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CLASSIFICATION OF THE SIMPLE SEPARABLE
REAL L*-ALGEBRAS

IGNACIO UNSAIN

Introduction

A real (complex) L*-algebra is a Lie algebra L over the real (complex)
numbers such that the underlying vector space is a Hilbert space (throughout
this work the Hilbert space is assumed to be separable) and such that, for each
x e L, there is an x* e L satisfying ([x,y],2) = (y, [x*,z]) for all y, zin L.
L*-subalgebras and L*-ideals are defined in the usual way, with the additional
property of being closed subspaces, invariant under the map x — x*. These
algebras were introduced by J. R. Schue [11], [12], who obtained a complete
classification of all simple separable complex L*-algebras. V. K. Balachandran
[11, [21, [3], [4], [5] gave more general settings to the techniques used by Schue
for not necessarily separable L*-algebras; he also defined the notions of real
form and compact real form.

The main result of this work is the classification' of the simple separable real
L*-algebras up to L*-automorphism.

We show in § 1 that the complexification L of a simple real L*-algebra is not
simple if and only if L = M¥ (M% denotes the real L*-algebra obtained from
M by restriction of scalars). Therefore, the classification reduces essentially,
aside from simple real L*-algebras having a complex structure which are in a
one-to-one correspondence with the simple complex L*-algebras, to the study
of the real forms of all simple complex L*-algebras.

If L is a real form of a semisimple L*-algebra L, the decomposition L =
K + M (Hilbert direct sum), where K = {aeL: a* = —a} andM = {ae L:
a* = a}, defines an involutive L*-automorphism S of L (S|K = id and
S|M = —id.) which can be extended to L by linearity. S is called the involu-
tion of L associated to L. Conversely, if S is an involutive L*-automorphism
of L, then S leaves the unique compact form U (set of all self-adjoint elements
of I) invariant and we have U = K + iM, the decomposition of U into eigen-
spaces of S. The real form L = K + M is said to be associated to S.

There is a one-to-one correspondence between isomorphism classes of real
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forms of I and conjugacy classes of L*-automorphisms of I containing an
involutive element.

Following an idea of S. Murakami [9], [10] we show that of S is an involu-
tion of  we can find a Cartan subalgebra H and a regular self-adjoint element
h in it such that SH = H, Sh = h, and the 1-eigenspace of S in H is a maxi-
mal abelian L*-subalgebra of K (the complexification of K),

Having such a Cartan subalgebra we are able to compute explicitly the struc-
ture of K in terms of the roots of L relative to H.

Next (§§ 2, 3, 4), we show case by case, that if an involutive rotation leaves
a regular self-adjoint element fixed, then it is a “particular” rotation (i.e., it
leaves some system of simple roots invariant).

It is known [4] that in the case of simple complex L*-algebras of types 4
and C all Cartan subalgebras are conjugate, and in case B, the Cartan sub-
algebras fall into two conjugacy classes. Thus, if we fix in cases 4 and C a Cartan
subalgebra H and a system /I of simple roots there exists in each conjugacy
class of L*-automorphisms containing an involutive element, an involution
leaving H and I7 invariant. In case B we have to take two non-conjugate
Cartan subalgebras in order to get a similar result.

The classification follows easily by reducing such an involution to a normal
form.

At the end of § 5 we discuss natural realizations of all the real forms.

The result we obtain is exactly what we expect as an infinite dimensional
analogue of classical real simple Lie algebras.

The author wants to express his gratitude to his thesis advisor Dr. I. Satake
who suggested this problem to him, and whose encouragement, advice and
friendly care have been invaluable to him. The author is also grateful to Dr.
S. Kobayashi, who guided him through the early stages of his graduate work
and stimulated, in many ways, his interest in this area of study.

1. Reduction of the problem

1.1. Preliminaires. Throughout this work, all L*-algebras are assumed
to be separable. Let L be an L*-algebra. L is semisimple if [L, L] = L (where
[A4, B] = closed subspace spanned by {[a, b], a € A, b € B]}). This is equivalent
to saying that the map x — ad (x) is one-to-one. If L is semisimple, x* is
uniquely determined by x and satisfies x** = x, (ax + fy)* = ax* + By*,
[x, yI* = [y*, x*] and (x*, y*) = (¥, x). L is simple if there are no nontrivial
ideals. Let L, and L, be L*-algebras. A map T: L, — L, is a L*-isomorphism,
if T is a Lie algebra isomorphism and is an isometry and 7(x*) = T(x)*.

Let L be a complex L*-algebra. The real L*-algebra obtained from L by
restriction of scalars and by taking the real part of the inner product of L is
denoted by L® and called the real L*-algebra obtained from L by restriction
of scalars. The map J from LZ onto itself, defined by Jx = ix, is an orthogonal
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map satisfying J(x*) = —(Jx0)*, Ux,y] = J[x,y] = [x,Jy] and J2 = id. J is
called a complex structure of LE. Conversely, let L be a real L*-algebra with
a complex structure J. L together with the complex multiplication defined by
(rp + irpx =rx + rJx (r,r,e R,xe L) and the Hermitian inner product
(x,y) + i(x,Jy) (where (,) is the inner product in L) becomes a complex L*-
algebra. Let L be a real L*-algebra. Then the complexification = L + iL
of L together with the Hermitian inner product (x + iy, u + iv) = (x,u) +
O, v) + i((x, u) — (x,v)), the conjugation (x + iy)* = x* — iy* and the Lie
bracket extended by linearity, becomes a complex L*-algebra called the com-
plexification of L. If L and M are L*-algebras over the same field, the vector
space L X M together with the inner product ((x, ), (1, v)) = (x, W + (¥, Vy,
the Lie bracket defined by [(x, ¥), (u, v)] = ([x, ul, [y, v]) and the conjugation
(x, ¥)* = (x*, Y*) becomes an L*-algebra called the product L*-algebra. From
now on we will denote a real L*-algebra by L, its complexification by L, and
the real L*-algebra obtained from L by [®. 1t is trivial to see that L, L, L?
are all semisimple if and only if one of them is.

Let I be a complex L*-algebra. A real form L [3] is an L*-subalgebra of
L® such that, the inner product of I restricted to L X L is real-valued and L
is the complexification of L, i.e., L = L + iL. The map ¢: L — L defined by
g(x 4+ iy) = x — iy is an involutive L*-automorphism of L® such that (¢x, ay)
= (v, x) and o(ax) = @s(x) (x € C). ¢ is called the conjugation of L with respect
to L. Conversely, if ¢ is a map of L onto itself with the above properties, the
set L of fixed points of ¢ is a real form of L having ¢ as the associated conju-
gation. A real form U of L is a compact real form of L if (x, x*) < 0 for all
x ¢ U. Every complex L*-algebra has a unique compact real form [3]; indeed,
U={xel:x*= —x}. We always denote the unique compact real form by
U and the conjugation of I with respect to U by .

1.2. Real forms and involutive L*-automorphisms. Let I be a semi-
simple complex L*-algebra. If L is a real form of L, then L = K + M (Hilbert
direct sum) where K and M are the skew-adjoint and self-adjoint parts of L,
ie, K={xeL:x*= —x} and M = M{x e L: x* = x}. They are orthogonal
closed subspaces, and K is an L*-subalgebra of L called the characteristic sub-
algebra of L, also [K, M] C M and [M, M] C K. The map S of L onto itself
defined by S(x + y) = x — y (x € K, y € M) is an involutive L*-automorphism
of L(S = ¢|L, = as above). The extension of S by linearity to an L*-automor-
phism of I, which we also denote by S, is involutive, and we say that S is the
involution of L associated with real with real form L. Conversely, let S be an
involution (an involutive L*-automorphism) of L. Since (Sx)* = Sx*, S leaves
U (the unique compact form of I) invariant. Let K + iM be the decomposi-
tion of U into eigenspaces of S corresponding to the eigenvalues +1 and —1.
Then L=K + M is a real form of L having S as its associated involution. L is said
to be the real form of L associated to the invoultion S. So the real forms of L
are in a one-to-one correspondence with the involutive L*-automorphisms of Z.
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Denote the graup of all L*-automorphisms of I by Aut (£). The next theo-
rem shows that there is a one-to-one correspondence between isomorphism
classes of real forms of a semisimple complex L*-algebra [ and all conjugacy
classes in Aut (L) containing an involutive element.

Theorem 1.2.1. Let L,, L, be real forms of a semisimple L*-algebra L, and
8., S, be the associated involutions of L. Then L, and L, are L*-isomorphic if
and only if S, and S, are conjugate in Aut (D).

