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1. Introduction

When is it possible to classify all compact simply connected Riemannian
manifolds satisfying a given curvature condition? On the one hand Cartan [3],
succeeded in classifying symmetric spaces. In contrast to this it seems hopeless,
at least with our present knowledge, to classify compact simply connected
Riemannian manifolds with parallel Ricci tensor. In the first place it is not
known if such manifolds must be homogeneous (probably not) ; secondly, Wolf
[22] has given an extremely large number of examples of compact homogeneous
Einstein manifolds.

In the present paper it is shown that there is a different curvature condition
for which a classification can be effected. Specifically, the following result is
proved. Let X(M) denote the Lie algebra of vector fields on a differentiable
manifold M.

Theorem (1.1). Let M be a C* compact simply connected almost Hermitian
manifold with almost complex structure J, Riemannian connection V, and cur-
vature tensor R. Assume that

@ Vx(NDX = 0 for all X e X(M) (that is, M is nearly Kahlerian, see § 2),

@) Vx(R)xsxxsx = 0 for all X ¢ ¥X(M).

Then M may be decomposed as a Riemannian product M = M, X -+ X M,
where M,, - - -, M, are listed in Tables V, V1, and VI, in § 6. Furthermore if
M=M, X --- X M, is such a product, then M, M,, - - -, M, satisfy (i) and
(i), and are Einstein manifolds.

The basic idea behind this theorem involves the notion of Riemannian 3-
symmetric space. Roughly, such a manifold is described as follows. For each
point p € M there is an isometry §,: M — M with p as an isolated fixed point
such that ¢4 = 1. Furthermore in § 4 we define Riemannian locally 3-symmetric
space. Any such manifold has a naturally defined almost complex structure on
it. See § 4 for precise definitions.

Theorem (1.1) is proved by giving formulas which characterize the curvature
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tensor of a Riemannian locally 3-symmetric space. This is done in § 4. Our
result is similar to that of [1] and [21]. In these papers an identity which char-
acterizes the curvature operator of a general homogeneous space is given. See
also [9], [15], [19], [20].

Any Hermitian symmetric space satisfies the hypotheses of Theorem (1.1).
Therefore Riemannian 3-symmetric spaces can be regarded as natural general-
izations of Hermitian symmetric spaces.

Actually, we prove Theorem (1.1) in a great deal more generality. Instead
of supposing that M is compact with positive definite metric tensor, we only
assume that M is pseudo-Riemannian and the group #(M) of holomorphic
isometries of M is a reductive Lie group. These manifolds are classified and
Theorem (1.1) is obtained as a special case. Furthermore, an even more gen-
eral classification results when the condition V x(J)X = 0 is weakened.

This paper is primarily concerned with the geometry, as opposed to the Lie
group theory, of Riemannian 3-symmetric spaces. The latter is given in [23].
The classification theorems of [23] are used in § 6.

The theory of 3-symmetric spaces parallels that of ordinary symmetric spaces
to a great extent. However, there are important exceptions. As already noted,
3-symmetric spaces are automatically almost complex manifolds. Furthermore,
the notion of “dual symmetric space” is muddled for 3-symmetric spaces. The
“dual” of a 3-symmetric space exists, but it may not be unique, and its metric
frequently has a different signature.

It is clear, though, that for any particular feature of the theory of ordinary
symmetric spaces, onc can try to find the corresponding theorems for 3-sym-
metric spaces. Such questions are interesting, but the author has decided not
to treat them comprehensively here in order to keep the paper of reasonable
length.

The methods of [23] and the present paper can be combined to work out a
characterization of the curvature operator of Riemannian manifolds with
geodesic symmetries of any odd order and the classification of such spaces.
However, the computations quickly become formidable.

This brings up another point. Wolf [22] has classified all compact simply
connected homogeneous spaces whose isotropy representation is irreducible.
These include the irreducible symmetric spaces and several 3-symmetric spaces.
It should be possible to characterize the other spaces in Wolf’s list by the iden-
tities satisfied by their curvature operators. Of particular interest are the mani-
folds 0(n) /Ad(G) where G is a compact simple Lie group of dimension » and
the homogeneous almost complex manifolds with irreducible isotropy represent-
ation. Another class of manifolds for which there should be an interesting char-
acterization in terms of curvature operators is the spaces G/K where G is com-
pact, K has maximal rank, G/K has a G-invariant almost complex structure
but K is not the centralizer of a torus. These manifolds have been classified in

[23].
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In a different direction, Ambrose and Singer [1] and Singer [21] have sug-
gested classifying homogeneous spaces by certain curvature identities given in
[1] and [21] related to their characterization of the curvature operator of a homo-
geneous space. Thus there are two possible ways to proceed. On the one hand,
one can take a class of homogeneous spaces, determine identities satisfied by
their curvature operators, and classify all manifolds satisfying these identities.
Alternatively, one can try to classify manifolds satisfying the curvature identi-
ties of [1] and [21] together with additional identities.

The author wishes to thank A. J. Ledger, O. Kowalski, B. Pettit and J. Wolf
for several comments useful in the preparation of this paper.

2. Nearly Kihler manifolds

Let M be a C~ pseudo-Riemannian manifold with metric tensor {, >. Denote
by X(M) the Lie algebra of C~vector fields of M, and by Fy and
Ryxys(W,X,Y,Z e X(M)) the Riemannian connection and curvature tensor
of M, respectively. We say that M is almost Hermitian provided that M has an
almost complex structure J such that (JX,JY) = (X,Y) for all X, Y e X(M).
The Kdhler form of M is the 2-form F defined by F(X,Y) = <{JX, Y for all
X,Y eX(M).

An almost Hermitian manifold is said to be nearly Kihlerian if V (J)X = 0
for all X e X(M). This is strictly weaker than the condition I x(J)Y = 0 for
all X, Y e X(M), which is the defining property for Kihler manifolds. The
almost complex structure of a non-K#hler nearly Kidhler manifold is never inte-
grable. In [6], [7], [8] it is shown that many theorems about the topology and
geometry of Kihler manifolds have generaizations to nearly Kihler manifolds.

The key fact which allows one to prove interesting theorems about nearly
Kihler manifolds is that the curvature operator of a nearly Kdhler manifold
satisfies certain identities. These identities are only slightly more complicated
than the corresponding ones for Kédhler manifolds.

The following result was proved in [8] for the case of positive definite metric.

Proposition (2.1). The curvature tensor R of a nearly Kihler manifold
satisfies the identity

RWXYZ - RWXJYJZ = <VW(J)X: VY(J)Z> s

2.1
foral W, X,Y,Z e X(M) .

Corollary (2.2). For a nearly Kdhler manifold we have

Ryxvz = RJWJXJYJZ = Rywxvz + RJWXJYZ + RJWXYJZ )
foral W, X, Y, Z cX(M) .

It is natural to ask whether there exist similar formulas for the covariant
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derivative of a nearly Kihler manifold. In fact such formulas exist, but first we
prove a preliminary result which will be needed both in this section and in § 3.
Throughout the rest of this section M denotes a nearly Kihler manifold. Let
© denote the cyclic sum.

Proposition (2.3). For W, X, Y, Z ¢ X(M) we have

2.2) Wy F)Y,Z) = & DX, 17, (NZ) = XC?Z Rysxyz -

Proof. We have the general formula

2.3) Vx" )Y, 2Z) — Vxw’(F)Y, Z)

= —'(RWX'F)YZ = —RWXJYZ - RWXYJZ .
Since M is nearly K#hlerian, (2.3) implies that

Viw' ()Y, 2) = —Vyy"(FYW,2) + Vyy (F)(W, Z)

2.4
= —TwDY, IV, (DZ) .

