, we
can find a positive number A and a sequence $ow of isometries of H such that
d(φn(p), γ(n)) < A for every positive integer n. Let pn be the unique unit speed
geodesic joining γ(0) to φnp such that ^(0) = γ(0). Then Lemma 4 implies
that γ'niΰ) —> /(0). Let Xn be the unique Jacobi vector field on γn such that
Xn(0) = Y(0) and Z n ( ί n ) = 0, where ίn = d(γ(0), φnp). We may write Xn =
YTO + Z n , where Yw is a perpendicular Jacobi vector field on γn, and Zn(t) =
(αwj + b^y'Jj) for all / and suitable constants αw and bn.

We show that Yn -> Y. First, we note that || Y(0) - Yn(0)|| =• \\Xn(O) -
Yn(0)\\ = | |Z n(0) | | = |<* n (0), ̂ (0)> | - |<Y(0), /(0)>| = 0. Hence Yn(0) ->
Y(0). Next, since H is compactly homogeneous, there exists a positive constant
k such that the sectional curvature satisfies the condition K > — k2. Since
y»(*») = 0, Proposition 2.7 of [4] implies that || Y'n(0)\\ < k coth (kίn)\\ Yn(0)\\
< k coth (ktn) < 2k for sufficiently large n. We may choose a vector w e Hn0)

and a subsequence π r of integers such that Y'nr{0) —> w. Let Y* be the Jacobi
vector field on γ such that Y*(0) = Y(0) and Y^^O) = w. By the no focal
point property, || YWr(/)|| < 11^(0) | | for 0 < ί < tn. We have seen that /nr(0)
- fΦ), Ynr(0) -> Y(0) - Y*(0), and Y;r(0) - Y*'(0). Hence Y,r -* Y*, and
it follows that Y* is a perpendicular Jacobi vector field on γ such that || Y*(/)||
< || Y*(0)|| for all * > 0. Therefore Y* € J8(γ), and since a vector field in Js(γ)
is uniquely determined by its value at zero, we see that Y* = Y. Since Y'nr(0)
was an arbitrary convergent subsequence of Y^(0), it follows that Y'n{§) —>
r ( 0 ) . Therefore Yw -> Y.

For each integer n let σn(ί) = γn(tn - t) and Wn(t) = Yn(ίn - ή . Then PPn

is a perpendicular Jacobi vector field on the geodesic σn, and σn(0) = φnp. By
condition 4), <Yn(0), r n (0)>/| | Y%(0)||2 - - < ^ n ( ί n ) , ^ ( O > / I I ^ » ( O I I 2 =
— i t l o g l l ^ H ψ ί / J < — \c for sufficiently large n. By continuity, <Y(0),
r(0)> = <Y(0), r /(0)>/| | Y(0) II2 < - i c since Yn — Y. We have proved the
assertion in the paragraph immediately following the proof of Lemma 4, and
by the remarks in that paragraph this completes the proof of Proposition 5.

Proposition 6. Condition 1) implies condition 3) in H.
Proof. Let condition 1) hold in H, and let Y be a perpendicular Jacobi vector

field on a unit speed geodesic γ of H such that Y(0) Φ 0 and <Y(0), Y'(0)>
= 0. Let a be the maximal geodesic of H tangent to Y(0), and let P: H —> σ
denote the projection map. Since f and <τ are orthogonal, d(γt, σ) = \t\ίor every
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number t. If tQ is the positive constant of condition 1), then we use Lemma 3
to conclude that || Y(0)|| = \\dPY(t)\\ < \\Y(t)\\ for t > t0.