Proof. Suppose that L, and L, are L*-isomorphic, and that T is an L*-
isomorphism between them. In the decompositions L, = K, + M, and L, =
K, + M, into skew-adjoint and self-adjoint elements, we have TK, = K, and
TM, = M,. Since S;|(K; + iK;) = id and S;|(M; + iM;) = —id (j = 1,2),
the extension of T to L by linearity satisfies S, = TS,7-'. T gives the desired
conjugation.

Suppose that S, and S, are conjugate, i.e., there exists T € Aut () such that
S, = TS,T'. Since T, S, and S, leave U invariant, T(K,) = K, and T(iM,) =
iM, (U = K; + iM; is the eigenspace decomposition of U with respect to S;).
Then T|L, is an L*-isomorphism between L, and L,.

1.3. Reduction of the problem. In this section, we show that the simple
real L*-algebras fall into two classes, one class containing all the simple real
L*-algebras with a complex structure and the other containing the real forms
of all simple complex L*-algebras.

Theorem 1.3.1. Let L be a simple real L*-algebra. Then the complexifica-
tion L of L is not simple if and only if L = M, where M is a simple complex
L*-qlgebra, i.e., L has a complex structure.

We break the proof in several lemmas.

Lemma 1.3.2. Let L be a simple L*—algebra S be the involution of L with
respect to L, and ¢ be the conjugation of L with respect to L. Then L is either
simple or the sum of two nonzero L*-ideals interchanged by @, and U is the
sum of two nonzero L*-ideals interchanged by S.

Proof. Since L is semisimple, let = 7, [; be the decomposition of L
into s1mple L*-ideals [11]. ¢ 1nterchanges the L,’s. If for some index 1 one
has ¢f, = L, then I, = (L n L) + (GL N L). Slnce LZ is an L*-ideal in L®
and L is an L*-subalgebra, I, N L is an L*-ideal in L. By assumption it must
either be {0} or L; if L, N L = {0}, then (L N L) = (iL N L)) = {0} because
L, is a complex vector space, and L, reduces to {0}, which is impossible. So
LcijandiLcL,andL =1L, isa snnple L*-algebra. On the other hand,
if ¢ interchanges two of them, say of, = L,, then o(L 1 L) =1L, + L, and,
along the same lines as in the above argument, L=1FL,+1L,ie., Listhe
sum of two nonzero L*-ideals interchanged by ¢, and U = U, + U, (U;:
unique compact real form of ;) is the sum of two nonzero L*-ideals inter-
changed by S(S|U = z|U).

Lemma 1.3.3. Let . be a semisimple L*-algebra, L be a noncompact real
form of L, and S be the involution of L associated with L(S + id). If U =
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U, + U,, two nonzero L*-ideals interchanged by S, then L has a complex
structure.

Proof. The map T: UEF — L defined by T(u + iv) = (u + Sv) + i(v — Sv))
satisfies all the conditions, but is not an isometry, i.e., (Tx, TY)UE = 2(x, ),
as is trivial to see. Anyway, the pull-back of the complex structure on UF gives
the desire complex structure on L.

Lemma 1.3.4. Let L be a semisimple L*-algebra, L be a real form of I,
and S be the involution of L associated to L. If L is noncompact and carries a
complex structure J, then U is the sum of two nonzero L*-ideals interchanged
by S.

This lemma is the converse of Lemma 1.3.3.

Proof. Let I, and I, be the eigenspaces of the extension of J to L by line-
arity corresponding to the eigenvalues i and —i. Then £, and I, are L*-ideals
of I interchanged by o (conjugation of I with respect to L) because if
x+iyel, (x,yeL) we have (x — iy) ¢ L, So U= U, + U, (the compact
real forms of I, and I, respectively) and ¢ = S| U interchanges them.

Proof of Theorem 1.3.1. Trivial.

1.4. Simple real L*-algebras having a complex structure. In this section
we classify all simple real L*-algebras having a complex structure.

Proposition 1.4.1. If L is a simple L*-algebra, then L is a simple L*-
algebra.

Proof. Suppose LZ is not simple (in any case is semisimple). We can find
a nontrivial L*-ideal 4 properly contained in £%; its orthogonal complement
AL is also an L*-ideal, and L® = 4 + A*. Since L[® is semisimple, both A
and A' are semisimple. A is invariant under complex multiplication; if x ¢ A4,
then ix =a + b (ae A, b e A*), and for every y e AL we have [b, y]=[ix, y]
— [a,y] = ilx,y] — [a,y] = 0. By the semisimplicity of 4+ the component b
of ix must be zero and ix e A. So A is a nontrivial simple complex L*-sub-
algebra properly contained in £, which is a contradiction. q.e.d.

In the next proposition we prove that if two simple complex L*-algebras
induce L*-isomorphic real L*-algebras by restriction of scalars they are also
L*-isomorphic.

Proposition 1.4.2. Let L be a simple L*-algebra having two complex struc-
tures J and I. Then the two complex simple L*-algebras obtained from L through
these complex structures are L*-isomorphic.

Proof. We indicate the complex L*-algebras obtained from L through J
and by (L,J) and (L, I); the correspondlng inner products by (,);and ( );.

Let L be the complexification of L. I = L, + L,, where L, are L, are the
eigenspaces of the extension of J to L by linearity corresponding to the eigen-
values i and —i. I, and L, are L*-ideals of . If x ¢ £, then x= }(x — Jix) +
4(x 4 iJx) with respect to the decomposition I = £, + I,. The map T,: (L, J)
— L, defined by T(x) = $(x — iJx) satisfies all the conditions for an L*-
isomorphism except that it is not an isometry, i.e., (x,¥); = 3(Tx, Ty). The
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map Tz: (L,J)— fz defined by T(x) = 1(x 4+ iJx) satisfies all the conditions
for an anti-L*-isomorphisms except agaln that it is not an isometry i.e., (x, y);
= §(Tx, Ty). In any case, we see that L, and L, are simple, and the decompo-
sition I = I, + I, is that of £ into simple L*-ideals. Domg exactly the same
with I, we get that the decomposition of I is also L, + L, by the uniqueness
of the decomposition into simple L*-ideals. Thus (L, J) and (L, I) are either
L*-isomorphic or anti-L*-isomorphic; in the second case in order to get the
desired L*-isomorphism we need only to compose the given anti-L*-isomor-
phism with, for instance, the map x — x*. q.e.d.

Thus the isomorphism classes of simple real L*- algebras having a complex
structure are in a one-to-one correspondence with the isomorphism classes of
simple L*-algebras.

1.5. Cartan subalgebras and involutive L*-automorphisms. It remains to
classify, up to L*-isomorphisms, the real forms of all simple complex L*-
algebras. According to Theorem 1.2.1, it is enough to classify the conjugacy
classes in Aut () containing an involutive element, for all simple complex L*-
algebras. We already know [11] that there are essentially three different kinds
of simple separable complex L*-algebras, and we called them of types A, B,
and C. In this section, we show that in the case of L*-algebras of types A and
C, if we fix a Cartan subalgebra, we can choose in each conjugacy class con-
taining an involution, an element leaving invariant the Cartan subalgebra and
a regular self-adjoint element in it. To get a similar result in case B we need
two Cartan subalgebras.

Theorem 1.5.1. Let L be a semisimple L*-algebra, and S an involution of
L. Then we can find a Cartan subalgebra (a maximal abelian L*-subalgebra)
H and a regular self-adjoint element h in H such that SH = H and Sh = h.

Proof. Since S leaves U invariant, let U = K + M be the decomposition
of U into eigenspaces of S. Then the complexifications of K and M provide
the decomposition of £ with respect to S, i.e., L = K + M. K is an L*-sub-
algebra of U which may not be semisimple, but it can be written as the sum
of two L*-ideals, its center Z and its semisimple derived L*-subalgebra K, =
[K, K] (L*-algebras are reductive [11]). The corresponding decomposition of
K is K = Z + K,. It is easy to see that an abelian L*-subalgebra H, of K is
maximal if and only if H, = Z + Hj, where Hj is a maximal abelian L*-sub-
algebra of K,. Let H, be a maximal abelian L*-subalgebra of K, and H a max-
imal abelian L*-subalgebra of U containing H,. H is invariant under S: if
xe H and h ¢ H,, then

[x + Sx, h] = [x, h] + S[x,Sh] = S[x,h] =0 .
Since x + Sx € K and H, is maximal abelian in K, we have that x + Sx e H,

and x ¢ H. In other words, we can write H = H, + H_, where H, =K N H
H_,=MqnN H.
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H_, is completely determined by H,, i.e., H_, = {x e M: [x, h] = 0 for all
h e H,}. Suppose that x e M and [x, h] = O for all A e H,. Let a be any ele-
ment in H. Then

a=3(a+ Sa) + 4a— Sa) =d + a’,

in the decomposition of H mentioned above.