Linearization of (2.4) yields

Vwr' ()Y, Z) + Vxy*(F)Y, 2)

2.5
@3 = —FVwDY,IVWx(NZ> + FVw(NZ,JV x (DY) .

From (2.3) and (2.5) we obtain the first part of (2.2). The second part follows
from the first part, Proposition (2.1) and the first Bianchi identity.
Proposition (2.3) makes it possible to derive an identity for nearly Kihler
manifolds relating the curvature tensor to its covariant derivative.
Proposition (2.4). Let U, W, X,Y,Z e X(M). Then

VU(R)WXYZ - VU(R)WXJYJZ

— 1
(2'6) - RWXVU(J)YJZ + RWXJYVU(J)Z + ?{RUJWXVy(J)Z + RJXUWVy(J)Z

+ RWXUJVy(J)Z + RUJYZVw(J)X + RJZUYVw(J)X + RYZUJVw(J)X} .

Proof. We take the covariant derivative of (2.1) and obtain

VU(R)WXYZ - VU(R)WXJYJZ - RWXVU(J)YJZ - RWXJYVu(J)Z

= Vow'(F)X,Vy(NZ) + Vyy*(F)Z,Vw(NX) .

Then (2.6) follows from (2.7) and Proposition (2.3).
Corollary (2.5). We have, for W, X € X(M),

2.7

VW(R)WXWX - VW(R)WXJWJX = RWXJWVW(J)X .

Finally we obtain an identity involving VR alone.
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Proposition (2.6). For U, W, X, Y, Z ¢ X(M) we have

(28) VU(R)WXYZ + VU(R)JWJXJYJZ = VU(R)JWJXYZ + VU(R)WXJYJZ .

Proof. We substitute JW, JX,JY,JZ for W, X, Y, Z in (2.6) and add the
result to (2.6). Using (2.1) and the first Bianchi identity we obtain (2.8).

3. Local diffeomorphisms associated with almost complex structures

We begin with the following observation.

Proposition (3.1). Let M be a C* almost complex structure J. Then for
each p € M there exist a neighborhood U(p) and a diffeomorphism 6,: U(p) —
U(p) such that

(l) 01)3 = 13

(i) p is the unique fixed point of @,,.

Proof. Put® = —iI + (W3 /2)J where I is the identity. Then &° =1,
and for each p ¢ M there exist a neighborhood U(p) and a diffeomorphism
6,: U(p) — U(p) such that 6,. = 0,. Furthermore we may choose 6, so that
(on a possibly smaller neighborhood) we have 6,° = 1, and p is the only fixed
point.

This proposition suggests the following.

Definition. A family of local cubic diffeomorphisms on a C> manifold M
is a differentiable function p — 6, which assigns to each p ¢ M a diffeomorphism
8, on a neighborhood U(p) of p which satisfies (i) and (ii) of Proposition (3.1).

Next we prove the converse of Proposition (3.1).

Proposition (3.2). Let M be a C~ manifold, and assume p — 0, is a family
of local cubic diffeomorphisms on M. Then there is a C* almost complex struc-
ture J on M.

Proof. Let 6,+: M, — M, denote the induced tangent map of 6, at p, and
write 0,s = —34I, + (v 3 /2)J, where I,: M, — M, is the identity. Since
0, = I, and 6,. has no real eigenvalues, we have J,* = —I,. Furthermore
p — J, is differentiable because p — 6, is. Hence the proposition follows.

Definition. Let p — 6, be a family of local cubic diffeomorphisms on a
manifold M. Then the canonical almost complex structure J of the family is
the one defined by 6,. = —I, 4+ (v 3 /2)J, for all p e M.

In the sequel the relationship between J and © = —3I + (v 3 /2)J will be
important. We shall need a linear algebra result relating the two. For this, let
V be an even dimensional vector space over R with almost complex structure
J. Let ¢ be a tensor on V, covariant of degree r and contravariant of degree
s. We shall denote the value of ¢ on x, -+, x, ¢V, @, --,0,¢ V¥ by
AXy, oo Xy gy o 5 D) OF Bpzraniee

If L: V — V is a linear isomorphism, then L(¢) is defined by L(¢)(x,, - - -,
Xy, c 0y w5) = (L%, -+, L%, L 'w,, - - -, L"'w,). In the particular case
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where the contravariant degree of ¢ is 1 we may regard ¢ as a multilinear map
such that ¢(x;, ---,x,): V —»V is a linear map for all x,---,x,. Then
we have L(¢)(x,, - - -, x,) = L-¢(L™'xy, - - -, L7x,).

Definition. We say that L preserves ¢ if L(¢) = ¢.

Proposition (3.3). Let «, B, 7, 7, { be covariant tensors on V of degrees
1, --.,5, respectively. Then the following are necessary and sufficient condi-
tions that © preserve them:

) a=0,
@) Brysy = Bay forallx,yeV,
(lll) Toye = —Vizdyz = —Tizydz = —Vzdydz> fOI' all X, Y, 2¢€ v,
(lV) 7]wxyz - 77J'wJ.7:yz + 77.7wavJyz + 77szsz, etC., fOY all w, X, y> Z€ V’
(V) vazyz = —%{CJvazyz + e+ vanyJz}, fOI‘ all vV,W, X, Y, 2 € V.

Proof. (i)—(v) all have similar proofs, so for example we prove (iii). Sup-
pose O(y) = 7. Then for x, y, z ¢ V we have

Tavs = Tosovss = Torsowens = — o Tavs & Q{T.}zyz + Torye + Toyas}
G- 3 3W3
— g Uresvs + Tozyss + Tosysd & =g~ Ts200s -
From (3.1) it follows that
(3.2) 3eve + Trzaye + Tazyse + Toays: = 0.

Replacing x and y by Jx and Jy in (3.2) we obtain

(33) Tayz + 3TJa:Jyz — Tozydsz — Vaiydz = 0.

From (3.2) and (3.3) we have that y,,, = —7/z7y.; similarly, y,,. = — 7722
= —Tzrysz

Finally reversing these steps we see that (iii) implies O(y) = 7.

Corollary (3.4). Let y and { be covariant tensors of degrees 4 and 5 re-
spectively.

@ If @(77) =7 then Nwzyz = NwiziyJiz:

@#) O = L if and only if

1
vaxyz = __{CJvaJnyz + oo+ CvaJnyJz} .

3

Corollary (3.5). Let M be an almost complex manifold with almost com-
plex structure I, and denote by S the torsion tensor of J. Let {,> be a pseudo-
Riemannian metric on M. Then

(i) O preserves J and S,
(i) O preserves {, > if and only if M is almost Hermitian,
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(iiiy O preserves VJ if and only if M is quasi-Kahlerian.

Proof. (i) and (ii) are obvious. For (iii) we recall that M is quasi-Kéhlerian
if and only if Vx()(Y) + F;x(DJY) = O for all X, Y e ¥(M), [6]. Then it is
easy to check (iii).

Let 6, be a local cubic diffeomorphism. Although 4, preserves the canonical
almost complex structure J at p it is in general false that 8, is a holomorphic
map in a neighborhood of p. If 4, is an isometry, the next proposition gives a
necessary and sufficient condition for 4, to be a holomorphic isometry.

