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1. Introduction

When is it possible to classify all compact simply connected Riemannian
manifolds satisfying a given curvature condition? On the one hand Cartan [3],
succeeded in classifying symmetric spaces. In contrast to this it seems hopeless,
at least with our present knowledge, to classify compact simply connected
Riemannian manifolds with parallel Ricci tensor. In the first place it is not
known if such manifolds must be homogeneous (probably not) secondly, Wolf
[22] has given an extremely large number of examples of compact homogeneous
Einstein manifolds.

In the present paper it is shown that there is a different curvature condition
for which a classification can be effected. Specifically, the following result is
proved. Let 3£(M) denote the Lie algebra of vector fields on a differentiable
manifold M.

Theorem (1.1). Let M be aC°° compact simply connected almost Hermitian
manifold with almost complex structure J, Riemannian connection F, and cur-
vature tensor R. Assume that

(0 VX{J)X = 0 for all X € 3£(Λf) (that is, M is nearly Kdhlerian, see § 2),
07) VX(R)XJXXJX = 0 for all X <s X(M).

Then M may be decomposed as a Riemannian product M = Mι X x Mr

where M19 , Mr are listed in Tables V, VI, and VII, in § 6. Furthermore if
M = Mλχ x M r is such a product, then M, M19 , Mr satisfy (ί) and
(ii), and are Einstein manifolds.

The basic idea behind this theorem involves the notion of Riemannian 3-
symmetric space. Roughly, such a manifold is described as follows. For each
point p e M there is an isometry ΘV:M-*M with p as an isolated fixed point
such that θ\ — 1. Furthermore in § 4 we define Riemannian locally ^-symmetric
space. Any such manifold has a naturally defined almost complex structure on
it. See § 4 for precise definitions.

Theorem (1.1) is proved by giving formulas which characterize the curvature
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tensor of a Riemannian locally 3-symmetric space. This is done in § 4. Our
result is similar to that of [1] and [21]. In these papers an identity which char-
acterizes the curvature operator of a general homogeneous space is given. See
also [9], [15], [19], [20].

Any Hermitian symmetric space satisfies the hypotheses of Theorem (1.1).
Therefore Riemannian 3-symmetric spaces can be regarded as natural general-
izations of Hermitian symmetric spaces.

Actually, we prove Theorem (1.1) in a great deal more generality. Instead
of supposing that M is compact with positive definite metric tensor, we only
assume that M is pseudo-Riemannian and the group f(M) of holomorphic
isometries of M is a reductive Lie group. These manifolds are classified and
Theorem (1.1) is obtained as a special case. Furthermore, an even more gen-
eral classification results when the condition VΣ{J)X = 0 is weakened.

This paper is primarily concerned with the geometry, as opposed to the Lie
group theory, of Riemannian 3-symmetric spaces. The latter is given in [23].
The classification theorems of [23] are used in § 6.

The theory of 3-symmetric spaces parallels that of ordinary symmetric spaces
to a great extent. However, there are important exceptions. As already noted,
3-symmetric spaces are automatically almost complex manifolds. Furthermore,
the notion of "dual symmetric space" is muddled for 3-symmetric spaces. The
"dual" of a 3-symmetric space exists, but it may not be unique, and its metric
frequently has a different signature.

It is clear, though, that for any particular feature of the theory of ordinary
symmetric spaces, one can try to find the corresponding theorems for 3-sym-
metric spaces. Such questions are interesting, but the author has decided not
to treat them comprehensively here in order to keep the paper of reasonable
length.

The methods of [23] and the present paper can be combined to work out a
characterization of the curvature operator of Riemannian manifolds with
geodesic symmetries of any odd order and the classification of such spaces.
However, the computations quickly become formidable.

This brings up another point. Wolf [22] has classified all compact simply
connected homogeneous spaces whose isotropy representation is irreducible.
These include the irreducible symmetric spaces and several 3-symmetric spaces.
It should be possible to characterize the other spaces in Wolf's list by the iden-
tities satisfied by their curvature operators. Of particular interest are the mani-
folds 0(ή) IAd(G) where G is a compact simple Lie group of dimension n and
the homogeneous almost complex manifolds with irreducible isotropy represent-
ation. Another class of manifolds for which there should be an interesting char-
acterization in terms of curvature operators is the spaces G/K where G is com-
pact, K has maximal rank, G/K has a G-invariant almost complex structure
but K is not the centralizer of a torus. These manifolds have been classified in
[23].
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In a different direction, Ambrose and Singer [1] and Singer [21] have sug-
gested classifying homogeneous spaces by certain curvature identities given in
[1] and [21] related to their characterization of the curvature operator of a homo-
geneous space. Thus there are two possible ways to proceed. On the one hand,
one can take a class of homogeneous spaces, determine identities satisfied by
their curvature operators, and classify all manifolds satisfying these identities.
Alternatively, one can try to classify manifolds satisfying the curvature identi-
ties of [1] and [21] together with additional identities.

The author wishes to thank A. J. Ledger, O. Kowalski, B. Pettit and J. Wolf
for several comments useful in the preparation of this paper.