If @ cH, then [d’,x] =0. If a”eH_,, then [a”,x]ec K. Actually,
[a@”, x] € H, because it commutes with all elements in H,, i.e., if y ¢ H,, then
we have

[a’,y]=0 because a”” and y are in H ,

[y,x] =0 because y ¢ H, .

Thus [y, [a”, x]] = —[a”, [x,y]] — [x, [y, a’] = 0. Since H, is maximal abelian
in K, we conclude that [a”, x] € H,. Hence [x, a] = [x,a’] e Hforalla € H, and
x is in the normalizer of H, which is exactly H because H = H + iH is a
Cartan subalgebra of L.

It should be remarked that H = {he L:[h,x]1=0forall xe H}.

Let us see now that iH, contains a regular element [2]. Let 4 be the root
system of I with respect to H. The elements of 4 are real-valued linear func-
tionals on iH. For any y € 4 set M, = {h e iH: y(h) = 0}, and assume that iH,
contains no regular elements, i.e., iH;, C U,¢,M,. Since a separable metric
space is not the union of a countable number of nowhere dense subsets, we
conclude that iH, C M, for some y. In other words y|iH; = 0. Since 7 is C-
linear, y|H, = 0. If e, is a root vector of 7, then [h, e,] = y(h)e, = O for all
h e H,. By the above remark, e, ¢ H which is a contradiction, so iH, contains
a regular element, say k. Since H, C K, S|H, = id, and therefore Sh = A.
Hence our proof is complete.

In the case of simple complex L*-algebras of type A and C, all Cartan sub-
algebras being conjugate, we can restate the theorem as follows:

Corollary 1.5.2. Let L be a simple L*-algebra of type A or C, and H a
Cartan subalgebra. Then every conjugacy class of L*-automorphisms contain-
ing an involutive L*-automorphism has an element leaving H and a regular
self-adjoint element in it invariant.

In the case of simple complex L*-algebras of type B, the Cartan subalgebras
fall into two classes such that any two in the same class are conjugate, while
no two from different classes are [4]. We call those in one class Cartan sub-
algebras of type I and those in the other class Cartan subalgebras of type II.

Corollary 1.5.3. Let L be a simple L*-algebra of type B, and H, fln be
Cartan subalgebras of type 1 and 11 respectively. Then every conjugacy class of
L*-automorphisms containing an involutive L*-automorphism has an element
leaving one of the Cartan subalgebras H,, H,; and a regular self-adjoint element
in it invariant.
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1.6. Characteristic subalgebras. Let I be a semisimple L*-algebra, and
L = K + iM (skew-adjoint part and self-adjoint part of L respectively) be a
real form of L. K is an L*-subalgebra of L called the characteristic subalgebra
of L. If L and L, are L*-isomorphic real forms of £, their characteristic subalge-
~ bras are also L*-isomorphic. The classification will show that the converse is
also true, i.e., a simple real L*-algebra is determined by its complexification
and the structure of the characteristic subalgebra. In this section, we develop
some techniques which will allow us to compute the structure of the complex-
ification of the characteristic subalgebra associated to an involution of L.

Theorem 1.6.1. Let L be a simple L*-algebra, and S an involution of L.
Then K (1-eigenspace of S in L) is a maximal L*-subalgebra of L.

Proof. It is enough to show that K is a maximal proper L*-subalgebra in
U (simple real L*-algebra). Suppose that K is contained properly in some L*-
subalgebra of U = K + M, i.e., there exists a nontrivial closed subspace M,
in M such that [K,M,] C M,. If M, = M} (in M), then [K, M,] C M,.

[M,,M,] = {0}: If a, e M,, a, e M,, and x ¢ K, then we have

(x, [an az]) = ([a;k, X], (12) - ([-x’ a1], az) =0.

Since [a,, a,] € K and x is arbitrary in K, we have [a,, a,] = 0 and they generate
M, M,] = {0}.

Denote K; = [M;,M,] (i = 1,2), and K, = (K, + K,)*.

K,, K, and K, are L*-ideals in K: Since [K, M;] C M, and [M,;, M,] C K,,
we have [K, K;] C K; (i = 1,2). Thus K, and K, are L*-ideals in K together
with K, + K,. K, is an L*-ideal because it is the orthogonal complement of an
L*-ideal.

[Kp, M} = [K,,M,] = {0}: If xeK,and a, b, e M,, we have ([x, a], b) =
(x,[a, b]) = 0 (a* = —a) because x ¢ K, and [a, b] € K,. So [x, a] is orthogo-
nal to M, and belongs to M,, it must be zero. The same for [K,, M,].

From this we see that K, is an ideal in U, a simple L*-algebra, and K, re-
duces to 0.

(K,,K,) ={0}: 1If ab;eM,;, then [a;,,b]leK, (i=1,2) and ([g, b,],
[a,, b,]1) = (a, — [a,, [b,, b,]]1 — [b,[b,, a,]]) = O because [M,, M,] = 0. Thus
K = K, + M, is a Hilbert direct sum.

Now K, + M, and K, + M, are L*-ideals in U; hence one of them must be
zero, i.e., M, = {0}, K, = Kand M, = M. q.e.d.

Let I be a semisimple L*-algebra, H be a Cartan subalgebra, 4 = {7} be
the root system of L with respect to H, and [T = {P;} be a system of simple
roots [3]. Suppose that S is an involution of L leaving H invariant and induc-
ing a particular rotation o(¢c = S|iH, oIl = I, H = H + iH). Let {e,: y ¢ 4}
be a Weyl basis [3], i.e., |le,|| = 1, ef = e, [e,,e_,] =y (we assume 4 C iH
through the inner product), [e,,e,] = 0 if y + ¢ is not a root, and [e,, e,] =
N,,e,.; it v+ 6 ¢ 4, where the N, ; are real numbers satisfying N, ,= —N_, _,
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and N2 = 4(1 — p)g(y,7). Set Se, =ve,, (red). It is easy to see that
[v,] =1, vy, =1, v_, = b, Setting
4, ={aed:ox=av, =1},
={ped:op=pv=—1},
={fed: ot + ¢},
we have 4= 4, U 4, U 4,. We denote, from now on, any root in 4 by 7, 9, p, =,
any root in 4, by a, any root in 4, by 8, and any root in 4, by &.
If H=H, + H_, is the decomposition of H into the (= 1)- elgenspaces of
S, then H = H, + H_, is the corresponding decomposition of H.
Lemma 1.6.2. iH, = {heciH: (§ — ¢®)h =0 for all £ ¢ 4}.
Proof. Suppose that (&, h) = (€&, h) for every & e 4,, and consider the ele-
ment & — Sh. :
(h — Sh,a@) = (h,a) — (Sh,a) = (h, &) — (h,@) =0, aed,,
(h — Sh,p) = (h,B) — (Sh,B) = (h, B) — (h, ) =0, Bed,,
(h — Sh,§) = (h,§) — (h,S§) =0, §ed,.
Since 4 is total in iH,, Sh = h and A4 e iH,. The converse is clear.

Lemma 1.6.3. For any root £ € 4,, £ — o€ is not a root.
Proof. Since ¢ leaves ] invariant, we write

= {al’aZ’ . ',‘31,‘32, < 6,060, 65,06, - - } .
Then

E=aa + ao, + -+ + b + bp, + -+ + &
+ 6 + b+ oy + e,

where the coefficients are integers, all nonpositive or all nonnegative.

6§ = a4+ ao, + - - + buel + bz,Bz +
+ 0§, + 6. + ¢, + ¢, +

If & — ¢& were a root, its expression in terms of the elements of /7 would be
§ — a8 =(c, — )& + (¢, — c)a&, + (¢; — c)&, + (¢, — ¢)aé, + -+,

and all the coefficients should be either nonnegative or nonpositive, i.e., 0 =
6 =¢=0¢=c=--- toget¢f=4§ which is a contradiction. q.e.d.
We can write for K and M:

K= IZL + X {ede + X {ee + veescle s
acdy fca,
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M=H_ + Y {e}e + 2 {e. —vee,e)e -
Feds fecs

The sum iH = iH, + iH_, is an orthogonal direct sum. Denote by & — A’
the orthogonal projection onto iH,. In other words 4’ = 4(h + oh). For the
roots

o =a, =8, &=4+0b.