Proposition (3.6). Let M be a C~ almost Hermitian manifold, and assume
there is a family of local cubic diffeomorphisms p — 8,, each of which is an
isometry. Suppose the canonical almost complex structure J of the family is the
same as that of M. Then the following two conditions are equivalent:

(@) Each 6, is a holomorphic isometry,

(ii) O preserves I'J and V*J.

Proof. That (i) implies (ii) is obvious, because at p we have @, = 0.
Conversely, suppose (i7) holds. Then for all p e M we have 6,{((V*0),) = F*0),
for k = 0,1,2. According to [5, Theorem 4.11] this implies that 4, is a holo-
morphic isometry.

Proposition (3.7). Let M be a nearly Kihler manifold with almost complex
structure J. Then ©® = —3}I 4 (v 3 /2)] preserves V*J for k = 0,1,2, - - -.

Proof. 'This is obvious for k = 0. Furthermore a nearly Kéhler manifold
is quasi-K#hlerian [6], and so @ preserves 'J by Corollary (3.5) (iii). That ©
preserves V*J for k > 2 follows from Proposition (2.3) and induction.

Corollary (2.2) and Proposition (3.3) suggest the study of almost Hermitian
manifolds satisfying either or both of the conditions &(R) = R, O(FR) = VR.
For future reference we collect here some results about these manifolds.

Proposition (3.8). Let M be an almost Hermitian manifold with curvature
operator R.

() OR)=Rifandonlyif foral W, X,Y,Z ¢ X(M) we have Ry, yy, =
Rywixrz + Rowxovz + Rowxyiz-
(@) If B(R) = R, then Ryxyy = Rywsxsviz for al W, X, Y, Z ¢ X(M).

(iiiy If M is nearly Kihlerian, then O(R) = R.

Proof. These are immediate from Corollary (2.2), Proposition (3.3) and
Corollary (3.4).

We remark that the condition @(R) = R by itself does not imply that M is
either quasi-Kdhlerian or nearly Kihlerian. In fact any contractible even
dimensional Riemannian manifold with constant nonzero curvature has an
integrable almost complex structure J such that @(R) = R. Such a manifold is
not quasi-K#hlerian if its dimension is greater than or equal to 4.

Next we obtain some conditions on VR.

Proposition (3.9). Let M be an almost Hermitian manifold.

@ If Ryxvz = Rywsxgvsz for il W, X, Y, Z ¢ (M), then for all V,
W,X,Y,ZecX(M)
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VV(R)WXYZ - VV(R)JWJXJYJZ = RVv(J)WJXJYJZ + tee + RJWJXJYVV(J)Z .
(@) If B(R) =R, thenforall V, W, X, Y, Z c ¥X(M)

VV(R)WXYZ - VV(R)JWJXYZ - VV(R)JWXJYZ - VV(R)JWXYJZ

= Ry, ywixsvsz + Rownpayxvz + Rowxrpayvz + Rowxvryaz -
@ii) If O(R) =R, thenforall V,W,X,Y, Z ¢ X(M)
ViRwxyz + Vy(Rswixsviz = VeR)wixrz + -+ + Vy(Bwxsvsz -
@iv) If O(R) = R and M is quasi-Kihlerian, then for allV,W,X,Y ¢ X(M)
VilBwxrz — VyRswixsviz = —VivRywxrz — <+ — Vir(Rwzarsz -

Proof. (i) and (ii) are proved by taking the covariant derivatives of appro-
priate identities involving R, and (iii) follows from (ii). For (iv) we have from
(?) and (ii) thatfor all V, W, X, Y, Z ¢ ¥(M)

VivRywxyz + +++ + Vir(R wxysz

= RVJV(J)JWJXJYJ’Z - RWVJV(J)XYZ - RWXVJV(J)YZ - RWXYVJV(J)Z

= —RVV(J)WJXJYJZ - RJWVV(J)XJYJZ - RJWJXVV(J)YJZ - RJWJXJYVv(J)Z

= ViR wxrz + VilRswsxiviz -

Next we give a characterization of R which will be important in § 4.

Proposition (3.10). Let M be an almost Hermitian manifold with B(R)=R.
Then the following conditions are equivalent:

() O(R) =VR,

@) VyRywxyz + Ve(R)swixsvsz = 0 forall V, W, X, Y, Ze X(M),

(@) —20y(R)yywzrz =ViRswxrz + -+ +Viy(Rywxysz for all V, W,
X,Y,ZeX(M).

Proof. Suppose (i) holds. From Proposition (3.3) (v) we have

ViRwxrz = =3V ivRswxrz + +++ + Viv(Rwxrsz

3.4
+ Vy(Rywixyz + -+ + ViR wxsvsz} -

We substitute JW, JX, JY, JZ for W, X, Y, Z in (3.4), add the result to (3.4),
and obtain

VeRwxyz + VeRywixsvsz + VR ywsxvz + - + V(R wxsviz
(3.5) = —¥{V;/vRswxvz — VirBwizsvsz + -+ + Vir(Rwxysz

- VJV(R)JWJXJYZ},}'
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In (3.5) we replace W and X by JW and JX and add the resulting equation
to (3.5). We obtain

ViR wxrz + ViR ywixsviz + VilRswixvz
+ VV(R)WXJYJZ =0.

Then (3.6) and Proposition (3.9) (iii) imply (7).

Next suppose (iZ) holds. We apply (i7) and the second Bianchi identity to the
right hand side of (iii). After some calculation we obtain (jii).

Finally suppose (iif) holds. Applying (iii) twice we have

3.6)

ViRwxvz + ViR ywixiviz
= —3{VyyRywxrz — Viv(Rwixsvsz + -+

(37) + VJV(R)WXYJZ - VJV(R)JWJXJYZ}
= VV(R)WXYZ + VV(R)JWJXJYJZ - VV(R)JWJXYZ
- = VV(R)WXJYJZ .

Thus Vy(R)gwixyz + -+ + Vy(Rwxsrsz = 0, and so (i) implies (9).

Corollary (3.11). If M is an almost Herminian manifold with ®(R) = R
and O(FR) = VR, then the Ricci curvature of M is parallel.

Proof. This follows from Proposition (3.10) (ii).

Finally we note the following result.

Proposition (3.12). Let M be a nearly Kihler manifold. Then the following
conditions are equivalent:

() OFR) =TVR,

@) Vy(R)ysrysr =0 foral Y e X(M).

Proof. 1t is clear that for any almost Hermitian manifold, (i) implies (i).
Conversely, assume that M is nearly K#hlerian and (if) holds. M is quasi-
Kihlerian, so from Proposition (3.9) (iv) and the second Bianchi identity we
have

(3-8) VX(R)YJYYJY - VY(R)YJXYJY + VJY(R)JYJXYJY .
On the other hand, linearization of (ii) yields
3.9 ViR)ysvyiv + 2Ve(R)xsvvsv + 2Vy(R)ysxvsy =0 .

We replace Y by JY in (3.9), add the result to (3.9) and use the second
Bianchi identity. We obtain

(310) 4VX(R)YJYYJY + ZVY(R)YJXYJY + 2VJY(IQ)JYJXYJY =0.

Then (3.8) and (3.10) imply
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(3-11) VX(R)YJYYJY =0

for all X, Y ¢ X(M). We linearize (3.11) twice and make use of Proposition
(2.6). The result is that (3.11) implies condition (ii) of Proposition (3.10).
Hence O(FR) = FR.