2. Nearly Kahler manifolds

Let M be a C°° pseudo-Riemannian manifold with metric tensor < , ) . Denote
by 3£(M) the Lie algebra of C°° vector fields of M, and by Vx and
RWXYZ(W\ X,Y,Z e 3£(M)) the Riemannian connection and curvature tensor
of M, respectively. We say that M is almost Hermitian provided that M has an
almost complex structure / such that <7X, JY) = <X, Y> for all X, Y e £(M).
The Kahler form of M is the 2-form F denned by F(X, Y) = ζJX, Y> for all
X, Yz3i(M)

An almost Hermitian manifold is said to be nearly Kάhlerian if FZ(J)X — 0
for all X e £(M). This is strictly weaker than the condition FX(J)Y = 0 for
all X, Y e 9£(M), which is the denning property for Kahler manifolds. The
almost complex structure of a non-Kahler nearly Kahler manifold is never inte-
grable. In [6], [7], [8] it is shown that many theorems about the topology and
geometry of Kahler manifolds have generaizations to nearly Kahler manifolds.

The key fact which allows one to prove interesting theorems about nearly
Kahler manifolds is that the curvature operator of a nearly Kahler manifold
satisfies certain identities. These identities are only slightly more complicated
than the corresponding ones for Kahler manifolds.

The following result was proved in [8] for the case of positive definite metric.
Proposition (2.1). The curvature tensor R of a nearly Kahler manifold

satisfies the identity

forallW,X,Y,ZeX(M) .

Corollary (2.2). For a nearly Kahler manifold we have

RJVXYZ — RJWJXJYJZ — RJWJXYZ + RJWXJYZ + RJWXYJZ 9

forallW,X,Y,Ze%(M) .

It is natural to ask whether there exist similar formulas for the covariant
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derivative of a nearly Kahler manifold. In fact such formulas exist, but first we
prove a preliminary result which will be needed both in this section and in § 3.
Throughout the rest of this section M denotes a nearly Kahler manifold. Let
© denote the cyclic sum.

Proposition (2.3). For W, X,Y,Ze X(M) we have

(2.2) 2FWXKF)(Y,Z) = © <yw{])XJVY(J)Z) = © RWJXYZ .
XYZ XYZ

Proof. We have the general formula

(2 3) FwΆF)(Y, Z) - FXW\F)(Y, Z)

= —(RWX'F)YZ = — RWχjγz — RJVXYJZ

(2 4)

Since M is nearly Kahlerian, (2.3) implies that

Fww2(F)(Y, Z) = -VWTKF)(W, Z) + FTWKF)(W, Z)

Linearization of (2.4) yields

, Z) + FXW\F)(Y, Z)Fw
= -<Fw{J)Y,JFx{J)Zy

From (2.3) and (2.5) we obtain the first part of (2.2). The second part follows
from the first part, Proposition (2.1) and the first Bianchi identity.

Proposition (2.3) makes it possible to derive an identity for nearly Kahler
manifolds relating the curvature tensor to its covariant derivative.

Proposition (2.4). Let U, W, X,Y,Ze 3E(Af). Then

Fχj\R)wXYZ — Fjj(R)WXjγjZ

(2.6) = RwXVχj{J)YJZ + RWXJYVJJ{J)Z + j{RϋJWXFγ(J)Z + RjXUWFγ(J)Z

Proof. We take the covariant derivative of (2.1) and obtain

— Fu(R)wXjγjz — RwXFu(J)YJZ. Fu\
- FUW

2(F)(X,FY(J)Z) + FUY\F)(Z,FW(J)X) .

Then (2.6) follows from (2.7) and Proposition (2.3).
Corollary (2.5). We have, for W,Xe 3E(M),

Fw(R)wXWX ~ Pw(R)wXJWJX = RfVXJWΓw(J)X '

Finally we obtain an identity involving FR alone.
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Proposition (2.6). For U, W, X,Y,Zε £(M) we have

(2.8) VΌ(

Proof. We substitute JW, JX, JY, JZ for W, X, Y, Z in (2.6) and add the
result to (2.6). Using (2.1) and the first Bianchi identity we obtain (2.8).

3. Local diffeomorphisms associated with almost complex structures

We begin with the following observation.
Proposition (3.1). Let M be a C°° almost complex structure J. Then for

each p e M there exist a neighborhood U(p) and a diβeomorphism θp: U(p) —>
U(p) such that

(0 V = 1,
(iί) p is the unique fixed point of θp.

Proof. Put θ = - | / + (VT/2)/ where / is the identity. Then θ 3 = /,
and for each p e M there exist a neighborhood U(p) and a diίϊeomorphism
θp: U(p) -> U(p) such that θp* = θp. Furthermore we may choose θp so that
(on a possibly smaller neighborhood) we have θp = 1, and p is the only fixed
point.

This proposition suggests the following.
Definition. A family of local cubic diffeomorphisms on a C°° manifold M

is a difϊerentiable function p-+θp which assigns to each p e M a difϊeomorphism
0P on a neighborhood £/(/?) of p which satisfies (/) and (iί) of Proposition (3.1).

Next we prove the converse of Proposition (3.1).
Proposition (3.2). Let M be a C°° manifold, and assume p—>θp is a family

of local cubic diffeomorphisms on M. Then there is a C°° almost complex struc-
ture J on M.

Proof. Let θp*: Mp -+MP denote the induced tangent map of θp at p, and
write θp* = — \lp + (V 3 /2)/p where Ip: Mp —• Mp is the identity. Since
θp*

3 = Ip and 0P* has no real eigenvalues, we have Jp — — Ip. Furthermore
p —• Jp is differentiable because p —> θp is. Hence the proposition follows.

Definition. Let p —» θp be a family of local cubic difϊeomorphisms on a
manifold M. Then the canonical almost complex structure J of the family is
the one defined by θp* = -\IP + (VT/2)/ p for all peM.

