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0-DEFORMABLE (1,1)-TENSOR FIELDS

CLARK JEFFRIES

1. Introduction

Given a smooth real vector bundle π: V —> M, a (1, l)-tensor is a smooth
map J: V—• F which satisfies πJ = π and is linear on each fibre.

/ is said to be O-deformable if for any two fibres π~\x) and π~\y) an isomor-
phism τxy\ π~\x) —> π~\y) exists such that τxyJx = Jyτxy. It follows from a
result of J. R. Vanstone [10] that / is O-deformable if and only if there exists a
connection F in V satisfying FJ = 0.

This note contains four results from the author's Ph. D. thesis written at
the University of Toronto. The guidance of Professor Vanstone in the develop-
ment of the thesis is gratefully acknowledged. Suggestions by Professor S.
Halperin figure prominently in the thesis as well.

The referee has brought to our attention an article by R. Crittenden [2].
The article established the equivalence of covariant constancy with respect to
some connection and the existence of local smooth frames with respect to
which the coefficients of a tensor are constants. However, O-deformability im-
plies a priori only the pointwίse existence of such frames. Some results men-
tioned in Crittenden's article are corollaries of our results.

2. Semisimple (1, 1)-tensors

Theorem 1. Let

(2.1) p(x) = xs + ••• + b,x + b0

be a real polynomial with s distinct roots. Then associated with p are s(s — 1)
real numbers {a^} with the following property: // F is an arbitrary connection
in V, and J is an arbitrary (1, l)-tensor solution of

(2.2) p(J) = P + .. + bj + bol = 0 ,

then the new connection F defined by

(2.3) Fxv = Fxv + Σ Σ OijJΨ
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(where X is a tangent vector field, and v is a cross section of V) satisfies

(2.4) VJ = V o J - J o p = 0 .

Proof. It is easy to show that the above result would follow from a com-
plex version of the result by simply taking real parts of the {ai3}. Thus this
proof actually treats the complex case only.

We will need the following
Lemma. Suppose πί9 i — 1, , s, are (1, l)-tensors in V satisfying

(2.5) π\ = π, , πtπj = 0 for iφj, Σ *i = I

If F is an arbitrary connection in V, then the new connection F defined by

(2.6) Fxv = Fxv +
i = l

satisfies

(2.7) Fπa = 0, a=l, - , s .

Proof. Fπa = Fπa + Σ πi(Vπdπa — Σ πa

— πa(Fπa) = 0 . q.e.d.

Now let {λ19 , λs} be the distinct roots of p. Then

(/ _ λj) . . . ( / _ χj) = 0 .

Define new polynomials pίy ί = 1, , s, by

Pi(x) = Π (* - h) -

Then Pi(2i) ψ 0 for each / = 1, , s, and therefore πt = Piiλ^PiiJ), ί =
1, -,s, are s new (1, l)-tensors in V. Using elementary linear algebra it
follows that (2.5) holds, and / = Σ ^ίπί- Let F be an arbitrary connection in
V. Then from the lemma it follows that the connection F defined by (2.6)
satisfies (2.7). Thus FJ = Σ W^i = 0. Define cυ eC, ί = 1, -,s, j =
0,1, -,s — 1, by πt = Σ cijJi- It follows that (2.3) holds with atj =

Σ ckίckj. q.e.d.
k = l

Note that the proof is completely algebraic and uses only the derivational
properties of connections.

In the case s = 2, the constants {aίj} are

aoι = D-i{ - ft,} , an = D-\2) ,
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where D — b\ — 4b0 is the discriminant of p. In the case s = 3, the constants

{%} are

aQl = D~\-Ab\b2 + βbφ, + bQbl + b^l} ,

aO2 = D-1{-4bl+ bλb\ + 3b0b2} ,

au = D~ι{2bl + 2b\ + 12bQb2 - SbM} ,

aί2 = a21 = D~\2b\ + 9b0 - lbxb2) ,

a22 = D~\2b\ - 6b,} ,

where D = —4b\ — Πb\ + b\b\ + ISbφ^ — 4bQb\ is the discriminant of p.
We note that S. Tachibana [9] and C. J. Hsu [4] derived the above result for
the cases p(x) = xs ± 1 and p(x) = xs ± λs, λ Φ 0. K. Yano [12] has studied
(1, l)-tensors which satisfy P + / = 0. In this case

Vxv = Fxv - iJ(FzJ)v + (VxP)v

defines a connection V in terms of an arbitrary connection V which satisfies
VJ — 0. Finally, we note that the requirement that p have distinct roots is a
necessary condition. Let (x19 x2) be the usual coordinate system for R2. Define
/ as Jdxλ — x$x2, Jdx2 = 0. Clearly / satisfies J2 = 0, but / is not 0-deforma-
ble. It is easy to construct such matrix examples for any polynomial with a
multiple real or complex root.

3. 0-deformable (1,1)-tensors and Riemann structures

We will call a symmetric positive-definite (0, 2)-tensor field ^ in V a Riemann
structure.