4. Pseudo-Riemannian locally 3-symmetric spaces

We begin by defining the main objects of study of this paper.

Definition. A pseudo-Riemannian locally 3-symmetric space M is a C*
pseudo-Riemannian manifold M together with a family of local cubic diffeo-
morphisms p — 6, such that each 6, is a holomorphic isometry in a neighbor-
hood of p with respect to the canonical almost complex structure of the family.

From now on the only almost complex structure we shall consider on a
pseudo-Riemannian locally 3-symmetric space is the canonical one. We shall
call 8, a local (and later a global) cubic holomorphic isometry.

The notion of pseudo-Riemannian locally 3-symmetric space is a special case
of a more general concept due to Graham and Ledger [5]:

Definition. An affine locally s-regular manifold is a C> affine manifold M
together with a family of maps {s,} with the following properties:

() For each p e M there exist neighborhoods U(p) and V(p) such that
s,: U(p) — V(p) is an affine transformation with p as an isolated fixed point.

(i) Let S be the tensor field of type (1,1) defined by S, = (s,.), for all
p € M. We then require that

(Sp*)q 08y = SSp«z) ° (Sp*)q .

An important result of Graham and Ledger [5, Theorem 4.12] is that an
affine locally s-regular manifold M together with its affine connection and tensor
field S are necessarily analytic. Furthermore, if M has a compatible pseudo-
Riemannian metric, then it is also analytic. The idea of the proof is to intro-
duce a new connection 7 with parallel torsion and curvature such that all the
old structure of M is parallel with respect to the new connection. A theorem
of Kobayashi and Nomizu [12, Vol.1, Theorem 7.4, p. 261] then implies every-
thing is analytic.

Specialization of these results to the case at hand yields

Proposition (4.1). A pseudo-Riemannian locally 3-symmetric space is an
analytic manifold. Each local cubic isometry 6, is analytic and the map p— @,
is analytic.

For a nearly Kdhler manifold to be a pseudo-Riemannian locally 3-symme-
tric space it is possible to weaken the conditions on the loca lcubic diffeomor-
phism.

Proposition (4.2). Let p — 6, be a family of local cubic isometries on a
pseudo-Riemannian manifold such that the canonical almost complex structure
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is nearly Kihlerian. Then M is a pseudo-Riemannian locally 3-symmetric space.

Proof. This is immediate from Propositions (4.1), (3.6) and (3.7).

Definition. A pseudo-Riemannian 3-symmetric space is a connected pseudo-
Riemannian locally 3-symmetric space in which the domain of definition of
each local cubic isometry is all of M, i.e., the cubic holomorphic isometries
are global.

We drop the prefix “pseudo” in this and the preceding definitions if the metric
is positive definite.

An ordinary pseudo-Riemannian locally symmetric space is characterized by
the fact that its curvature tensor is parallel. We now obtain an analogous char-
acterization of pseudo-Riemannian locally 3-symmetric spaces. Such spaces are
almost complex manifolds by Proposition (3.2), and so it is natural to expect
the canonical almost complex structure J to play a role in the characterization.

First we obtain some necessary conditions.

Proposition (4.3). Let M be a pseudo-Riemannian locally 3-symmetric
space. Then

@ Ryxyz = RJWJXY_Z + Rywxsvz + Rywxysz for W, X, Y, Z ¢ X(M),
@) VyRwxyrz = (V3 [D{Ryyswxrz + -+ + Ruwxvppwz}
- (3/4){RJVV(J)WXYZ + -+ RW.XYJVV(J)Z}
for V,W,X,Y,ZcX(M),

(iti) V,Ic’pqu(R)WXYZ = (=D%,...v.(Rywixsviz for Vi, -, Vi, W, X,
Y,Z e X(M),

(iv) the Ricci curvature of M is parallel.

Proof. We have O(R) = R and O(FR) = VR. Hence (i) and (iv) follow
immediately from Proposition (3.8) and Corollary (3.11). Furthermore, (i) is
a consequence of [5, Lemma 4.4]. Finally (iii) follows either from (ii) or from
Proposition (3.10) and the fact that Ry, xyz = Rywsxsvsz for W, X, Y, Z e
X(M).

Corollary (4.4). Let M be a pseudo-Riemannian locally 3-symmetric space.
Then the following conditions are equivalent:

() M is Kdhlerian,
(ii) M is locally Hermitian symmetric.
Proof. 1f M is Kdhlerian, then

VV(R)WXYZ = VV(R)JWJXJYJZ

forall V, W, X, Y, Z e X(M). This and Proposition (4.3) (ii) imply that M is
locally Hermitian symmetric. The converse is obvious.
We now prove the converse of Proposition (4.3).
Theorem (4.5). Let M be a C* pseudo-Riemannian manifold satisfying the
following conditions:
() M is almost Hermitian with almost complex structure J,

(ii) O preserves V] and V*J, where ©@ = —LI + (v 3 /2)J,
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(i) Ryxyz=Rywixrz + Rywxsvrz + Rowxysz foral W, X,Y,Z e X(M),
) Vy(Bwzrz + Vv(Rswizxivsz =0 foral V, W, X, Y, Z c X(M).
Then M is a pseudo-Riemannian locally 3-symmetric space, and J is the canon-

ical almost complex structure determined by the local cubic isometries of M.
Proof. By Propositions (3.8) and (3.10) we have O(R) = R and O(FR) =
VR. Furthermore it follows from Proposition (3.9) (i) that

4.2) ZVV(R)WXYZ = RVV(J)WJXJYJZ + 0+ RJWJXJYVV(J)Z .

From (4.2) and induction it follows that for any n > 1, "R can be expressed
in terms of V*R and V'J where k and I — 1 are strictly less than n. Using
hypothesis (if) and induction we conclude that

O(F"R) = V"R forn=0,1,2,... .

Now let p e M. According to [12, Vol. 1, Theorem 7.2, p. 259] there exist
a neighborhood U(p) and an affine map 6,: U(p) — U(p) such that the tangent
map ¢, on M, coincides with ® on M,. Since O is a linear isometry on M,, 6,
is an isometry on U(p). Furthermore from (4.1) it follows that #,° = 1. That
each @, is holomorphic follows from hypothesis (ii) and Proposition (3.6).

Theorem (4.5) can be significantly simplified for nearly Kahler manifolds.

Theorem (4.6). Let M be an analytic pseudo-Riemannian manifold satisfy-
ing the following conditions:

(i) M is nearly Kihlerian with almost complex structure J,

(@) Vi(R)xsxxsx = 0 for all X e ¥X(M).

Then M is a pseudo-Riemannian locally 3-symmetric space, and J is the canon-
ical almost complex structure determined by the local cubic isometries of M.

Proof. By means of Proposition (3.7), Corollary (2.2), and Proposition
(3.12), the hypotheses of Theorem (4.6) imply those of Theorem (4.5). Hence
the result follows.

We next prove some results for pseudo-Riemannian 3-symmetric spaces for
which the analogous results are known to be true for ordinary pseudo-
Riemannian symmetric spaces. We shall need these in the next sections.

Theorem (4.7). A complete connected simply connected pseudo-
Riemannian locally 3-symmetric space is a pseudo-Riemannian 3-symmetric
space.