In the sequel the relationship between / and θ = — J/ + (V 3 /2)/ will be
important. We shall need a linear algebra result relating the two. For this, let
V be an even dimensional vector space over R with almost complex structure
/. Let φ be a tensor on V, covariant of degree r and contravariant of degree
s. We shall denote the value of φ on x19 •••, xreV, ωί9 ,ω s £ V* by
φ(xu , xr, ω19 , ωs) or ^1...Λ?r.ωi...ωs.

If L: V —> F is a linear isomorphism, then L(^) is defined by L(φ)(xλ, ,
* r , ωx, , ωs) = ^(L" 1 ^, , L~ιxr, L~ιωλ, , L~ιω^. In the particular case
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where the contravariant degree of φ is 1 we may regard φ as a multilinear map
such that φ(x19 -,xq): V —> V is a linear map for all x19 ,xq. Then
we have L(φ)(x19 , xq) = L-φ(L~ιxλ, , L ' % ) .

Definition. We say that L preserves φ if L(φ) = φ.
Proposition (3.3). Let a, β, γ, η, ζ be covarίant tensors on V of degrees

1, , 5, respectively. Then the following are necessary and sufficient condi-
tions that Θ preserve them:

(0 α = 0,
00 βjxjy = βxy for all x,yeV,

(«0 ϊxyz = -ΪJxjyz = -yjxyjz = -TxJyJz, for all x, y, z e V,

O'v) 7]wxyz = rjjwjxyz + Vjwxjyz + Vjwxyjz, etc., for all w, x, y, z € V,

(V) tvwxyz = —UtjvJwxyz + * * ' + ίvwxJyJz}* far a l 1 V> ̂ ? *> J 5 Z £ V.

Proof. (0-(v) all have similar proofs, so for example we prove (///)• Sup-
pose θ(γ) = γ. Then for x, y, z e V we have

1 J~%
Txyz = Tθxθyθz = ϊθ^xθ'ίyθ^z ~ ~fxyz i — - yfjxyz "T ifxJyz ~Γ ΊfxyJz)

o o

(3.1)
~7ΓVJxJyz "I" ΪJxyJz "I" Γz./2/./z} — —5 ΪJxJyJz
o o

From (3.1) it follows that

(̂ •2) 3^2 + γjxjyz + ΊfjxyJz + ϊxJyJZ ~ 0

Replacing x and y by /x and /j in (3.2) we obtain

w 3) Txyz + 3γ
JxJyz

 TjxyJz TxJyJz
 =
 0 .

From (3.2) and (3.3) we have that γxyz = ~TJXJVZ\ similarly, γxyz = -TJXVJZ

— TxJyJz-

Finally reversing these steps we see that (Hi) implies θ(γ) = T-
Corollary (3.4). Let η and ζ be covariant tensors of degrees 4 and 5 re-

spectively.
(0 // Θ(η) = η, then ηwxyz = ηJwjxjyJz.

(H) θ(Q = ζ if and only if

^>υwxyz — ^ΓV^JvJwJxJyz ~Γ * " * ~Γ ^svJwJxJyJzj

Corollary (3.5). Let M be an almost complex manifold with almost com-
plex structure J, and denote by S the torsion tensor of J. Let < , > be a pseudo-
Riemannian metric on M. Then

(i) Θ preserves J and S,
(ii) Θ preserves <( , ) // and only if M is almost Hermitίan,
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(Hi) Θ preserves FJ if and only if M is quasi-Kdhlerian.
Proof, (i) and (iί) are obvious. For (Hi) we recall that M is quasi-Kdhlerian

if and only if VX(J)(Y) + VJX(J)(JY) = 0 for all X,Ye 3E(Af), [6]. Then it is
easy to check (Hi).

Let θp be a local cubic diffeomorphism. Although θp preserves the canonical
almost complex structure / at p it is in general false that θp is a holomorphic
map in a neighborhood of p. It θv is an isometry, the next proposition gives a
necessary and sufficient condition for θp to be a holomorphic isometry.

Proposition (3.6). Let M be a C°° almost Hermίtίan manifold, and assume
there is a family of local cubic diβeomorphisms p —> θp, each of which is an
isometry. Suppose the canonical almost complex structure J of the family is the
same as that of M. Then the following two conditions are equivalent:

(i) Each θp is a holomorphic isometry,
(iί) θ preserves FJ and F2J.
Proof. That (i) implies (iί) is obvious, because at p we have θp = θp*.

Conversely, suppose (iί) holds. Then for aΆpeM we have θp*((FkΘ)p) = (FkΘ)p

for k = 0,1,2. According to [5, Theorem 4.11] this implies that θp is a holo-
morphic isometry.

Proposition (3.7). Let M be a nearly Kάhler manifold with almost complex

structure J. Then θ = — \I + (VT/2)/ preserves FkJ for k = 0, 1, 2, .
Proof. This is obvious for k = 0. Furthermore a nearly Kahler manifold

is quasi-Kahlerian [6], and so θ preserves FJ by Corollary (3.5) (Hi). That θ
preserves FkJ for k > 2 follows from Proposition (2.3) and induction.

Corollary (2.2) and Proposition (3.3) suggest the study of almost Hermitian
manifolds satisfying either or both of the conditions Θ(R) = R, Θ(FR) = FR.
For future reference we collect here some results about these manifolds.

Proposition (3.8). Let M be an almost Hermitian manifold with curvature
operator R.