Since iH, contains a regular element, ¢’ # 0 for all y € 4. In K we have the
following relationships :

[h,e,] = (h,a)e, , le,e ] =a,

[h, e + vee,e]l = (h, E)(e; + vee,) = (h, &)(e, + vee,.) ,

[e. -+ Vi€, € +v_e_,. ] = lec, e ] + vev_cle,, e,.]
=&+ g6 =2¢.

So we can see that K is generated by the elements

a, € aed;

B Bed;
6/’ er + Véeae7 E € Az;

and the derived algebra K, is generated by

a, €, aed;

&, e + vee,, &ed.

As we mentioned before H, = Z + H/, where H/ is a Cartan subalgebra
of K. Then the corresponding root system of K/ relative to Hj is 4; U 4.

So in the next sections, in order to compute the structure of K we are going
to compute in each case the center Z and a system of simple roots in 4; U 4.

Theorem 1.6.4. Let L. be a simple L*-algebra, H be a Cartan subalgebra,
and S be an involution of L leaving H invariant. If ¢ +# id (¢ being the rotation
induced by S), then K is semisimple.

Proof. The center Z of K is contained in H,. The centralizer of Zin L
contains K and H_, which is not zero by assumption. Since K is a maximal
proper subalgebra of L (Theorem 1.6.1), the centralizer of Z must be . Thus
Z is contained in the center of L which reduces to zero, and K is semisimple.

2. Real forms in simple complex L*-algebras of type A

2.1. Description of L,. Let E be a separable Hilbert space over the com-
plex numbers, and {e;: i € Z} be an o.n.b. (orthonormal basis) which we keep
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fixed throughout this section. We consider every bounded linear transformation
of E into itself as a matrix, i.e., a = (a;;) where a,; = (ae;, e;). The set L,
of all Hilbert-Schmidt operators (bounded linear transformations a = (a,;)
such that }3; ;]a;;f < o) with the positive definite hermitian form (a, b) =
2ig aijEU becomes a Hilbert space over the complex numbers (the inner
product just defined is independent of the particular o.n.b. in E, [6]). Let L,
be the complex L*-algebra arising out of L, by introducing a* = ‘a, and [a, b]
= ab — ba. L, is a simple complex L*-algebra of type A.

Let e;; denote the element of L, having 1 in the (i, j) entry and O elsewhere.
The set {e;;:i,j € Z} is an o.n.b. of L, and if a = (a;;), then a = }3;; a;,e,;.

Given a Cartan subalgebra H in L, we can find an o.n.b. in E such that A
consists of all diagonal elements in L, relative to the o.n.b. Conversely, given
an o.n.b. in E, all diagonal elements in L, form a Cartan subalgebra.

Let H be a Cartan subalgebra of all diagonal elements in L, i.e., H=
{heL,: h = Y, he;} Thelinear functional ;: H — C defined by 2,(h) = A,
for all 4 e H is bounded, and the system of nonzero roots 4 of L, relative to
His:

root root vector
i— 2 =ey —e; E+] e

(We identify the linear functional A; with the element e;; through the inner
product.) We denote 1; — 2; by r;; for brevity. A system of simple roots in 4
is

I = {7 nnss " > T-00 Tos Tuzs ** %> Trumass = * ° -

The following family of L*-automorphisms will be used frequently in this
section as well as the next two. If 4 is a unitary operator of E, then the map
T: L,—L, defined by Ta = a! is an L*-automorphism. We say that T is the
L*-automorphism of L, inplemented by the unitary operator y or simply that
T is implemented by u.

Let i — m; be a permutation of the integers, i.e., an injection of Z onto it-
self. The map ue; = e, can be extended to an unitary map of E onto itself,
which we denote with the same letter. The L*-automorphism T of L, imple-
mented by u satisfies T(3;,; a;je;;) = Yi,j Gsj€mem; T leaves H invariant,
and the induced rotation in iH (elements in H having real entries) will be said
to be “implemented by u”.

2.2. Rotations. In this section we characterize the rotations in L.

Theorem 2.2.1. Let ¢ be a rotation in L,. Then ¢ or —g¢ is implemented
by a unitary operator of E.

Proof. Let us study the action of ¢ on the system II of simple roots men-
tioned in § 2.1. Suppose that o(r,) = 7m» and o(y,) = 7,4 Since ¢ is a one-
to-one orthogonal map, it must be either (i) m = gand n = p or (ii) n = p or
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m = q. In the first case we keep ¢ and in the second we consider —¢ to get
—0(70) = Tam and —a(7,) = 74p, i.€., the second subindex of —a(7,,) is equal
to the first subindex of —a(y,,). So assume

G(TOI) = T‘Inn ] 0(7’12) — Tnp 5

and set m, = m, m, = n, m, = q. Suppose now that o(y,;) = 7,,. Again, there
are two possibilities, either (i) m, = s and m, + r or (ii) m, + s and m, = r.
In the first case we have o(yy) = 7mom, and a(,) = 7,m,, Which is a contradic-
tion to the fact that ¢ is an orthogonal map, i.e., (a(7y), o(1,5)) = 1 or 2 and
(ro1» 729) = 0. So it must be the second case, and setting s # m, we have a(7,,)
=7 mums A0 0(723) = 7um,m,- Proceeding in the same way to the right of 7,, and
to the left of 7,, we get a map from Z into itself i — m,; which is one-to-one and
onto, /7 being a system of simple roots and ¢ sending 4 onto 4. Let T be the L*-
automorphism implemented by the extension of the map u: e; — e,,, to a unitary
operator of E. Then T|iH = ¢. q.e.d.

Denote by ¢ the multiplication by —1 in iH (a rotation), by F the group
of all rotations, and by G the supgroup of all rotations implemented by an
unitary operator of E. Then F = G U G, and G is a normal subgroup.

Suppose now that ¢ is an involutive rotation leaving a regular self-adjoint
element 4 = }] hse;; (h; € R) fixed. Since A is regular, y,;(h) = h;, — h; + 0
(i #j), i.e., all the components of 4 are different. According to Theorem
2.2.1, either ¢ or —g¢ is implemented by an unitary operator of E. In other
words, we can find a permutation i — m; of Z such that ge;; = *e,,,,, for all
ieZ.

(a) ¢ is implement by an unitary operator of E. Then the equation ¢h = h
is equivalent to };; A,e;; = 2. M€y m,. Since all the components of 4 are dif-
ferent, from h; = h,,, we conclude that m; = i and ¢ is the identity.

(b) —o is implemented by an unitary operator of E. Then ce;; = —e,,,nm,
for all i, and ¢h = h implies that h; = —h,,, for all i e Z. Since all the com-
ponents of 4 are different, at most one of them is zero and we have an infinite
number of positive components as well as negative components. We distinguish
two cases:

(i) One of the components of 4 is zero. Since };|h;f < O and all the
components are different, we can assume, changing ¢ to be another rotation if
necessary, that the components of /4 satisfy:

hy=0, h>h>h>--->0, h , <h,<h,<...<0.

Then —h,, = h; (i > 0) implies m; = —i and m, = 0. In other words,
ge, = ey and ge;; = e_;_;. Thus ¢ (or a conjugate of ¢) sends 7;,;,, into y_;_;,_;
and leaves /] invariant.

(i) No component of % is equal to zero. As before, we can assume (chang-
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ing to another rotation conjugate to ¢ if necessary) that the components of 4
satisfy:

hy>h,>h > .- >0, hh<h,<h,<.-.-<0.

Then h,,, = —h; (i > 1) implies m; = —i + 1 (> 1) and ge;; = e_;,y, 4415
and the action on the simple roots are 7,1 = 7_4,_¢41-

We can summarize this in the following.

Theorem 2.2.2. Every conjugacy class of L*-automorphisms of L, con-
taining an involution has an element leaving the Cartan subalgebra H invariant
and inducing on iH one of the following involutive rotations:

@) ¢ =id,
Ton-t,-nT-2,-17-10 T-01 712 Tn,m+1

+0see0 O=—%0 Oses0see

() o\(rie0) = 7-in " w

T-n-n+1T-10 Tor Tz Tn,n41
(111) 02(7’i,i+1) = T-1,i+1 cet0ses 0 ° GeesOeen,

S~

Proof. According to Corollary 1.5.2, in each conjugacy class of L*-auto-
morphisms of L, containing an involution we can select an element S leaving
H and a regular self-adjoint element in it fixed. If we denote by ¢’ the rotation
induced by S, there exists a rotation ¢, conjugate to ¢/, which is equal to either
gy, g, Or g,. Since ¢’ and ¢ are conjugate, we can find a rotation § in F such
that ¢ = 66'6~'. If T is an L*-automorphism of L, extending # [11], then
S, = TST! is the required involution. q.e.d.