Proof. By [12, Vol. 1, Corollary 6.2, p. 255] each local cubic isometry @,
can be extended to a global affine diffeomorphism 4, of M. Since 6,° = 1 and
6, map geodesics into geodesics, we have 4,° = 1. Moreover 4, is an isometry
at p and affine everywhere, so it is a global isometry. Finally, if J denotes the
canonical almost complex structure of M, then §,-J is also an almost complex
structure on M. They are both analytic and coincide on an open neighborhood
of p, and so they coincide everywhere. This completes the proof.

Theorem (4.8). Let M be a pseudo-Riemannian 3-symmetric space. Then
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the group #(M) of holomorphic isometries of M acts transitively on M.

Proof. Let p e M, and choose a neighborhood V' of p which is a normal
neighborhood of each of its points. Then there exists a neighborhood W C V
of p such that §,(p) e V for all ge W. Since V is a normal neighborhood of
each of its points, exp;' is defined on ¥V for all ge V. Define 4: W — V by
() = 0,(p). Since p — 6, is differentiable so is v». From (4.1) it follows that
the tangent map ., of 4 at p is given by

4.3) Yop = I — Oy

(see [16]). Now 1 is not an eigenvalue of 6, and so ., is nonsingular. Hence
4 is a diffeomorphism on some neighborhood U of p with U C W. Then y(U)
is a neighborhood of p contained in the _#(M)-orbit of p, because each
q € (V) is the image of p under the holomorphic isometry 6,. The #(M)-orbit
of p is thus open. Furthermore, the complement of the _#(M)-orbit of p is also
open, because it is the union of _#(M)-orbits. Since M is connected, the theorem
follows.

This proof is patterned after that of [17, Theorem 2].

Remark. In [5] the theorems corresponding to Theorems (4.7) and (4.8)
for s-regular manifolds are proved by different methods.

Theorem (4.9). A Riemannian 3-symmetric space is complete.

Proof. This follows from Theorem (4.8) and the following fact about
Riemannian manifolds: if a Riemannian manifold M has a transitive group of
isometries, then M is complete.

The author does not know if a pseudo-Riemannian 3-symmetric space need
be complete. The usual proof (see [12, Vol. 2, p. 223] does not immediately
generalize.

We next turn to the problem of decomposing a Riemannian 3-symmetric
space into the Riemannian product of pseudo-Riemannian 3-symmetric spaces
which are in some sense irreducible. It turns out that such a decomposition
exists; it is slightly different from the de Rham decomposition.

Definition. Let M be a pseudo-Riemannian 3-symmetric space. We say that
M is indecomposable if and only if M is not flat and whenever M is the
Riemannian product of pseudo-Riemannian 3-symmetric spaces M, and M,,
then either M = M, or M = M,

Let M be a simply connected pseudo-Riemannian manifold. Recall [11], [12]
that M is weakly irreducible provided that the holonomy group at any point
has no invariant nondegenerate subspaces.

Proposition (4.10). Let M be a indecomposable simply connected pseudo-
Riemannian 3-symmetric space. Then either M is weakly irreducible or M is a
Riemannian product M = N X N where N is weakly irreducible.

Proof. Suppose M is not weakly irreducible. Then M = N X N, where N
is weakly irreducible. Let p € M, and consider the global cubic holomorphic
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isometry 4,. Since M is indecomposable we must have 6,(N) #= N. Further-
more the tangent space M, is spanned by the subspaces N, and 4,(N),. It fol-
lows that M is isometric to N X N.

For example, we shall show in the next section that if G is any compact
simple Lie group, then G X G is a Riemannian 3-symmetric space which is
indecomposable.

Theorem (4.11). Let M be a simply connected pseudo-Riemannian 3-sym-
metric space. Then M is a Riemannian product M = M, X M, X --- X M,
where M, is an even dimensional Euclidean space and M,, - --, M, are inde-
composable pseudo-Riemannian 3-symmetric spaces.

Proof. We use the de Rham decomposition theorem for pseudo-Riemannian
manifolds [11], [23] and get M = M, X N, X - .- X N, where M, is a Euclidean
space and N, - - -, N, are weakly irreducible. Let 6, be the global cubic holo-
morphic isometry at p e M; then 6, preserves this decomposition. We must
have 6,(M,) = M,, and so M, is even dimensional. If ,(N;) #+ N, for some i,
then there exists N; isometric to N; such that §,(N; X N;) = N; X N;. There-
fore we obtain the decomposition

M=MXM X - --- XM,,

where 6,(M;) = M, fori =0, ---,r, and for i = 1, - - -, r either M, is irre-
ducible or M; = N, X N, where N, is irreducible. The restriction of 4, to M,
for each p e M; makes M; into a pseudo-Riemannian 3-symmetric space.

5. Pseudo-Riemannian 3-symmetric spaces as coset manifolds

Some of the theorems of this section are special cases of results of [5]. Let
M be a pseudo-Riemannian 3-symmetric space, G the largest connected group
of holomorphic isometries of M, and H the isotropy subgroup of G at a point
p € M. Denote by 6, the (global) cubic holomorphic isometry of M at p, and
put #(g) = 0,080, for ge G. Let G* = {g e G|t(g) = &}, and let G, be the
identity component of G*.

Proposition (5.1). Let M be a pseudo-Riemannian 3-symmetric space.
Then

(@) tis an automorphism of G and £ = 1,
(i) we have G C H C G*,

(iii) there are a G-invariant pseudo-Riemannian metric and a G-invariant
almost complex structure on the coset space G [H so that G [H is holomorphi-
cally isometric to M.

Proof. For (i) let g € G. Then 0, € #(M) and so t(g) € G. Easy calculations
prove the rest of (i).

Next let 4 e H. Then at p the tangent maps of 4, #(h), and 4, satisty
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1, 3 ) 1, V3
th)y = Opohyobyt = (— 21+ Y2} oh o(——l———_ ) .
()*0”*p(2+2p*22p
Since A is a holomorphic isometry we have A, oJ, = J, o h, and so t(h), = h,.
Two isometries with the same tangent map coincide, and so #(h) = h. This
proves H C G*.
Let s — g, be a 1-parameter subgroup of G¢. Then #(g;) = g;, and so

(0p°gs)(p) = (gsoap)(p) = gs(p) .

Thus the orbit {g,(p) | s € R} is fixed by 6,. Since p is an isolated fixed point of
6,, we have g,(p) = p for all 5. Thus g, ¢ H, and we have proved G C H.

Finally for (iii) we note that there exists a diffeomorphism : M — G /H.
We then just require that y» be a holomorphic isometry.

Proposition (5.2). Let G be a Lie group, t: G — G an automorphism with
£ =1, and H a subgroup of G with G, © HC G*. Denote by g and Y) the Lie
algebras of G and H, respectively, and denote by t, the automorphism of g
induced by t. Then

(@) wehave ) = {X eg|t, X = X},
(ii)y G/H is a reductive homogeneous space.
Proof. (i) is obvious. For (if) we decompose g ® C as

g/C=0ROOOm* @m~,

where H® C, m*, m~ are the eigenspaces of z,, corresponding to the eigenvalues

1, 3(—=1 + ¥/ =3), #(—1 — ¥/ =3), respectively. Let m = (m* @ m~) N g so
that

g=5HPm.

Now let X ¢ m* and 4 ¢ H. Then we have
t,(Ad (WX) = Ad (W)t X = Ad (Wt X = 3(—1 + V=3) Ad(W)X .

Hence Ad (B)(m*) € m*, and so Ad (A)(m) C m. Therefore G/H is a reduc-
tive homogeneous space.

Corollary (5.3). A pseudo-Riemannian 3-symmetric space is a reductive
homogeneous space.