(ι) θ(R) = R if and only if for all W, X,Y,Zz £(M) we have Rwxγz =

RjWJXYZ "I" RjWXJYZ + RjWXYJZ'

(iΐ) If Θ(R) = R, then Rwxγz = RjWJXJYJZ for all W, X,Y,Ze 3i(M).
(Hi) If M is nearly Kdhlerian, then Θ(R) = R.
Proof. These are immediate from Corollary (2.2), Proposition (3.3) and

Corollary (3.4).
We remark that the condition Θ(R) = R by itself does not imply that M is

either quasi-Kahlerian or nearly Kahlerian. In fact any contractible even
dimensional Riemannian manifold with constant nonzero curvature has an
integrable almost complex structure / such that Θ(R) = R. Such a manifold is
not quasi-Kahlerian if its dimension is greater than or equal to 4.

Next we obtain some conditions on FR.
Proposition (3.9). Let M be an almost Hermitian manifold.

(i) If Rwχγz = RJWJXJYJZ for all W, X,Y,Zε Ϊ (M), then for all V,
W, X,Y,Zz 3E(Λf)
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Vγ(R)WXYZ — Vγ(R)jWJXJYJZ — Rpv(J)WJXJYJZ + * * * + RjWJXJYΓV(J)Z

(iί) // Θ(R) = R, then for all V, W, X,Y,Zz X(M)

*V\R)JWXJYZ YV\

RjWVγ(J)XYZ + RjWXVγ{J)YZ

(in) If Θ(R) = R, then for all V, W, X,Y,Zε 3£(Aί)

(iv) If Θ(R) = RandM is quasi-Kahleήan, then for all V, W,X,Yε

FV(R)WXYZ — Vγ(R)jWJXJYJZ — —Pjv(R)jWXYZ — — Vjγ(R)WχγjZ

/. (/) and (//) are proved by taking the covariant derivatives of appro-
priate identities involving R, and (Hi) follows from (//)• For (iv) we have from
(0 and (ft1) that for all V, W, X,Y,Ze 3£(M)

— Rvv{J)WJXJYJZ —

— *V\R)WXYZ "1" v V\R)JWJXJYJZ '

Next we give a characterization of VR which will be important in § 4.
Proposition (3.10). Let M be an almost Hermitian manifold with Θ(R) = R.

Then the following conditions are equivalent:
(0 Θ(FR) = FR,

(ii) VV(R)WXYZ + Vv(R)JWJXjYJZ = 0 for all V, W, X,Y,Zε £(M),
070 -2VV(R)WXYZ = Vjy(R)JWXYZ + . . + VjV{R)WXYjZ for all V, W,

X, Y,ZzX(M).
Proof. Suppose (/) holds. From Proposition (3.3) (v) we have

,- .v Ϋv(E)wXYZ \φjv(K)jWXYZ + # + Vjγ(R)WXYJZ

+ Vy(R)JWJXYZ + ' + Pv(R)

We substitute JW, JX, JY, JZ for W, X, Y, Z in (3.4), add the result to (3.4),
and obtain

fy(R)wXYZ + Pv(R)jWJXJYJZ + ^vi^JWJXYZ + * ' * + ^V\

(3.5) = — j{Vjy(R)jwχγz — VJV(Ά)WJXJYJZ + * + VJV(R)WXYJZ
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In (3.5) we replace W and X by JW and JX and add the resulting equation
to (3.5). We obtain

/ o r. FV(R)WXYZ + Fγ(R)jWjχjYJZ + Fγ(R)JWJχYZ

+ FV(R)WXJYJZ = 0 .

Then (3.6) and Proposition (3.9) (Hi) imply (iί).
Next suppose (iί) holds. We apply (iί) and the second Bianchi identity to the

right hand side of (Hi). After some calculation we obtain (Hi).
Finally suppose (Hi) holds. Applying (Hi) twice we have

Fγ(R)wχγz

— —~2V JV(R)JwXYz — v JV(R)WJXJYJZ +

(3.7) + FJV(R)WXYJZ — VJV(R)JWJXJYZ)

— *V(R)WXYZ + *V\R)JWJXJYJZ VV\R)JWJXYZ

— . . . — Vγ(R)Wχjγjz '

Thus Vv(R)jWJXYZ + . + Vγ(R)WχjγjZ = 0, and so (///) implies (/).

Corollary (3.11). // M is an almost Hermίnian manifold with Θ(R) = R
and Θ(VR) = FR, then the Ricci curvature of M is parallel.

Proof. This follows from Proposition (3.10) (iί).
Finally we note the following result.
Proposition (3.12). Let M be a nearly Kάhler manifold. Then the following

conditions are equivalent:
(0 Θ(FR) = FR,

(ii) FY(R)YJYYJY = 0 forallYeX(M).
Proof. It is clear that for any almost Hermitian manifold, (i) implies (//)•

Conversely, assume that M is nearly Kahlerian and (//) holds. M is quasi-
Kahlerian, so from Proposition (3.9) (iv) and the second Bianchi identity we
have

(3.8) FX(R)YJYYJY = FY(R)YJχYJY + FJY(R)jYjχYJY .

On the other hand, linearization of (H) yields

(3.9) Fχ(R)YJYYJY + 2FY(R)XJYYJY + 2FY(R)YJXYJY = 0 .

We replace Y by JY in (3.9), add the result to (3.9) and use the second
Bianchi identity. We obtain

(3.10) 4Fχ(R)YJYYJY + 2FY(R)YJχYJY + 2FJY(R)jYjχYJY = 0 .