Now all that remains is to study the involutions which induce in iH those
kinds of rotations.

2.3. L*-automorphisms leaving H pointwise fixed. The statement “if
T ¢ Aut (L) leaves a Cartan subalgebra H pointwise fixed, then T = e*» for
some f e H” is not true for separable L*-algebras as the following example
shows.

Example. s = };ill,;,; is a diagonal bounded skew-hermitian operator
on E. T = e*™ (L*-automorphism of L, implemented by the unitary operator
e") leaves H invariant, and Te;;., = —e;,,. 1f an element in H induces such
an L*-automorphism, then each component must be congruent to the corre-
sponding component of # modulo 2/7i, but then it cannot be in L.

We have instead the following:

Theorem 2.3.1. If T is an L*-automorphism of L, leaving H pointwise
fixed, then T = e*® (e*d™gq = e"ae ") where h is a diagonal bounded skew-
hermitian operator on E.

Proof. Since Tlﬁ =id, T leaves each one of the 1-dimensional spaces
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{e;;}¢ invariant (e;; is a root vector of y;;). If Te, ;,, = v;e, ;,, (i € Z), then the
numbers y; = Log (v;) are purely imaginary complex numbers because |y;| = 1.
Set

h(,):O’ h;:#o—#l_..._#_l’
Wo=p,+p,+p, @>0),

reduce each one of them modulo 2/7i, and call it 4;. Then 0 < |A;| < 211.
Hence the element 7 = }; he;; is the required one, i.e.,

e Me, ., = ele 07" = eliThive
= eri=llie, 1 = Vi€, -

T and e*4® are two L*-automorphisms of L,, which coincide on H and on

the root-spaces corresponding to the elements of I, so everywhere.

Corollary 2.3.1. If R is an L*-automorphism of L, leaving H invariant
and inducing in iH a rotation implemented by an unitary operator U, then R
itself is implemented by an unitary operator on E.

Proof. Let T be the L*-automorphism implemented by u, i.e., Ta = uau™
(@aeL,). Then T'R| H =id, and by the theorem, it is an L*-automorphism
implemented by an unitary of E, say v. Thus Ra = (uv)a(uv)~* for all a e L.
q.e.d.

Let S be an involutive L*-automorphism of L, leaving H pointwise fixed.
Then § = ¢*® where h is a diagonal bounded skew-hermitian operator of E.
Set h = Ilip (p = },; ¢;e;;)- Since all the components of ¢ are real numbers
and S is involutive, we have

eninWe, = te;; b —d;eZ(,jel).

We are allowed to perform the following operations on the components of

¢ without changing the conjugacy class of S:
(i) Add or substract one and the same number to all the components of ¢.

(ii)) Reduce any components of ¢ modulo 2.

(iii) Permute the components of @.

With the first two, we do not change e”¢24®  and with the third, which is a
rotation, we get an element conjugate to S. Thus ¢ can be reduced to the fol-
lowing normal forms:

AIIIO): ¢ =0
Alll(n): ¢ = i} e 1<i< )
Alll(0): ¢ =3 ey

o,
Il
—
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Now we take each case separately, and compute the structure of the com-
plexification of the characteristic subalgebra and the corresponding maximal
abelian L*-subalgebra in K.

Remark 2.3.2. For the rest of the paper, we use the following notation:
L,, Lg, L, are simple L*-algebras of types A, B, C respectively. 4,, B,, C,,
D, are simple n-dimensional Lie algebras of types A, B, C, D respectively.
H,, HC, H, HII are Cartan subalgebras in L,, L, L of types I, II, respec-
tively. H Ay H By HC , H p, denote Cartan subalgebras in 4, B,, C,, D,
respectively, and [I' a system of simple roots in 4} U 4} (4! = 4,).

AIIl. S = id, and the corresponding real form is the unique compact real
form of L, i.e., U ={aeL,: a* = —a}.

Alll). ¢=3e;, (1<i< o),
i=1

Al={aij:1£i3j_<_n;iaj< 1’19]>n}3

4, = all others , 4,=0,

Z = {/’leﬁ: aij(h) == 0, (XUGA]} = {¢}C’ ’

Hl = {ai,i+1: 1 S i _é n — 1} U {ai,“_l: i< 0;

al),‘n«l-l; ai,£+1: l > n} s

gizﬁAn_l‘f‘HA; K=Z+An—l+LA'

Alll(). ¢=Ney, d=fa;:ij<l, ij>1},

i=1
4, = all others , 4, =0,
Z = {0}, because ¢ is not a Hilbert-Schmidt operator,
II' = {ai,“l: i< 0} U {ai,“_l: i > 1} ,
ﬁi=.ﬁ4+ﬁA, K~=LA+LA.

2.4. Involutions of L, leaving invariant A and inducing the rotation o,.
Let S be such an involution. Setting Se; ;,, = v;e_;_;,_; we have [v;| = 1 and
v_,_; = v, because S is an involutive unitary operator of L,. We can assume
all coefficients v; = 1, i.e., for j > 0, denote y; = Logy, and A} = gy + - - - -+
¢j_,- Reducing A} modulo 2/Ii, we get an element A; having absolute value
less than 271. If h = };5_, hse;; (diagonal skew-hermitian bounded operator
of E), then the involution e*~?Se*d™ satisfies our claim and is conjugate to

S. So we have Se; ;,, = e_;_, ;, and there is only one conjugacy class in Aut (L ,)
containing an involution leaving H invariant and indcing the rotation ¢,.

Al. AI::Q, 4, =0, 4,=14,
={§1~'EijGA}={§%jii,]‘>0},
=& ém s 206l =&l >0,
H:H,, K=1L,.
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2.5. Involutions of L, leaving A invariant and inducing the rotation g,.
Let S be such an involution. Then Se,, = +e¢, and Se; ;,, = p;e_,,, (@ # 0).
As before, we can have p, = 1 (i + 0) by changing to an involution conjugate
to S if necessary. We have two possibilities :

All.  Sey = ey, Se; =€ 35 (E>1),
Al={a”:i—|—j=1}, Az=¢, A(’,:{‘Sij:i'l'j#:l};
= {“51, &l &0y - - } P l“(lnlz = 2]&,“1]2 , @>1,
Hi=H,, K=L;.

Al Sey = ey Seii =€ 44, @>1),
4,=0, A={B;i+i=1}, d={&;:i+]j+1},
I =16, 8,6 -+, 0=Ppn+ &, (0,6)=0,

10 =&l @G>,
Hi=H,, K=1L;.

Remark 2.5.1. The real forms denoted by A are L*-isomorphic, and we
postpone the proof until we study case B (observe that in this case, where we
have K = L and we select a Cartan subalgebra, we have two possibilities).

3. Real forms in simple complex L*-algebras of type C

3.1. Description of L;,. Let J be an anticonjugation of E, i.e.,
Jax + By) = alx + BIy), (Ux,Jy) = (yx), J? =id, for a, e C, x, yeE.
Then L, = {ae L,: a* = Jal} is a simple complex L*-algebra of type C.

We can find an o.n.b. {e;: i € Z}, which will be fixed throughout this chap-
ter, such that Je, = —sg(i)e_; for all i; considering the elements of L, as
matrices, the condition a* = JaJ reads a;; = —sg(i)s()a_;_;. The diagonal
elements in L, form a Cartan subalgebra. Conversely, given any Cartan sub-
algebra in L, we can find an o.n.b. having the property mentioned above with
respect to J, such that all the elements in the Cartan subalgebra are precisely
the diagonal elements in L,. Let H be the Cartan subalgebra of all diagonal
elements, i.e., H = {heL¢eth = Y5 he;; —e_;_;)}. We denote e;; —e_;_;
by f; (i > 1). The linear functional 2;: H — C defined by 2;: H — C defined
by 4,(h) = h; is bounded, and the system 4 of nonzero roots of L relative to
H is:

root root vector
,— A =310 — 1) (W) €y — e_j_y
A+ A =3¢+ 1) @< €5 — €,

- — A= =3 + f,) @<y €_i,5 — €4,_j



SIMPLE SEPARABLE REAL L*-ALGEBRAS 439

2/2,; = fj (l > O) ez‘,—-i
—22, = —f; i>0 €_i;

A system of simple roots, which will be frequently used, is
II = {24, 2, — 2,8 — Ay v+ *5 Ay — Ay * o} -

3.2. Rotations. Let ¢ be any rotation in iH; just because ¢ is an orthog-
onal map, it permutes the roots of the form +22,. Define U by:

Ue,=e,,, Ue,=e¢e_,, if 6(22;) = 22,, ,
Ue,=e_,,, Ue,=e,, if 6(22;) = —22,, .