We can now prove the converse of Theorem (5.1). As usual with a reductive
homogeneous space G/H, we write g = §) @ m, where g and }) denote the Lie
algebras of G and H respectively. Then m may be identified with the tangent
space to G/H at the coset H.

Theorem (5.4). Let G be a connected Lie group, and t: G — G an auto-
morphism of order 3. Let H be a subgroup with G;' C H C G*, and write
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g = H @ m as in Theorem (5.2). If {, > is any (not necessarily positive definite)
metric on m which is both Ad (H)-and t.-invariant, then { , > induces a G-
invariant metric on G |H which makes G [H into a pseudo-Riemannian 3-sym-
metric space. Furthermore, if we write t, |m = —3I + (+/ 3/2)J, thenJ induces
the canonical almost complex structure on G |H, and { , > is almost Hermitian
with respect to J.

Proof. Let M = G/H. Then we have a projection z: G — M ; let p = n(e),
where e is the identity of G. Define 6,: M — M by 6,(g(p)) = #(g)(p). Then
0, is well-defined, it is a diffeomorphism of M, and 6,° = 1.

To show that p is an isolated fixed point of 6,, suppose 6,(g(p)) = g(p) for
some g e G. Then #(g)(p) = g(p), and so putting & = g~'#(g) we have h e H.
Hence #(h) = h, and so

(5.1 k= ht(h)e(h) = g '1(g)H(g~ (g (g7'1(g)) = e .

If g is near e, so is A, and (5.1) shows that & = e. Thus #(g) = g; moreover,
g € Gi, and we have g e H. Therefore p is an isolated fixed point of 6,,.

For any other point g € M, let g € G be such that g(p) = g. We define 4, by
0, = go0,0g7'. Then 4, is independent of the choice of g, it is a diffeomor-
phism of M with ,* = 1, and g is an isolated fixed point of 4,,.

We get a G-invariant metric on G /H by translating the metric {, > on m via
G. Since {, ) is t,-invariant, 4, is an isometry at p. Thus 6§, preserves <, >
and all of its covariant derivatives at p. Everything is analytic, and so 6, is an
isometry of M. Then each g ¢ G is an isometry of M, and so each §, is an iso-
metry of M.

We also translate the almost complex structure J on m to each tangent space
of M = G/H via G. In order to verify that each ¢, is holomorphic, it suffices
to prove that 6, is holomorphic, because each g € G is holomorphic by defini-
tion of J.

First, we note that since M is homogeneous, the Riemannian connection V/
of M is given at p by the formula

for X, Y, Zem. From (5.2) it follows that {(F*x,.. . (/)(Y),Z> can be ex-
pressed in terms of <{, >, J, and [, ],,. Now 6,. preserves all of these, and
Op = (=31 + W3/ 2)J),. It follows from Proposition (3.6) that @, is holo-
morphic. This completes the proof.

Almost complex structures which are derived from an automorphism of order
3 are characterized as follows.

Proposition (5.5). Let M = G/H be a homogeneous space where Y) is the
fixed point set of an automorphism of g of order 3. Then the canonical almost
complex structure on M satisfies



GEODESIC SYMMETRIES OF ORDER 3 359

0 [UX,Yl,= —JIX, Y., @) [X,Y],=[X,JY]
for all X, Y e m. Conversely, if G is simply connected and G|H has a G-
invariant almost complex structure satisfying (i) and (ii), then there exists an
automorphism t: G — G such that G,' C H C G°.

This is proved in [23].

So far we have not used the hypothesis that M = G /H be nearly Kihlerian.
We do this after we show that in our situation the property of being nearly
Kihlerian is equivalent to the well-known notion of natural reductivity.

Recall [14] that a homogeneous space M = G /H with a G-invariant pseudo-
Riemannian metric { , > is said to be naturally reductive if it admits an Ad (H)-
invariant decomposition g = ) @ m satisfying the condition

(5.3) AX, Y1, Z> = <X,[Y,2Z],> forallX,Y,Zem.

Proposition (5.6). Let M = G/H be a pseudo-Riemannian 3-symmetric
space. Then the following conditions are equivalent:

(i) M is naturally reductive,

(ii) the canonical almost complex structure of M is nearly Kdhlerian.

Proof. The Riemannian connection of M given by (5.2). This, together
with Theorem (5.5) (i), implies that

(5.4 FDX,JY> = 22X, [X,Y]>  for X,Y e ¥(M) .

From (5.3) and (5.4) it follows that (i) and (ii) are equivalent.

6. The classification

We can now prove our main classification theorem.

Theorem (6.1). Let M be a simply connected pseudo-Riemannian 3-sym-
metric space such that the group ¢ (M) of holomorphic isometries of M is arreduc-
tive Lie group. Then M may be decomposed as a Riemannian product M =
M, X M, X -+ X M, where M, is a complex Euclidean space and M; = G, /H,
(1 <i<r)is one of the spaces listed in Tables 1, 11, 111, and IV. Each M,
(1 < i < r) is an almost complex manifold in a natural way. Any homogeneous
metric on M; which is compatible with the almost complex structure makes M,
into an indecomposable (quasi-Kadhlerian) pseudo-Riemannian 3-symmetric
space. Of all such metrics there is one, unique up to a scalar multiple, that
is nearly Kdhlerian and makes M, naturally reductive.

Proof. According to Theorem (4.11) M can be decomposed as M = M, X
M, X --- X M, where M, is a complex Euclidean space and M, (1 < i < r)
is an indecomponsable pseudo-Riemannian 3-symmetric space. Hence without
loss of generality M is indecomposable. Write M = G /H as in Theorem (5.1),
and decompose the Lie algebra of G as g=} + m. We may assume that G is
a connected reductive Lie group acting effectively. Then } is the fixed point
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set of an automorphism of g of order 3. All such spaces have been classified
[23, Theorem 7.17]. Then Tables I, II, III, and IV are the same as the corre-
sponding tables of [23, Theorem 7.17]. By Theorem (5.4) each of these spaces
is a pseudo-Riemannian 3-symmetric space with respect to any homogeneous
metric compatible with the canonical almost complex structure.

Furthermore it is clear that each of the spaces M = G /H in Tables I, II, 111,
and IV is naturally reductive with respect to a metric induced from a biinvari-
ant metric on the Lie algebra of G. Conversely, any other naturally reductive
metric must be a scalar multiple of the biinvariant one on some component of
the isotropy representation of H. Then (5.3) implies that it is a scalar-multiple
on the other components. By Theorem (5.6), M = G/H is nearly Kahlerian
with respect to this naturally reductive metric.

Note. In the following and subsequent tables we adopt the notational con-
ventions of [23]. See [23,p.118]. Also & denotes the dimension of the cone of
homogeneous metrics on each homogeneous space compatible with the canon-
ical almost complex structure.