Then (3.8) and (3.10) imply
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(3.11) Vχ(R)γjγγjγ = 0

for all X, Y e 3£(M). We linearize (3.11) twice and make use of Proposition
(2.6). The result is that (3.11) implies condition (iί) of Proposition (3.10).
Hence Θ(VR) = VR.

4. Pseudo-Riemannian locally 3-symmetric spaces

We begin by defining the main objects of study of this paper.
Definition. A pseudo-Riemannian locally 3-symmetric space M is a C°°

pseudo-Riemannian manifold M together with a family of local cubic diffeo-
morphisms p —• θp such that each θp is a holomorphic isometry in a neighbor-
hood of p with respect to the canonical almost complex structure of the family.

From now on the only almost complex structure we shall consider on a
pseudo-Riemannian locally 3-symmetric space is the canonical one. We shall
call θp a local (and later a global) cubic holomorphic isometry.

The notion of pseudo-Riemannian locally 3-symmetric space is a special case
of a more general concept due to Graham and Ledger [5]:

Definition. An affine locally s-regular manifold is a C00 affine manifold M
together with a family of maps {sp} with the following properties:

(0 For each p β M there exist neighborhoods U(p) and V(p) such that
sp: U(p) —• V(p) is an affine transformation with p as an isolated fixed point.

(iί) Let S be the tensor field of type (1,1) defined by Sp = (sp*)p for all
p € M. We then require that

(Sp*)qoSq = SSp(q) o (Sp*)q .

An important result of Graham and Ledger [5, Theorem 4.12] is that an
affine locally ^-regular manifold M together with its affine connection and tensor
field S are necessarily analytic. Furthermore, if M has a compatible pseudo-
Riemannian metric, then it is also analytic. The idea of the proof is to intro-
duce a new connection V with parallel torsion and curvature such that all the
old structure of M is parallel with respect to the new connection. A theorem
of Kobayashi and Nomizu [12, Vol.1, Theorem 7.4, p. 261] then implies every-
thing is analytic.

Specialization of these results to the case at hand yields
Proposition (4.1). A pseudo-Riemannian locally 3-symmetric space is an

analytic manifold. Each local cubic isometry θv is analytic and the map p^θp

is analytic.
For a nearly Kahler manifold to be a pseudo-Riemannian locally 3-symme-

tric space it is possible to weaken the conditions on the loca lcubic diίϊeomor-
phism.

Proposition (4.2). Let p —> θp be a family of local cubic ίsometries on a
pseudo-Riemannian manifold such that the canonical almost complex structure
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is nearly Kάhlerian. Then M is a pseudo-Riemannian locally 3-symmetric space.
Proof. This is immediate from Propositions (4.1), (3.6) and (3.7).
Definition. A pseudo-Riemannian 3-symmetric space is a connected pseudo-

Riemannian locally 3-symmetric space in which the domain of definition of
each local cubic isometry is all of M, i.e., the cubic holomorphic isometries
are global.

We drop the prefix "pseudo" in this and the preceding definitions if the metric
is positive definite.

An ordinary pseudo-Riemannian locally symmetric space is characterized by
the fact that its curvature tensor is parallel. We now obtain an analogous char-
acterization of pseudo-Riemannian locally 3-symmetric spaces. Such spaces are
almost complex manifolds by Proposition (3.2), and so it is natural to expect
the canonical almost complex structure / to play a role in the characterization.

First we obtain some necessary conditions.
Proposition (4.3). Let M be a pseudo-Riemannian locally 3-symmetric

space. Then
(i) RWXYZ — RJWJXYZ + RJWXJYZ + RJWXYJZ for W,X, Y,Z € 3£(M),

(ii) FV(R)WXYZ = (V 3 /4){RFv{J)WXYZ + + RWχγrV(j)z}
— O /4){Rjpvij)WXYZ + + RwXYJFv(J)z}

forV,W,X,Y,Zε3i(M),
(«0 Fk

Vl...Vk{R)WXYZ = {-l)knx...Vk{R)JWJXJYJZ for V19 •, Vk9 W,X,
Y,Zedί(M),

O'v) the Ricci curvature of M is parallel.
Proof. We have Θ(R) = R and Θ(FR) = VR. Hence (0 and (ιv) follow

immediately from Proposition (3.8) and Corollary (3.11). Furthermore, (iί) is
a consequence of [5, Lemma 4.4]. Finally (Hi) follows either from (ii) or from
Proposition (3.10) and the fact that RWXYZ — RJWJXJYJZ for W? X,Y,Z €

Corollary (4.4). Let M be a pseudo-Riemannian locally 3-symmetric space.
Then the following conditions are equivalent:

(i) M is Kdhlerian,
(ii) M is locally Hermitian symmetric.
Proof. If M is Kahlerian, then

for all V, W, X,Y,Ze 3E(M). This and Proposition (4.3) (ii) imply that M is
locally Hermitian symmetric. The converse is obvious.

We now prove the converse of Proposition (4.3).
Theorem (4.5). Let M be a C00 pseudo-Riemannian manifold satisfying the

following conditions:
(i) M is almost Hermitian with almost complex structure J,
(ii) Θ preserves FJ and F2J, where Θ = - | / + (VT/2)/,
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(///) Rwxγz = RjWjχγZ + RJWXJYZ + RJWXYJZ for all W, X,Y,Zε
(ίv) FV(R)WΣYZ + Vv(R)jwjχjγjz = 0 for all V, W, X, Y,ZzH(M).