Then U can be extended to an unitary operator of E. Let T be the L*-auto-
morphism of L, implemented by U. T leaves L, invariant, and thus its restric-
tion to L,, which we denote again by T, is an L*-automorphism leaving H
invariant.

Tf, = +fn, if 6 =24s,, of Tfi=fn, ifo21) = —24,,.

Hence T'(22,) = a(22;) (i > 0). Since {24} is an orthogonal set which expands
H, we have T|iH = ¢. We summarize all of these in the following.

Theorem 3.2.1. Let ¢ be any rotation. Then we can find a permutation
of the positive integers {m,, m,, - - -} and an L*-automorphism implemented by
an unitary operator U of E such that T|iH = ¢ and Tf, = +f,, (i > 0).

Remark 3.2.2. In particular the map of-iH onto iH which changes the sign
of one of the components of every element in iH is a rotation.

Let ¢ be an involutive rotation leaving a regular self-adjoint element /4 fixed.
Since 4 is regular, we have 2h; + 0, h; — h; # 0, and h; + h; # 0. According
to Theorem 3.2.1, of, = =+f,, for some permutation of the positive integers.
So ¢h = h becomes }; h;f,, = ; hif, and h; = +h,, (i >0). Hence m; = i
(i > 0), and ¢ is the identity. All this consideration together with Corollary
1.5.3 makes up the following:

Theorem 3.2.3. Every conjugacy class of L*-automorphisms of L, contain-
ing an involution also has an involutive L*-automorphisms leaving H pointwise
fixed.

Thus all it remains to do is to study the involutions of L, leaving H point-
wise fixed.

Theorem 3.2.4. Let T be an L*-automorphism of L. leaving H pointwise
fixed. Then we can find a bounded diagonal skew-hermitian operator h = 3 h;f;
on E such that e** = T.

Proof. The proof is completely similar to that of Theorem 2.3.1, so we
omit it.

Let S be an involution of L, leaving H pointwise fixed. Then according to
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Theorem 3.2.4 there exists a bounded diagonal skew-hermitian operator & =
Y, (ig)f; such that e*®* = §, and we have that 2¢, and ¢, — ¢;,, (i > 0)
are integers.

We are allowed to perform the following operations on the components of
¢ = 2.:, ¢; without changing the conjugacy class of the involution S.

(i) Add or substruct one and the same integer to all the components of ¢.

(ii) Reduce each component of ¢ modulo 2.

(iii) Permute the components of ¢.

(iv) Change the sign of the components of ¢.
So the possibilities are:

Cl: ¢=3 i,
CI0): ¢=id,
CII(n): ¢=i}1ft (1< n< o),
Cl(x): ¢ =3 fu

S
L]
-

Now we take each case separately, and compute the characteristic_subalge-
bra K and the corresponding maximal abelian L*-subalgebra H, in K.

o

Cl. ¢=>%,, 4y={1 — 2;:i+j}, 4,=allothers, 4, =0 .

=1
Z=0, I'={ — A4, — 4, -}, Hi=H,, K=1L,.
ClI(0). ¢ =1id, K = unique compact real form of L .

Cli(n). ¢ = Z}lfi,
A ={+2:alli; 2, — 2, = + 2): 1< i, i< n,n<ij},
4, =allothers, 4, =0, Z=/{g,
' = {2213 22 — Ay e ~,Zn - Zn—l} U {22n+152n+2 - 2n+1> o } >

~

H=H,+H,, K=Z+C,+L,.
:Zfzi,
i=1

Y
Ay = {222 all i5 £y = Ayjy F s £ Ayt all i 7}
4, = all others , 4, =0, Z={0},

II'= 2%, % — &y -} U 22 4 — & -},
ﬁi=ﬁc+ﬁc, K=LC+L(}.

CII().
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4. Real forms in simple L*-algebras of type B

In this chapter, we determine the real forms of a simple L*-algebra L of
type B, up to L*-isomorphisms. The proof of the fact that the different classes
obtained are not L*-isomorphic involves not only the structure of the charac-
teristic subalgebra K but also the different choices of maximal abelian L*-sub-
algebras in K. As we mention before, we have no conjugacy theorem for
Cartan subalgebras of simple L*-algebras of type B. Indeed, it is known [14]
that there are two conjugacy classes of Cartan subalgebras. Elements of differ-
ent classes are not conjugate under any L*-automorphism of L whatsoever.

4.1. Description of Lz. Let E be a separable complex Hilbert space, and
J a conjugation of E, i.e., J(ax + By) = @Jx + Bly, (Jx,Jy) = (v, %), * =id
(@, Be C, and x, y € E). Let L, be the L*-algebra of all Hilbert-Schmidt oper-
ators on E. Then

Ly ={aeL,: a* = —Jal}

is a simple complex L*-algebra of type B.

The two conjugacy classes of Cartan subalgebras of L will be referred to
as of types I, II respectively.

Cartan subalgebras of type I: We can findin E an o.n.b. {e;: i € Z}, which
will be fixed throughout this section every time when we consider type I, such
that Je; = e_; (i #0) and Je, = ¢,. With respect to this basis, the elements of
L, are matrices a = (a;;) = },;; a;;€;;- The condition a* = —JaJ becomes
—a;; = a_, _;. Let H, denote the set of all diagonal matrices in L. Then H,
is a Cartan subalgebra of type I. Conversely, given any Cartan subalgebra of
type I, we can find an o.n.b. as above such that the Cartan subalgebra is pre-
cisely the set of diagonal matrices. An element 4 ¢ H; can be written as & =
>3 hif;,, where Ay =0 and f, =e;; —e_;_; (i > 0). The linear functional
2;: H; — C defined by ,(h) = h, is bounded, and the root system 4, of L with
respect to H; is:

root root vector

4 — ;=3 — 1) () €j — €_j_q
A+ =30+ 1) @<y €j,—i — €i,_j
—A = =—3(f;+fp E<) € i — €4

A = 3 i>0 €0 — €,

—4; = —3f; @>0 €,i — €_i,0

A system of simple roots is:

HI = {21’22 - 21’23 - 22’ "’72m - Zm_ls } ,
2|21| = Izi - Zi-llz ’ @>n.
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Cartan subalgebras of type II: Wecan find in E ano.n.b. {e;: i = 0,i ¢ Z},
which will be fixed throughout this chapter every time when we consider type
II, such that Je, = e_; (all §). With respect to this basis, the condition a* =
—Jal becomes a;; = —a_;,_;. Let H,; denote the set of all diagonal matrices
in L,. Then H,, is a Cartan subalgebra of type II. Conversely, any Cartan
subalgebra of type II can be expressed in this form with respect to a suitable
o.n.b. of E having the above property with respect to J. An element # in H;
can be written as A = )5, h;f; where f, = e;; — e_; _; (i > 0). The linear
functional 2;: H;; — C is bounded and the root 4,; system of Ly with respect
to H,, is:

root root vector

A — ;=3 — 1) (UE-N)] €5 — €44
L+ =30 +1) @<y €j,_i — €;_j
-4 — 2= -3+ 1) @<y € 4,5 — €_j,i

A system of simple roots is:
HII = {21 + 22’22 - 21’23 - 22’ "‘,Zm - Zm_v t e ’} )

where all the roots have ths same length.
4.2. Rotations. We consider two cases. :
Rotations in Cartan subalgebras of type I. Let ¢ be a rotation in iH;. Since
¢ is an orthogonal linear transformation, it interchanges the roots of the form
+ ;. Thus we can find a permutation of the positive integers {m,, m,, - - -} such
that ¢2; = =+ ;. Let U be the unitary operator of E defined by:

Uei = emi N Ue_i = e_mi if 0'2,,; = lmi 5
Ue, =e_,,, Ue_=e,, if 62, = —2n, »
Ue, = e, .

The L*-automorphism T of L, implemented by U leaves both Ly and H, in-
variant. We have

Tf,,; = fmt if 0'21; = 2/,,” , Or sz = ’—fmi if O'Zi = —Zmz .

This amounts to say that (T'|iH;)A; = d4;, and one has T|iH; = ¢ since the
elements f, generate H;.