Proposition 7. Condition 3) implies condition 5) in H.
Proof. Let condition 3) hold in H. If Y is a perpendicular Jacobi vector

field on a unit speed geodesic γ such that Y(0) = 0 and Y'(0) ψ 0, then
{log|| Y\\2Y(t) > 0 for each / > 0. If condition 5) does not hold in H, then for
each positive integer n we can find a unit speed geodesic γn, a perpendicular
Jacobi vector field Yn on γn, and a positive number ίn such that Yn(Q) — 0,
Y'n(0) ^ 0, 0 < {log|| YHψω < l/#i, and /n - + oo. For each /i let σn(t) =
ΐnifn — 09

 a n d Zn(t) = Yn(/n — ί). Then Z n is a perpendicular Jacobi vector
field on the geodesic σn, and since the function t —> || Yn(ί)|| is monotone in-
creasing for t > 0 and each integer n, it follows that \\Zn(f) < ||Zn(0)|| for
0 < t < tn. We now proceed exactly as in the latter part of the proof of Pro-
position 4 to show that there exists a perpendicular Jacobi vector field Z on a
unit speed geodesic γ in H such that Z(0) φ 0, <Z(0),Z/(0)> = 0 and ||Z(*)||
< ||Z(0)|| for / > 0. This is a contradiction to condition 3).

Proposition 8. Condition 6) implies condition 2) in H.
Proof. There exists a positive number ε with this property: Let Y be a

perpendicular Jacobi vector field on a unit speed geodesic γ such that || Y(0)||
= 1 and <Y(0), Y'(0)> = 0. Then || Y(t)\\ > \ for 0 < t < ε. First, a familiar
argument by contradiction and an application of Proposition 1 show that there
exists a positive number A, not depending on Y, such that || Y(t)\\ < A for
0 < t < t0, where ί0 is the positive constant of condition 6). Next, since H is
compactly homogeneous, we can find a positive number R such that the sec-
tional curvature of H satisfies the inequality K < R. We obtain the desired
constant e > 0 by choosing ε to be so small that ε < tQ and 1 — 2RA2ε2 > \.
Let/(/) = ||Γ(/)||2. Then/"(/) = 2{|| Y'(/)||2 - K(Y,f)(t)\\ Y(/)||2} > -2Rf(t) >

-2RA2 for 0 < / < ε. Since f(0) = 0, it follows that f(t) = f' f'(u)du >
Jo

-2Λ^2ε for 0 < t < ε. Therefore /(/) = 1 + Γ f(w)Jw > 1 - 27?^V > —
Jo 4

for 0 < / < ε.
There exists a positive constant B with the following property: Let Y be a

perpendicular Jacobi vector field on a unit speed geodesic γ in H such that
Y(0) Φ 0 and <Y(0), Y'(0)> = 0, and let tQ be the positive constant of condition
6). Then for any number s such that 0 < s < tQ, \\Y(s)\\ > B|| Y(0)||. If this
assertion were false, then for each positive integer n we could find a unit speed
geodesic γn, a perpendicular Jacobi vector field Yn on γn9 and a number tn

such that || Yn(0)|| = 1, <Yn(0), Y'n(0)> = 0, || Yn(ίn)|| < 1/n, and 0 < tn < t0.
If ε is the positive constant determined in the previous paragraph, then tn > ε
for n > 2. Passing to a subsequence we let /„ converge to a number /*, where
0 < ε < /* < t0. If the sequence || Y^(0)|| contains a bounded subsequence,
then an application of Proposition 1 shows that there exists a perpendicular
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Jacobi vector field Y on a unit speed geodesic γ such that | |Y(0)|| = 1,
<Y(0), Y'(0)> = 0 and Y(ί*) = 0. If σ is the maximal geodesic of H tangent
to Y(0), then y(ί*) is a focal point of <j along γ since /* > 0. This contradicts
the assumption that H has no focal points. Suppose now that || Y^(0)|| —> oo,
and define Jacobi vector fields Zn(ί) = Yn(f)/||Yς(0)||. Then | |Z;(0)| | - 1,
<Zn(0),Z'n(0)> = 0, | |Z n(0) | | -» O and | |Zn(ίJH -> 0. Another application of
Proposition 1 shows that there exists a Jacobi vector field Z on a unit speed
geodesic γ such that | |Z'(0)| | = 1, Z(0) = 0 and Z(ί*) = 0. Since ** > 0 and
Z is nontrivial, this contradicts the fact that //has no conjugate points. This
proves the existence of the constant B.