Then M is a pseudo-Riemannian locally 3-symmetric space, and J is the canon-
ical almost complex structure determined by the local cubic isometrίes of M.

Proof. By Propositions (3.8) and (3.10) we have Θ(R) = R and Θ(FR) =
FR. Furthermore it follows from Proposition (3.9) (ί) that

(4.2) 2VV(R)WXYZ = Rvv{J)WJXJYJZ + + R jWJXJY?v(J)Z

From (4.2) and induction it follows that for any n > 1, Fn/ί can be expressed
in terms of FkR and FιJ where A: and / — 1 are strictly less than n. Using
hypothesis (ii) and induction we conclude that

Θ(FnR) = FnR for n = 0,1,2, .

Now let p € M. According to [12, Vol. 1, Theorem 7.2, p. 259] there exist
a neighborhood £/(/?) and an affine map Θp: U(p) —> [/(/?) such that the tangent
map θp on Mp coincides with θ on Mp. Since θ is a linear isometry on Mp, θp

is an isometry on U(p). Furthermore from (4.1) it follows that θp — 1. That
each θp is holomorphic follows from hypothesis (ii) and Proposition (3.6).

Theorem (4.5) can be significantly simplified for nearly Kahler manifolds.
Theorem (4.6). Let M be an analytic pseudo-Riemannian manifold satisfy-

ing the following conditions:
(0 M is nearly Kdhlerian with almost complex structure /,

(ii) FZ(R)XJXXJX = 0 for all X e 3£(M).

Then M is a pseudo-Riemannian locally ^-symmetric space, and J is the canon-
ical almost complex structure determined by the local cubic isometries of M.

Proof. By means of Proposition (3.7), Corollary (2.2), and Proposition
(3.12), the hypotheses of Theorem (4.6) imply those of Theorem (4.5). Hence
the result follows.

We next prove some results for pseudo-Riemannian 3-symmetric spaces for
which the analogous results are known to be true for ordinary pseudo-
Riemannian symmetric spaces. We shall need these in the next sections.

Theorem (4.7). A complete connected simply connected pseudo-
Riemannian locally 3-symmetric space is a pseudo-Riemannian ^-symmetric
space.

Proof. By [12, Vol. 1, Corollary 6.2, p. 255] each local cubic isometry θp

can be extended to a global affine diίϊeomorphism θp of M. Since θp = 1 and
θp map geodesies into geodesies, we have θp — 1. Moreover θp is an isometry
at p and affine everywhere, so it is a global isometry. Finally, if / denotes the
canonical almost complex structure of M, then θp / is also an almost complex
structure on M. They are both analytic and coincide on an open neighborhood
of p, and so they coincide everywhere. This completes the proof.

Theorem (4.8). Let M be a pseudo-Riemannian 3-symmetric space. Then
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the group f(M) of holomorphic isometries of M acts transitively on M.
Proof. Let p e M, and choose a neighborhood V of p which is a normal

neighborhood of each of its points. Then there exists a neighborhood W c V
of p such that θq{p) e V for all q eW. Since F is a normal neighborhood of
each of its points, exp"1 is defined on V for all q e V. Define ψ : W —• V by
-ψ>(g) = 0g(p). Since p —>θp is difϊerentiable so is ψ. From (4.1) it follows that
the tangent map ψ%p of ψ at p is given by

(4.3) ψ*, = IP-ΘP

(see [16]). Now 1 is not an eigenvalue of Θp and so ψ%p is nonsingular. Hence
ψ is a diίfeomorphism on some neighborhood U oi p with £/ C W. Then ψ(£7)
is a neighborhood of /? contained in the J?(M)-orbit of p, because each
q e | ( ί / ) is the image of /? under the holomorphic isometry θq. The /(M)-orbit
of /? is thus open. Furthermore, the complement of the /{M)-oxbit of p is also
open, because it is the union of £/(M)-orbits. Since M is connected, the theorem
follows.

This proof is patterned after that of [17, Theorem 2].
Remark. In [5] the theorems corresponding to Theorems (4.7) and (4.8)

for ^-regular manifolds are proved by different methods.
Theorem (4,9). A Riemannian ^-symmetric space is complete.
Proof. This follows from Theorem (4.8) and the following fact about

Riemannian manifolds: if a Riemannian manifold M has a transitive group of
isometries, then M is complete.

The author does not know if a pseudo-Riemannian 3-symmetric space need
be complete. The usual proof (see [12, Vol. 2, p. 223] does not immediately
generalize.

We next turn to the problem of decomposing a Riemannian 3-symmetric
space into the Riemannian product of pseudo-Riemannian 3-symmetric spaces
which are in some sense irreducible. It turns out that such a decomposition
exists it is slightly different from the de Rham decomposition.

Definition. Let M be a pseudo-Riemannian 3-symmetric space. We say that
M is indecomposable if and only if M is not flat and whenever M is the
Riemannian product of pseudo-Riemannian 3-symmetric spaces Mλ and M2,
then either M = M1 or M = M2.

Let M be a simply connected pseudo-Riemannian manifold. Recall [11], [12]
that M is weakly irreducible provided that the holonomy group at any point
has no invariant nondegenerate subspaces.

Proposition (4.10). Let M be a indecomposable simply connected pseudo-
Riemannian ^-symmetric space. Then either M is weakly irreducible or M is a
Riemannian product M — N X N where N is weakly irreducible.