Theorem 2. Suppose a (1, \)-tensor J is constant with respect to a con-
nection V. Then V admits a Riemann structure & and a connection V which
satisfy VJ = 0 and V& = 0.

Proof. Our proof is an explicit construction of the promised Riemann
structure and connection.

Let / = Js + JN be the decomposition of / into its semisimple and nilpotent
parts. Since / is 0-deformable, we have that both Js and JN are polynomials
in / with constant coefficients. Thus VJS = FJN = VJ = 0. The local eigen-
spaces of Js are naturally preserved by F-parallel translation over M and are
global subbundles of V. Thus we may assume that V is an eigenbundle of Js,
the general case being given by the obvious direct sums.

Case 1. Suppose Js — λl = 0 for some real λ. If JN = 0, then we may
choose any Riemann structure 9 and connection V satisfying V& — 0. Of
course, VJ = 0 as well. Thus we assume /£ Φ 0, / £ + 1 = 0, P > 1. Let \ de-
note orthogonal complement in V with respect to a fixed but arbitary Riemann
structure. Although what follows seems complicated, it is nothing more that a
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smooth global decomposition of F which, on each fibre, amounts to the usual
decomposition of a vector space in terms of a nilpotent endomorphism. Name-
ly, we decompose I as the following hierarchy of orthogonal projection tensors
flj and V itself as the following hierarchy of subbundles:

oτro: F

tπQ: V -> PN oπoV, i = 1, , P,

o*!: P — Ker /j?\{1τr0K ® Ker J?-1} ,

Λ : V^JίrfaV , f = 1, . . . , F — 1 ,

0τr2: 7 -> Ker / ^ U ^ F 0 ^ 0 Ker /£~2} ,

oτrp: F -» Ker / iV\{p7r0F 0 P ^ K Θ - - Θ ^p^V} .

Thus

V = oπoV © ITΓQK © φ p^pF 0 Q ^ F Θ •-• Θ P - I ^ F 0 0 O7ΓPF .

P + l P 1

In each list QK^V 0 JTΓ^F © 0 P - ^ F , JN acts precisely as follows: JN maps
oTΓ̂ F isomorphically onto ^ F ; / ^ maps ^ F isomorphically onto 2 ^ i F ; so on;
and JN maps P.^TΓ^F to 0.

First we use a much coarser decomposition of F, namely, just the decom-
position of F into the above P + l lists. That is, let πa = Σ jπa, a = 0, , P.
Thus F = τr0F © TΓJF © - - © 7rPF. It follows easily that JNπa = 7rα/^. Now
define a new connection V in terms of f7 by

Vxv = Vxv + Σ πjiFxπJv .

In view of the lemma in § 2, we have Vπa = 0, and also

ΪJN = Σ πj(Pπj)JN - Σ JNKJ(PKJ) = 0 .

Therefore we may as well assume F = τr0F, the generalization to π0V © - ττPF
again being the obvious direct sum.

From the definitions of 4;r0 it follows that

oπoJN = 0 , ί+1π0JN = JN iKQ for i < P , / ^ P7r0 = 0 .

Now define a new connection V in terms of F by

Again F^o = 0 follows from the lemma. Also,
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_ P * P

t7 T V~1 /Γ7 \ T V~1 7

i=0 i=0

P * P-i

P P — 1 *

Let ^ i denote an arbitrary Riemann structure in oπoV. Using 7^, <gx may be
extended to a Riemann structure ^ in V in the obvious way, that is, so that
each Jj

N\ QπQV —•> ^π0F, / = 1, , P, is an isometry. Define a new (1, l)-tensor
JNby

(0 on oτroF .

Of course, JN is simply the transpose of JN with respect to ^ . Furthermore,
/ ^ satisfies

Thus /^/jv = 7 — oτro, so that JN(FJN) = 0. Therefore F / ^ = Pπ0(FJN) =
P(Pπ0JN) = 0. Hence PJN = PJN = 0.

Finally, define a new connection V in terms of F by

It follows that

l9 v2) - (Fz&)(vl9 v2) - &(Fzv19 v2) - 9(vί9 Vxv2)
= 0 .

Also,

Nd #FzX19NJ = 0 .

Since VJS = 0, FJ = F / s + F / ^ = 0.
C t o 2. We now suppose (Js - aΐf + β2l = 0, /3 ̂  0. Since F/ = 0,

V(β-λ)(J — at)) = 0. Thus we may assume a = 0 and β = 1, so / | + / = 0.
Suppose JN = 0. If ^ j is an arbitrary Riemann structure in F, then define a
new Riemann structure ^ by
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It follows that Js is skew with respect to &. Define a new connection V in
terms of V by

Then

= 0 ,

and also

s)v19 v2) = &(FzJ8vl9 v2) + i(rz&)(J8vl9 v2)

χ ) y 1 9 8 J = 0 .

Therefore it remains to consider the posibility that

J*ΦO9 J%+1 = 0, P > 1 .