Let Y be a perpendicular Jacobi vector field on a unit speed geodesic γ in
# such that Y(0) =£ 0 and <Y(0), Y'(0)> = 0. By condition 6) and the result
of the previous paragraph, ||Y(ί)|| > έrcίo/2έ?cί/2 | | Y(/o)|| > (Be-cto/2)ect/2\\Y(0)||
for every t > t0. Let σ be a maximal geodesic of //, and let P : H —> σ denote
the projection map. Let v be a vector tangent to H. If π(v) lies on σ, then
||dP0y)|| < ||t; || by the argument of Proposition 3. If π(v) does not lie on σ,
then let a = d(πv,σ), and let p be the unit speed geodesic such that γ(0) =
P(πv) and γ(ά) = π(v). Write v = vλ + v2, where v1 is a vector at π(v) which
is orthogonal to /(a), and v2 is a vector at π(v) which is a scalar multiple of
/(a). If Y is the perpendicular Jacobi vector field on γ such that Y(0) = dP(v)
= dPί^!) and Y(α) = v19 then <Y;(0), Y(0)> = 0 by Lemma 2. If a < t0, then
\\dP(v)\\ = || Y(0)|| < (1/B)|| Y(£i)|| = ( 1 / £ ) | | ^ | | < d/B) | |v | | . If a > ί09 then
lldPWII < [(ί/B)ecto/2]e-ea/2\\v1\\ < [(l/B)ecto/2]e-ca/2\\v\\. It follows that con-
dition 2) is satisfied.

In the Propositions 4 through 8 we proved the assertion 5) implies 6), 6)
implies 5), 4) implies 6), 1) implies 3), 3) implies 5), and 6) implies 2). That
the assertion 2) implies 1) and that 6) implies 4) are immediate. Therefore the
six conditions are equivalent in manifolds without focal points. The assertion
that these conditions imply that the geodesic flow in the unit tangent bundle
of M is of Anosov type was proved in Proposition 4.

Proposition 9. Let M have nonpositive sectional curvature, the simply con-
nected Riemannian covering H of M be compactly homogeneous, and the
geodesic flow in the unit tangent bundle of M be of Anosov type. Then the
conditions 1) through 6) are satisfied.

Proof. We shall prove that conditon 3) is satisfied in H. If condition 3) were
not satisfied, then for every positive integer n we could find a unit speed
geodesic γn in H, a perpendicular Jacobi vector field Yn on γn9 and a positive
number tn such that Yn(0) Φ 0, <Yn(0), Y'J0)> - 0, || Yn(/n)|| < || Yn(0)|| and

tn _* + oo. Let fn(t) = || Yn(ί)||2. Then /£(/) > 0 for every teR since the
sectional curvature of H is nonpositive. Since fn(t) = 0, it follows that fn(t) > 0
for every / > 0 and every integer n. By assumption fn(tn) < fn(0), and there-
fore we see that || Yn(/)|| = || Yn(0)|| for 0 < t < tn. Let σn(t) = γn(t + } tn),
and Zn(t) = Yn{t + \ tn). Then | |Z n (0 | | = | |Z n(0) | | for each number t such
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that — \tn < t < \tn. Multiplying Zn by a constant, we may assme that ||ZTO(0) ||2

+ ||Z^(0)||2 = 1 for every n. Applying Proposition 1 we can find a perpen-
dicular Jacobi vector field Z on a unit speed geodesic γ such that ||Z(0)||2 +
||Z'(0)||2 = 1 and ||Z(ί)|| = ||Z(0)|| for all * e R. Since Z is nontrivial, Z(0) φ 0.
If /(/) = ||Z(/)||2, thenO = /"(/) = 2{||Z'(ί)||2 - K(Z,f)(t)\\Z(ί)\\2} > 0. There-
fore Z is a nonzero perpendicular Jacobi vector field on γ such that Z'(i) = 0
for every ί. This is a contradiction to Corollary 3.3 of [4], and concludes the
proof of the theorem.
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