Proof. Suppose M is not weakly irreducible. Then M = N X Nι where N
is weakly irreducible. Let p e M, and consider the global cubic holomorphic
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isometry θp. Since M is indecomposable we must have ΘP(N) Φ N. Further-
more the tangent space Mp is spanned by the subspaces Np and ΘP(N)P. It fol-
lows that M is isometric to N X N.

For example, we shall show in the next section that if G is any compact
simple Lie group, then G X G is a Riemannian 3-symmetric space which is
indecomposable.

Theorem (4.11). Let M be a simply connected pseudo-Riemannian 3-sym-
metric space. Then M is a Riemannian product M = Mo x M1 x x Mr

where Mo is an even dimensional Euclidean space and M19 , Mr are inde-
composable pseudo-Riemannian 3-symmetric spaces.

Proof. We use the de Rham decomposition theorem for pseudo-Riemannian
manifolds [11], [23] and get M = Mo x N1 X X Nk where Mo is a Euclidean
space and N19 , Nk are weakly irreducible. Let θp be the global cubic holo-
morphic isometry at p e M ; then θp preserves this decomposition. We must
have ΘP(MQ) = Mo, and so Mo is even dimensional. If θp(Ni) Φ Nt for some /,
then there exists Nj isometric to Nt such that θp(Ni X Nj) = Nt X Nj. There-
fore we obtain the decomposition

M = Mo x Λf! x X Mr ,

where θpiM^ = M^ for / = 0, , r, and for / = 1, , r either Mi is irre-
ducible or Mt = Ni X Nί where Λ^ is irreducible. The restriction of 0P to Λf 4

for each p e Mt makes Mt into a pseudo-Riemannian 3-symmetric space.

5. Pseudo-Riemannian 3-symmetric spaces as coset manifolds

Some of the theorems of this section are special cases of results of [5]. Let
M be a pseudo-Riemannian 3-symmetric space, G the largest connected group
of holomorphic isometries of M, and H the isotropy subgroup of G at a point
p eM. Denote by θp the (global) cubic holomorphic isometry of M at p, and
put t(g) = θpogoθp

Λ for g e G. Let G ί = {g e G\t(g) = g}9 and let G,/ be the
identity component of Gc.

Proposition (5.1). Let M be a pseudo-Riemannian 3-symmetric space.
Then

(0 t is an automorphism of G and f = 1,
(K) we have Go

ί C ^ C ^ ,
(/«) ί/*ere <w α G-invariant pseudo-Riemannian metric and a G-invariant

almost complex structure on the coset space G/H so that G/H is holomorphi-
cally isometric to M.

Proof. For (/) let g eG. Then θp e f(M) and so t(g) € G. Easy calculations
prove the rest of (/).

Next let h e H. Then at p the tangent maps of h, t(h), and θp satisfy
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-j = (-1/ + ̂ ) / Λ ° ( } ' ^

Sincehis a holomorphic isometry we have h%ojp = jpoh^ and so t(h)^ = h^.
Two isometries with the same tangent map coincide, and so t(h) = A. This
proves H cz G£.

Let s —» g5 be a 1-parameter subgroup of GK Then t(gs) = g5, and so

(Opθgs)(p) = (gsoθp)(p) = gs(p) .

Thus the orbit {&(p) \s e R} is fixed by θp. Since p is an isolated fixed point of
θp, we have gs(p) = p for all s. Thus gs e //, and we have proved Go

ί c ί/.
Finally for (///) we note that there exists a difϊeomorphism ψ: M -+ G/H.

We then just require that ψ be a holomorphic isometry.
Proposition (5.2). Let G be a Lie group, t: G—+G an automorphism with

f = 1, and H a subgroup of G with ^ C H C f f . Denote by g and ϊ) ί/*e L/£
algebras of G and H, respectively, and denote by t^ the automorphism of g
induced by t. Then

(0 we have ζ = {Z e β | ί#Jf = Z} ?

(K) G/H W β reductive homogeneous space.
Proof. (0 is obvious. For (iί) we decompose g ® C as

m~ are the eigenspaces of t^. corresponding to the eigenvalues

-l - V 3 ^ ) , respectively. Let m = (m+ θ m") Π g so

Now let X €xn± and h € H. Then we have

ί#(Ad (A)JO = Ad (t(h))t*X = Ad (A)ί#Z = i ( - 1 ± \/^3) Ad

Hence Ad (A)(m±) C m±, and so Ad (A)(m) £ m. Therefore G/H is a reduc-
tive homogeneous space.

Corollary (5.3). A pseudo-Riemannian ^-symmetric space is a reductive
homogeneous space.

We can now prove the converse of Theorem (5.1). As usual with a reductive
homogeneous space G/H, we write g = ή φ m, where g and ϊj denote the Lie
algebras of G and H respectively. Then m may be identified with the tangent
space to G\R at the coset H.

Theorem (5.4). Let G be a connected Lie group, and t: G —> G an auto-
morphism of order 3. Let H be a subgroup with GJ C H c G£
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g = ζ 0 m as in Theorem (5.2). // < , > is any {not necessarily positive definite)
metric on m which is both Ad (H)-and t^.-invariant, then <( , y induces a G-
invariant metric on G/H which makes G/H into a pseudo-Riemannian 3-sym-
metric space. Furthermore, if we write t^. |m = — jl + (V 3/2)/, then J induces
the canonical almost complex structure on G/H, and <(, ) is almost Hermitian
with respect to J.

Proof. Let M = G/H. Then we have a projection π: G —> M let p — π{e),
where e is the identity of G. Define θp\ M -* M by θp(g(p)) — t{g){p). Then
0P is well-defined, it is a difϊeomorphism of M, and θp = 1.