Table I
G: Centerless classical simple
H: Centralizer of a compact total subgroup
G H Conditions k
SU™(n)/Zy, S{Us(r1) X Usa(ry) X Uss(r3)}/Zn n=ri+rat+r; 1ifrn=0
SL(n,R)/Z, 1 .
n SL(=,C)X T'/Zns, n=0Q2)

SL(E’Q>£ZZ { (" ) } 0<n<r<rs

S{GL(r,C) X GL(r, C) 1<r 3ifrn>0
SHL O/ 2 X GL(r5, CO)}/Za

S0%:+22n+ 1) | Us(r) X SO*(2n — 2r + 1) 1if r=1
1<r<n .
so2n+1,C) | GL(r,C) X SO2n —2r —1,C) 2if r>1
Sps+t(n)/Z, {Us(r) X Spi(n — n}/Z, 1<r<n lifr=n
Sp(n,R)/Z, {Us(r) X Sp(n — r,R)}/Z,
Sp(n,C)/Z, {GL(r,C) X Sp(n — r,C)}/Z, 2ifr<n
l1if r=1
SO+42n)/Z, {Us(r) X SOY2n — 2r)}/Z, 1<r<n
or n
SO*2n)/Z, {Us(r) X SO*2n — 21} /Z,
2 if

S0(2n,C)/Z, {GL(r,C) X SO2n — 2r,C)}/Z, l<r<n
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Table II
G: Centerless exceptional group

H: Centralizer of a compact toral subgroup

G H Conditions k
G, vQ) _
G¥ =Gy ma, | UQ),UYQ) — 2
GY GL(2,C) _
F, {Spin (7) X T'}/Z,, {Sp(3) X TY}/Z, —
F, B, {Spin” (7)X T} /Z,, {Sp'(3) X T'}/Z, r=0,1
Frow, {Spin (7) x {T;;(/?’ZzR ){ip;(f})/z Y/, e 23i—01] 2
Ff {Spin (7,C) X C*}/Z,, {Sp(3,C) X C*}/Z, —
(50(10) X SO2)}/Z, — 1
e
{[SO(8) X SO(2)] X SO(2)}/Z, — 3
{SO*(10) X SOQ2)}/Z,, {SO*10) X SO2)}/Z, — 1
{SU(S) X U(D) X SUSQ)}/Zs Ef;, ’1))’2(3}2‘;3’(1’2) 2
Eg, 4,45 {[SU(6)/Z5] X T'}/Z, r=0,2,3 2
{[SO*(8) X SOQ)}/Z
{ISO(®) x SOQR)] X SOQ)}/Z, r=24 3
{SO7(10) X SO(2)}/Z,, {SO*(10) X SO(2)}/Z; | r=0,2 1
. {S(UT(S) X UMW) X SU2)}/Zs E(‘;, ?)71‘11)020 NE
{[SU"(6)/Zs] X T'}/Z, r=1,2 2
{[SO*(8) X SO(2)] X SO(2)}/Z,,
(ISO7(8) X SO)] X SO2)}/Zs r=02 3
{S0(10,C) x C*}/Z, _ 1
5012, (S(GL(5,C) X C*) x SL2,C)}/Zs, - )
{ISL(6,C)/Zs] X C*}/Z,
(IS0, C) X C¥] X C*}/Z, — 3
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Table II—Continued
G: Centerless exceptional group

H: Centralizer of a compact toral subgroup

H

Conditions

E7/ZZ

{Ee X T'}/Zs

{SU2) X [SO(10) X SO} /Z,,
{SO(2) X SO(12)}/Z,, S(U(T) X U(1))/Z,

Er 44

{EeuhAs X Tl} /Zy

{SU(2) X [SO*(10) X SO(2)1}/Zs,

{SUY(2) X [SO%(10) X SO)1}/Zs,

{SO(2)X SO*(12)} /Z5, {SO(2)x SO%(12)}/Z,,
SUTT) X U(1)/Z,

Eq7, 4,04

{Ee,psrt X T} /Z3, Eg, 4145 X T'}/Z4

{SU2) X [SO7(10) X SO(2)]}/Z.,
{SUY2) X [SO*(10) X SO} /Zs,
{SO(2) X S02(12)} /Z,,

SUT) X U(1))/Z4

;1 =(0,0),
0,2),(1,2),(0,4)

p=0,4

s=1,2,3

E7,E(';T1

{Ee X T'}/Zs3, {Eg,pst1 X T'}/Zs

{SUY2) X [SO(10) X SOQ)1}/Z,,

{SU(2) X [SO*(10) X SO2)1}/Zs,

{SOQ)x SO*(12)} /Z,, {SO(2)x SO%(12)}/Z,,
S(UTT) x U()/Z,4

ES/Z,

{E§ x C*}/Zs

{SL(2,C) X [SO(10,C) X C*1}/Z,,
{C* X S0(12,C)}/Z5, S{GL(7,C) X C*}/Z,

Eg

SO(14) X SOQ), {E; X T1}/Z,

Es,Ds

SO(14) X SO(2), SO8(14) x SO(2),
SO*(14) X SO(2),
{E7,A1Ds X Tl}/Zz, {E7,A7 X T1}22

E8,A1E7

SOX(14) X SO(2), SO¥(14) X SO(2),
SO*(14) X SO(2),
{Er X T'}/Zs, {Ev,mer: X T'}/Z,,
{E7, 4106 X T'}/Z5

50(14,C) X C*, {ES X C*}/Z,
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Table IIT
G: Centerless simple
H: Not the centralizer of a torus, rank H = rank G
(k =1, G is exceptional, H has center of order 3)

G, SU3)
G} = Ga, 414, SUY3)
G¢ SL(3,C)
Fi {SUQB) X SUB)}/Zs
Fy,B, {SU(3) X SU3)}/Zs
Fy,0504 {SU@3) x SUY(3)}/Zs, {SUY3) X SUY3)}/Zs
F¢ {SL(3,C) x SL(3,C)}/Z,
Es/Z5 {SU3) X SU3) X SUBN/{Zs X Zs}
Eq 0t {SU3) X SUB) X SU3)}/{Zs X Zs}
rArds {SUY3) x SUY3) X SUY3)}/{Zs X Zs}
Eg,pyr1 {SUY(3) x SU(3) X SUB)}/{Zs X Zs}
Egr, {SL(3,C) X SU3)}/Zs
Esc, {SL(3,C) X SUY3)}/Z3
ES/Z, {SL(3,C) x SL(3,C) X SL(3,C)}/{Zs X Z3}
E;/Z, {SUB) X [SU(6)/Z,]}/Z,
Eq, 4, {SU) X [SU6)/Z51}/Z5, {SU*3) X [SUX6)/Z;1}/Zs
Er.ame (SUY3) X [SU(6)/Z31}/Zs, {SU(3) X [SUX6)/Z,1}/Zs,
. {SU3) X [SUX6)/Z:1}/ Zs
Eq Bort {SUY3) X [SUX6)/Z51} /Zs, {SUQ3) X [SUX6)/Z51}/Zs
E? {SL(3,C) X [SL(6,C)/Z5]1}/Z5
E {SUG) X Eg}/Zs, SUO)/Zs
Eyp {SUQB) X Eg,ps71}/Z3, {SUB) X Eg, 4145}/ Zs,
e SUY9)/Zs, SU*9)/Z;
Es iz {SUY3) X E¢}/Zs, {SUY3) X Eg,psr1}/Zs,
T {SU(3) X Eg, 4145} /Zs, SU9)/Zs, SU¥X9)/Z;
E¢ (SL(3,C) x ES}/Zs, SL(9,C)/Zs
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Table IV
rank G > rank H
(k=1
G H Conditions
Spin (8) SUB3)/Zs
SO4(8) SUY3)/Z, _
Spin (8, C) SL(3,C)/Z;
Spin (8), Spin! (8) G,
Spin? (8), Spint(8) G¥ —
Spin (8,C) GS
{L* X L* X L*}/0Z* oL*/6Z* Note (1)
{LC x L*}/8Z* oL*/6Z%* Note (2)
{LC X LC X LC}/8Z* 8LC/5Z Note (1)
vector group R? {0} —
Note 1 % is an arbitrary compact simple Lie algebra.
%* is an arbitrary real form of ¥ ® C.
L* and LC denote the connected simply connected
Lie groups with Lie algebras ¥* and %¢; Z* and Z
denote their centers.
3(x) = (x,x,x).
Note 2 3(x) = (n(x),x) where =: L* —» L¢ gives the universal
covering of the R-analytic subgroup of L¢ with Lie
algebra #*.