We have thus proved the following

Theorem 4.2.1. Let ¢ be any rotation in iH;. Then there exist a permuta-
tion {m,,m,, - - -} of the positive integers and an L*-automorphism T, imple-
mented by an unitary operator of E, such that

T|iH; =0, Tfi= +fm, i>0.
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Suppose 4 is a regular element in iH;. Then y(h) = O for all y € 4;, and the
components of 4 are all different and different from zero. If ¢h = h, then
2 hfi=2 +hf,, andh; = +h,, ({>0). Thus h; = h,, andi = m, (i >0),
and we have proved the following

Theorem 4.2.2. A rotation in iH;, which leaves a regular element fixed, is
the identity.

Rotations in Cartan subalgebras of type II: A root of the system 4;; is
expressed as a function of two linear functionals 2;, 4; as shown above. Thus
we can denote any such a root as y;;. When it is necessary to distinguish be-
tween the two types of roots appearing in the list, we use y;; and v;;, where
iy = A, — A, vy; = A; + 4;. With this notation, the system of simple roots is
written as:

HII = {Vlz’ Hars Hazs * * * s Higr,a0 *° } .

Let ¢ be a rotation in iH;;. Like in the previous case, we shall define a
permutation {m,, m,, - - -} and a unitary operator U. We consider two “consecu-
tive” roots in Il;;, say py,,; and py.,,,,, and let o(g;,1,) = 7m,n and
(i 42,040 = Tp,q- We claim that the pairs (m, n) and (p, g) have one and only
one common entry. In fact, since (g;,1,4 tis2,6:,0) = —1 and the map ¢ is
orthogonal, we must have (7., 7p,,) = —1. Hence they have at least one
common entry. One the other hand, if the set {m, n} = {p, g} it can be easily
checked that (7,4, 7p,¢) is either O or +2. Hence there is only one common
entry. Similarly, we can check that if yu, is mapped into ¢, ,, then v, is map-
ped into some 7}, , (same subindexes). Thus it follows that ¢ maps the system
II;; onto the system of simple roots:

1 __ 1
H - {TMan’ T'Inﬂ»ml’ Tml,mz’ o } N

Lemma 4.2.3. {m, m,, - - -} is a permutation of the positive integers.

Proof. The above considerations show that the mapping i — m; is well de-
fined. Since /I' is again a system of simple roots, the map is onto. Again the
above considerations show that m,, m;,,, m,,, are all different. Since two non-
consecutive roots are orthogonal, m;,, is also different from all of them. Pro-
ceeding by an easy induction, we can see that m; = m; of i # j, i.e., the map-
ping is one-to-one. q.e.d.

Let U be the unitary operator defined on the basis {e;} as follows, according
to the different forms of y,,,,, m,: if 7m,,, m, is €qual to:
Umirmes, then Ue, =e,,, Ue,, =e,,. B Ue_,=e_,, Ue,,=e€e_,, .;
—lm,om, then Ue;, =e_,,, Ue,,, =e_,,. ., Ue_;=e,, Ue_; ,=e,,,;
Vmeom; then Ue, =e_,, Ue,, =e Ue_,=¢ey,, Ue_,,=e_,,.,;
—Vmgerm, then Ue; = e, Uy, =e_y,,,, Ue_; = e_p,, Ue_;_, = ey, ..

The L*-automorphism T of L, implemented by U leaves L and H;; invari-
ant, since Tf, = +f,,. Next, we show that T |iH;; = ¢. Suppose, for instance,
that 6,1, = —Vm,,,.m,- Then we have

Mmi+12
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Uei = e'mi ’ Uez'+1 = e—mi+1 ’ Ue—i = e—-mi ’ Ue—i—l = emi.“ >
and so
sz = f’mi ) T.fi+1 = _f'mi+1 .
Hence

T,ui+l,i == T(%(f1,+1 - fz)) = _%(me,l + .fmi) = —VYmir,m; *

Similarly, we can check the result in the other cases. We have thus proved the
following

Theorem 4.2.4. Let ¢ be any rotation in iH;. Then there exist a permuta-
tion {m,,m,, - - -} of the positive integers and an L*-automorphism T, imple-
mented by an unitary operator of E, such that

TIiHIIZO'y Tf;, = ifmi i>0.

Now let & € iH;; be a regular element such that g2 = h. By the regularity we
have y(h) # O for all y € 4;;, i.e., at most one of the components is equal to
0. We consider two cases:

(@ h; +0 for all i. Then ¢h = h implies )} +hf,, = X hf, and
+h,, = h, for all i. Hence h;, = h,,, and i = m, for all i.

(b) Some h; = 0. Since a permutation of the f,’s is a rotation, we may as-
sume that A, = 0. Then +h,, = h; for all i implies of, = +f, and of;, = f;
@>0n.

Thus we have the following

Theorem 4.2.5. A rotation in iH;;, which leaves a regular element fixed,
either is the identity or permutes y, and v, leaving the rest of the roots in I,
fixed.

4.3. L*-automorphisms of L leaving a Cartan subalgebra invariant. Ac-
cording to Corollary 1.5.3., all which remains to be done is to study the invo-
lutions leaving H; pointwise fixed and the involutions leaving H ;; invariant and
inducing one of the rotations mentioned in Theorem 4.2.5.

Theorem 4.3.1. Let T be an L*-automorphism of Ly leaving H,or H,,
pointwise fixed. Then we can find a bounded diagonal skew-hermitian operator
h = 3 hf; of E such that e*» =T.

Proof. The proof is completely similar to that of Theorem 2.3.1, so we
omit it.

(I) Case of Cartan subalgebras of type I. Let S be an involutive L*-auto-
morphism of L, leaving H, pointwise fixed. Then § = €94 where ¢ =
>% ¢:f; is a bounded diagonal symmetric operator of E. Since S is involutive
and all the components of ¢ are real numbers, we have that ¢, and ¢,;,, — ¢,
(i > 1) are integers,
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We are allowed to perform the following operations on the components of
¢ without changing the conjugacy class of the involution S.
(i) Change the sign of one of the components of ¢.
(ii) Permute the components of ¢.
(iii) Reduce each component of ¢ modulo Z.
Thus ¢ can be reduced to the following normal forms:

BIO): ¢ =0

BI(n): ¢=§1fi n=1,2,--").
BI(): ¢ =3 I

DI(n): ¢=_§lh (n=1,2,...).

-.
i
S

Now we take each case separately, and compute the characteristic subalgebra
and the corresponding maximal abelian subalgebra in K. (See Remark 2.5.2
for notation.)

BI(0). S=id, and the corresponding real form is the unique compact real
form in L. :

Bl(n). ¢=Z_.‘1f¢,
A4 ={2:i>n; x4 x4 1<ij<norn<ij},
4, = all others , 4,=0.
Forn =1:
Z = {f}e ,
"= {22 — 2, -}, H=H, R=Z+1L,.
Forn > 1:
Z = {0},
Hl:{zl+122a'22_21a"',2n—2n—1}u{2n+1,2n+2_‘2n+1,"'}s
FlizﬁD”"i'ﬁIy K:Dn-l_LB'
BI(w). ¢=3 fu,
i=1
4y = Qs £yt Aygy £ = Ayt all iy j} U {2y, 0 > 0},
4, = all others , 4, =@, Z=/{0},

HI:{ZI’ZS—ZI""}U {22—1—24,24——22,---},
ﬁ}:ﬁl'i'ﬁll’ IZZLB+LB'
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DI(n). ¢=§fi n=1,2,--.),

d={:i<nm 2+ 2:1<ij<norn<ij},

4, = allothers, 4,=0, Z=/{0},

I'"={2,2, — A5+ 3 An_y — An_s} U {20 + Agsrs Ansr — Aus 0} s
Hi=H; ,+Hy, K=B,,+L;.

(ITa) Let S be an involution leaving H;; pointwise fixed. Then § = efi2d®
and, as before, ¢, + ¢, ¢, — ¢, $; — ¢, - - - in Z. We are allowed to perform
the following operations on the components of ¢ changing the conjugacy class
of the involution S.

(1) Add or substract one and the same integer to every component of ¢.

(i) Reduce each component of ¢ modulo z.

(iii) Permute the components of ¢.

(iv) Change the sign of any component ¢.

Thus the possibilities are:

BIO): ¢=0,
BI(n): ¢ = Zf

BI(«): ¢=Nfi+1,

8

Il

DII: ¢ =3 3.

k2

)

Now we take each case separately.

BI(0). S = id, and the corresponding real form is the unique compact real
form in L.