Just as in Case 1, we construct projection tensors tπj and πa = Σ T̂Γ,, using
/^ and some Riemann structure. It follows that each πa has even rank and
commutes with Js. Thus, if we define a new connection P in terms of V by

then we have as before that Fπa = VJN = 0. Also,

VJS = Σ πt(Fπi)J8 - Σ hπWπύ = 0 .

Thus, as in Case 1, we may restrict our attention to the case V — π0V. Each
T̂ΓQ has even rank and satisfies ^OJS = Jst^o- Define a new connection V in
terms of V by

FΣv = Vxv + Σ M^χtπo)v .

Again, r ^ 0 = 0, i = 0,1, , P, and F/^ = 0. Also,

F/ 5 = Σ M ^ h - ΣJs ^o(F^o) = 0 .

Let ^ ! be a Riemann structure in QπQV. Extend ^x to a Riemann structure ^ 2

in V using /^ in the obvious way. Let JN be a (1, l)-tensor in V defined by

r _ ί ^
(OO on oπoV .
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As in Case 1, JN is just the transpose of JN with respect to ^ 2 , and FJN — 0.
Also JNJS = JSJN. Define a new Riemann structure ^ in terms oi @2by

It follows that JN is the transpose of JN with respect to &, and Js is skew with
respect to ^ .

Finally, define a connection V in terms of V by

It follows that F ^ = 0 and Γ/ = F / 5 + VJN = 0. q.e.d.
Theorem 2 was announced in [6]. A much more general result follows.
Theorem 3. Suppose some set of tensors {Γα} in V, each of arbitrary type,

satisfies FTa = 0 for some connection V. Then V admits a Riemann structure
& and a connection V such that FTa = 0 and V& — 0.

Proof. We restrict our attention to a fixed fibre π~\x) of V identified with
Rn. Let G C GL(n) be the Lie group of invertible linear transformations of
Rn which leave each Ta invariant. Since FTa = 0, V is endowed with a G-
structure. Clearly G is an algebraic group, and so, according to H. Whitney
[11], has a finite number of topological components. A generalization by G.
Hochschild [3, p. 180] of a theorem of K. Iwasawa [5] states that any Lie
group with a finite number of components is diffeomorphic to the manifold
product of a maximal compact subgroup with a Euclidean space. Thus

K being a maximal compact subgroup of G, and the structure group of V may
be reduced from G to K. Since K is compact, a standard result in Lie theory
provides that an inner product exists for Rn with respect to which K is a sub-
group of Θ{n). q.e.d.

In view of the sophisticated nature of the theorems of Whitney, Iwasawa,
and Hochschild used in our proof, Theorem 3 can only be regarded as an
easy application. Our simple proof of Theorem 2 contrasts with the proof of
the more general theorem.

4. (1, l)-tensors in tangent bundles which are covariant
constant with respect to Riemann connections

Suppose V = T(M), and suppose V is the unique torsion-free connection as-
sociated with a Riemann structure ^ . By the de Rham Decomposition Theorem
[8, pp. 187-193], each tangent space TX(M) decomposes as
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and the restricted holonomy group Hx decomposes as

Hx = Hoχ H,χ X Ht ,

where Ho acts as the identity on Γo, and each Hj acts as an irreducible sub-
group of SO(dim Tj) on Tj9 j > 0.

Theorem 4. Suppose J is a (1, ΐ)-tensor in T(M), and suppose FJ = 0.
Then just as each tangent space TX{M) decomposes and just as the restricted
holonomy group Hx decomposes, Jx decomposes as

JX = JQ® (aj, + A A ) Θ Θ (atlt + βt/t) ,

where Jo is, as far as Hx is concerned, arbitrary, at, βt € R, Ij is the identity
transformation on Tj9 and (βjf 3)

2 = —β)lj- Since x is arbitrary and J is 0-
deformable, the decomposition holds globally.

Proof. The canonical form for / follows from commutativity with H and
elementary linear algebra. We note that the eigenvalues of / on Tj9 i > 0, are
precisely a3 ± iβ3. Of course, / is also required to commute with the full
holonomy group of V. This additional requirement may further restrict the
form of /. q.e.d.

If in addition M is simply connected, and ^ is complete, then M decom-
poses as

M = R« X M1 X X Mt ,

where each Mά on which βjf ό Φ 0 is a Kahler manifold. It follows directly
from Theorem 4 that if / is required to have m = dim M distinct real eigen-
values, then H = HQ, a result of D. Blair and A. Stone [1]. From a result of
S. Kobayashi [7] it follows that if M is a compact hypersurface of Rm+1 and
the Riemann structure ^ and connection V in T(M) are naturally induced from
the Euclidean imbedding, then the corresponding holonomy group is SO(m).
Thus when m = 2, T(M) admits an almost complex structure (in fact, Kahler
structure, of course) otherwise, the only F-parallel (1, l)-tensors are constant
multiples of the identity tensor.
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