Corollary (6.2). Let M satisfy the hypotheses of Theorem (6.1), and in ad-
dition assume that M is Riemannian. Then M may be decomposed as a
Riemannian product M = My, X M, X --- X M, where M, is a complex
Euclidean space and each M; (1 <i<r) is an indecomposable Riemannian
3-symmetric space. If M, is compact, it is listed in Tables V, VI, and VII;
and if M, is noncompact, it is listed in Table VIII.



GEODESIC SYMMETRIES OF ORDER 3

Table V
G: Compact centerless simple
H: Centralizer of a torus
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G H k
SU(n)/Zy S{U(r) X U(ry) X U(rs)}/Zn 1if =0
n>2 0<rn<rn<r 0<rnn+rnt+rn=n 2if >0
SO(2n + 1) 1ifr=1
n>1 U@r) x SO2n —2r+1),1<r<n 2ifr>1
1 1lifr=n
Sp(n)/Z, {UNSp(n—n)}/Zy, 1 <r<n 2ifr<n
SO(2n)/Z, 1ifr=1 or n
>3 {U() X S02n — 21)}/Zy, 1 <r<n 2ifler<n
G, U®) 2
{Spin (7) X T*}/Z, 2
F,
{Sp(3) X T'}/Z, 2
{SO(10) X SO2)}/Z, 1
{S(US) X U(1)) X SU(2)}/Zs 2
Eg/Zs
{[SU(6)/Z5] X T'}/Z, 2
{[SO(8) X SO2)] X SO2)}/Z, 3
{Es X T}/ Z; 1
{SU2) X [SO(10) X SO2)1}/Z: 2
E7/Z,
{SO(2) X §O0(12)}/Z, 2
S{U) X U(1)}/Z4 2
SO(14) X SO(2) 2
Fe (B x T1/2, 2

Table VI

G: Compact centerless simple
H: Semisimple with center of order 3
(G is exceptional, k = 1)

G H

G, SU@3)

F, {SUG) x SUB3)}/Zs

Eo/Z, {SUB) x SUB) x SUB3)}/{Zs X Z3}

E{/Z, {SUB3) X [SU(6)/2,]}/Zs

{SUQ3) X Eg}/Z;

Eq

SU9)/Zs
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Table VII
G: Compact, rank G > rank H
(k=1
G H
SUQB)/Zs
Spin (8)
G,
{LXLXL}/Z L/Z

where L is compact simple
and simply connected and Z
is its center embedded dia-
gonally.

where L is embedded diago-
nally in L X L X L and Z is
its center.

Table VIII
G: Noncompact centerless simple
H: Compact
G H conditions k
rn<<r<r 1ifr;=0
SUT(n)/Zn | S(U U U n !
o/ () X Ut X Ulral)/2 2 3if 1, >0
1ifr=1
SO (2n+1) U(r) X SO2n —2r + 1) 1<r<n .
2ifr>1
(U(r) X Sp(n — 1)/ Z, 1ifr=n
Sp"(n)/Z, 1<r<n .
(U —r) X Sp(r)/Z, 2ifr<n
(U(r) X §0(2n — 2r))/Z, lifr=1orn
SO*(2n)/Z, 1<r<n .
(U(n — r) X SO2r)/Z, 2if1<r<n
G;k:GzaAlAl )] — 2
Fi,c50: Sp(3) X TY/Z, — 2
((S(UG) X U)) X SU2))/Z, . 2
Eﬁ.AlAs
SU®6)/Z3 X T1)/Zs — 2
Eg, ps13 SO(10) X SO(2)/Z,: — 1
E7,4, S(U(T) X TY/Z, — 2
SUR) X SO(10) X TY/Z, — 2
E7,A1Da
(SO(12) X TY/Z, — 2
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Table VIII—Continued
G: Noncompact centerless simple
H: Compact
G H conditions k
E7,E3T1 (Es X Tl)/Z3 —_ 1
Eg, pg SO(14) X SO(2) — 2
Eg, 4,8, (Er X TY)/2Z, — 2
. Note (1) in
1 —_
Spin’ (8) Ga Table IV
Note (2) in
2 J—
vector group R {0} Table IV

Corollary (6.3).

Let M be a simply connected pseudo-Riemannian Hermitian

symmetric space such that the group # (M) of holomorphic isometries is a re-
ductive Lie group. Then M may be decomposed as a Riemannian product
M=M, X M, X --- XM, where M, is a complex Euclidean space and M; =
G;/H; is one of the spaces listed in Table 1X. The metric on M, is unique up

to a scalar multiple.

Table IX: Reductive pseudo-Riemannian Hermitian symmetric spaces

G: Centerless simple

H: Centralizer of a torus

(rank G =rankK, k=1)

G H conditions
SUp + q)/Zprq | SUHP) X UNQ)/Zpsq 1<p<q,2u<p, w<gq
SL(2n,R)/Z, (SL(n,C) X TY)/Z, n>1
SL(n,Q0)/Z, (SL(n,C) X TY)/Z, n>1

SL(p + q,C)/Zp.q

S(GL(p,C) X GL(q,C) X C*)/Zp.q |1<Pp<gq

S0t+s(2n + 1)

5042n — 2) X T*

0<t<n—1,5s=0,2

So0(2n + 1,0C) SO(2n — 1) X C* —
Spi(n)/Z, Uin)/Z, 0<2t<n
Sp(n,R) Uk(n)/Z, 0<2<n
Sp(n,C) GL(n,C)/Z, —
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Table IX: Reductive pseudo-Riemannian Hermitian symmetric spaces—continued
G: Centerless simple
H: Centralizer of a torus
(rank G =rank K, k=1)

G H conditions
SO3512n)/Z, SOt2n — 2) X TY)/Z, 0<t<n—-2,s5=0,2
S02(2n)/Z, Ut(n)/Z, 0<2t<n

(S0*2n — 2) X TV/Z, —
S0*(2n)/Z,

Ui(n)/Z, o<2u<r

S022n — 2,C) X C*)/Z, —
50(2n,C)/Z,

GL(”) C)/ Z2 -
Eg¢/Zs (SO(10) X TY)/Z, _

(SO0*(10) X TY)/Z, —
Eg, 4,45

(SO410) X TY)/Z, —

(SO(10) X TY)/Z, —
Eg, psm1 (50%(10) X TY/Z, —

(SO*(10) X TY)/Z, —
ES/Z, (80(10,C) X C*)/Z,4 —
Eq/Z, Eg X T'/Z4 -
E7,4, (Es, 4145 X TY/Z, —

(Es,ps11 X TY)/Z, —
ET,Axl)e

(Eg, 4145 X TY)/Z, —

(Ee X TY)/Z3 —
E; gem

(Eg,psT1 X TY/Z, —
Ef/Z, (E§ % €C*)/Z4 —

Table IX can also be deduced from Berger’s classification of affine sym-
metric spaces G /H with G simple [2].
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