BI(n). ¢=_=Z"ifi (n=1,2--1),

4 ={x4x2;:1<i,j<morij>m},
4, = all others , 4,=0.

Forn=1:

Z={f1}07 H1={22+23,23—22,"'}7
ﬁ}:ﬁ", IZ=Z~+LB-

Forn > 1: .
Z = {0},
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={21+22’22—‘21a"'1 n— An_ 1}
U {2n+12n+z, 2n+2 - n+1, * } )
fli:ﬁpn'{'ﬁU» K=Dn+LB'
BI(c0). ¢ = ; frie1 > 4, = {ilzi + gy £ Ay £ Ayjynt all i, ]} ’

4, = all others , 4, =0,
={4 + 44— A, — A - - -}
U+ 204 — 24 — A -}
-ﬁiZﬁn'l'ﬁH’ K=LB+LB-

DII. ¢=314,, d=1{x—2:alij, 4,=allothers,
i=1

d4y=0, Z={0}, II'={2%— 4,2 — 2, -},
'=H,, K=L,.

(IIb) Let ¢ be a rotation leaving the system II;; = {p1, o2, -+ - }(0; ="V,
02 = a1, + - +) invariant and defined by o, = p,, op, = py, 0p; = p; (@ > 2).
Let e, be a root vector corresponding to the root p;, and denote by S, the
involution of Ly defined by S, e, =€, (all i) and S,|iH;; = o, [11]. Let S be
any involution of L leaving H,; 1nvar1ant and S|H;; = o. Then Se, = ve,,

Since gp, = p,, we can assume (as in § 2.4) that v, = v, = 1. Now SS = S S
is an involution leaving H; pointwise fixed; hence

177 ad.
SS, = emin® |

where we can assume A, = h, = 0 and h; = 0 or 1 for i > 2.
Thus the possibilities are:

mwy¢=§mm
mw.¢=§n (n=12.3,---),
DI(1). $=0.

Now we take each case separately.

BI(OO) ¢ = Z;lei-(-l ’ Al = {izzz —'—- 221? i—22'£+1 i 12i+1: i’ ] 2 1} )

A :{+22i+221+1.i’j21}> A —-{+R,;+2 l>1}
Al—{+2 l>1} H1={22’24— z,-'~}U{23,25—23,"'},
Hi=H +H, K=Lz+L;.
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DI(n). ¢ = Zilfi (n=2,3,--4),

4 ={+xA4+2:2<ij<norn+1<ij},
dy={x+2:1<i<n+landn+1<j},
dy={xA2 £ 2,:i>1}, M={x2:i>1},
I'={2,2, — 2 -+ 3 2 — Au_} U {Ansts Ansr — Anss = 1 s
Hi=Hs ,+H, K=B.i+Ls.

DIV). ¢=0 (=S, 4={£2+2:4j>1}, 4=90,
dy={£d £ 2:i>1}, M={x2:i>1},

IT" = (A A — 2y -+ +} » H=H,, RK=L;.

Remark 4.3.2. In (I), (Ila), (IIb) (§4.3) and in §2.5 we have used the
same notation (e.g., BI(n), DI(1), - . -) to denote certain real forms which are
obtained in a different manner. We shall now prove that they are actually L*-
isomorphic to each other. For instance, let us show that the real forms of type
BI() given in (I), (IIa) and (IIb) are L*-isomorphic. In general if Sis an in-
volution of L, and H, is a maximal abelian L*-subalgebra of K (1-eigenspace
of §in Ly), then we can find an L*-automorphism 7T such that ST~ = §' is
one of the involutions listed in (I), (IIa) and (IIb), and TH , is the correspond-
ing maximal abelian L*-algebra to S*:

Consider a real form L of Ly suchthat L =K + M and K + Ly + L.
By taking a Cartan subalgebra in each simple component of K, we can select
H, to be one of the following three non-conjugate Cartan subalgebras:

G H +H,, ) H +H,, CGi) H +Hy;.

Let S be the involutive L*-automorphism of L associated to L, and let us
take H, to be of type (i). It is impossible to the L*-automorphism mentioned
above such that TST ™! is either one of the involutions in (I) or (Ila), because
in either case we get TH, = H,; which is a contradiction. So there is only one
case left, and L is L*-isomorphic to the real form of type BI() in II(b).

Similarly, taking H, to be of type (ii) we can show that L is L*-isomorphic
to the real form of type BI() on (I); and if H, is taking to be of type (iii),
then L is L*-isomorphic to the real form of type BI() in II(a).

As a result of the above considerations, we obtain the following

Theorem 4.3.3. Two real forms of a simple complex L*-algebra are L*-
isomorphic if and only if the corresponding characteristic subalgebras are L*-
isomorphic.
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5. Summary of the results

Let E be a separable Hilbert space, and @ = {e;} be an o.n.b., which we
are going to reorder in different ways according to the case under considera-
tion. gl (oo, C),, the set of all Hilbert-Schmidt operators of E, is a simple com-
plex L*-algebra of type A. 0 (o0, C), = {a e gl (o, C),: ‘a = —a} is a simple
complex L*-algebra of type B. Let @ = {e_j,e_,, ---,€,,6,---} and J =

[-E)I (I)], i.e., J is the bounded operator of E defined by Je_; = —e, and

Je, = e_;. Then sp (o0, C), = {a e gl(,C),: 'al] + Ja = 0} is a simple com-
plex L*-algebra of type C. We note that in this case we can turn E into a right
vector space over K (K = {1, 1, ], ij}x, the algebra of quaternions) by defining
the action of j by xj = JX for all x e E; an o.n.b. of E over K is {e;, e,, - - - }.
An element a € gl (oo, C), is K-linear if and only if Ja = aJ, i.e., if ais of the

form [ a% gz], and when this is so, we shall use the matrix expression of a
— &2 1

given by a, + a,j, in other words, as a linear operator of E over K. We denote
by gl (0, K), the set of all K-linear operators in gl (oo, C),.

The simple separable real L*-algebras having a complex structure are the
real L*-algebras obtained from gl (oo, C),, 0 (o0, C), and sp (o, C), by rest-
riction of scalars.

The compact simple separable real L*-algebras are

U(oo,C), = {aegl(e,C),: a* = —a},
0(0,R), ={aco0(c0,C),: a* = —a},
u(OO,K)Z = {aEgl(oosK)z: ‘a + a= 0} s

where X = x, — x,0 — x,j — xij, if x = x, + x,i + x,j + x,4j in K.

In the following, L will denote a simple complex L*-algebra, S an involu-
tive L*-automorphism of I, and L the real form of L associated to S or a real
form of £ conjugate to L.

The noncompact simple separable real L*-algebras are

@@ O={e e, - en -} K":[_OI" (;]
Al. L=gl(»,C),, Sa=—'a,
L = gl (o, R), = all real matrices in gl (0, C), .
Alll(n). L =gl(=,C),, Sa=K,aK;,
L = u(n, ), = {aegl(wo,C),: ‘akK, + K,a = 0} .
BDI(n). L=o0(,C),, Sa=K,aK;',
L =o0(n, o), ={acgl(o,R),: ‘aK, + K,a = 0} .
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b O={e,e,---,ee, -}, K, = [—OI (;]

gl(c’o’C)z ’ Sa = KcoaKoo ) L = u(°°> 00)2 .
0(»,0),, Sa=K,aK;', L =o0(w,x),.

Alll(x). L =
BDI(w). L =
; . 0 I
© -07 ={enesn e, ] = [_, 0].
All. L =gl(o,C),, Sa= —Jal', L=gl(x,K),,
CI. L~=sp(c>o,C)2 Sa=a,
L = sp (o0, R), = all real matrices in sp (o0, C), .
K
(d) 0= {e-la € 95" 56,6, - ‘}; Kn,n = [On Ign]
Cll(n). L=sp(wx,C),, Sa=K,,akK;,,,
L = u(n, ©,K) ={aegl(x,K): ‘aK, + K,a = 0},
where K, is the operator of E over K defined by K,e; = —e; (1 < i < n) and
K,e, = e, (i > n).

©) @-:{3_1,6_3,"',9_2,8_4,"',el,ea,-”,ez,e“---},
K., O
Km,“,:[o K«,]'

DII. [ =o0(x,C),, Sa=Ja",
L=0(»,K),={acgl(x,K),: '@+ a=0},
where ¥ = x, + x,i — x,j + x,ij, if x = x, + x,i + x,j + xij in K.

Cll(). L =sp(w,C),, Sa=K.,.aK:.,, L=u(w,x,K),
(see CII(n)) .
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