To show that /? is an isolated fixed point of 0P, suppose θp(g(p)) = g(p) for
some g € G. Then t(g)(p) = g(/?), and so putting h = g~H(g) we have h <=. H.
Hence t(h) = A, and so

(5.1) /*3 = /zί(/ι)/2(/0 = g-'KgXg-Higmg-'tig)) = β .

If g is near ^, so is h, and (5.1) shows that h = e. Thus ί(g) = g; moreover,
g e GQ, and we have g e H. Therefore p is an isolated fixed point of θp.

For any other point q e M, let g e G be such that g(p) = q. We define θq by
θq = goθpog-1. Then #3 is independent of the choice of g, it is a difϊeomor-
phism of M with θq

z = 1, and q is an isolated fixed point of θq.
We get a G-invariant metric on G/H by translating the metric ( , ) on m via

G. Since < , > is ^-invariant, θp is an isometry at p. Thus 0P preserves < , >
and all of its covariant derivatives at p. Everything is analytic, and so θp is an
isometry of M. Then each g e G is an isometry of M, and so each θq is an iso-
metry of M.

We also translate the almost complex structure / on m to each tangent space
of M = G/H via G. In order to verify that each θq is holomorphic, it suffices
to prove that θp is holomorphic, because each g e G is holomorphic by defini-
tion of /.

First, we note that since M is homogeneous, the Riemannian connection V
of M is given at p by the formula

(5.2) 2<yxγ,z> = -<x, [Y,z\y - <Y, [X,Z]> + <z, [x, n > ,

for X, Y, Z e m. From (5.2) it follows that <Fk

Zl...χk(J)(Y)9Zy can be ex-
pressed in terms of <( , >, /, and [, ] m . Now βp* preserves all of these, and
θp* = ( — \l + (VT/2)7)p. It follows from Proposition (3.6) that 0P is holo-
morphic. This completes the proof.

Almost complex structures which are derived from an automorphism of order
3 are characterized as follows.

Proposition (5.5). Let M = G/H be a homogeneous space where ζ is the
fixed point set of an automorphism of g of order 3. Then the canonical almost
complex structure on M satisfies
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(0 [JX, Y]m = -J[X, Y]m, (ii) [X, Y\ = [JX, JY\
for all X, Y e m . Conversely, if G is simply connected and G/H has a G-
ίnvarίant almost complex structure satisfying (i) and (ii), then there exists an
automorphism t: G -> G such that Go

ι cz H C G*.
This is proved in [23].
So far we have not used the hypothesis that M = G/Hbe nearly Kahlerian.

We do this after we show that in our situation the property of being nearly
Kahlerian is equivalent to the well-known notion of natural reductivity.

Recall [14] that a homogeneous space M = G/H with a G-invariant pseudo-
Riemannian metric <( , )> is said to be naturally reductive if it admits an Ad (H)-
invariant decomposition g = ϊ) 0 m satisfying the condition

(5.3) <XX, Y]m, Z> = (X, [Y, Z]m> for all X,Y,Zem.

Proposition (5.6). Let M = G/H be a pseudo-Riemannian 3-symmetric
space. Then the following conditions are equivalent:

(i) M is naturally reductive,
(ii) the canonical almost complex structure of M is nearly Kahlerian.
Proof. The Riemannian connection of M given by (5.2). This, together

with Theorem (5.5) (/), implies that

(5.4) {VX(J)X, JY> = 2<X, [X, Y]> for X, Y

From (5.3) and (5.4) it follows that (i) and (ii) are equivalent.

6. The classification

We can now prove our main classification theorem.
Theorem (6.1). Let M be a simply connected pseudo-Riemannian 3-sym-

metric space such that the group f(M) of holomorphίc isometries of M is a reduc-
tive Lie group. Then M may be decomposed as a Riemannian product M =
Moχ Mλχ x Mr where Mo is a complex Euclidean space and Mt = Gi/Hi

(1 < i < r) is one of the spaces listed in Tables I, II, III, and IV. Each Mt

(I < i < r) is an almost complex manifold in a natural way. Any homogeneous
metric on Mi which is compatible with the almost complex structure makes Mt

into an indecomposable (quasi-Kdhleriaή) pseudo-Riemannian 3-symmetric
space. Of all such metrics there is one, unique up to a scalar multiple, that
is nearly Kahlerian and makes Mi naturally reductive.

Proof. According to Theorem (4.11) M can be decomposed as M = Mo X
Mι x x Mr where Mo is a complex Euclidean space and Mt (1 < / < r)
is an indecomponsable pseudo-Riemannian 3-symmetric space. Hence without
loss of generality M is indecomposable. Write M — G/H as in Theorem (5.1),
and decompose the Lie algebra of G as g = Ij + m. We may assume that G is
a connected reductive Lie group acting effectively. Then I) is the fixed point
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set of an automorphism of g of order 3. All such spaces have been classified
[23, Theorem 7.17]. Then Tables I, II, III, and IV are the same as the corre-
sponding tables of [23, Theorem 7.17]. By Theorem (5.4) each of these spaces
is a pseudo-Riemannian 3-symmetric space with respect to any homogeneous
metric compatible with the canonical almost complex structure.

Furthermore it is clear that each of the spaces M = G/H in Tables I, II, III,
and IV is naturally reductive with respect to a metric induced from a biinvari-
ant metric on the Lie algebra of G. Conversely, any other naturally reductive
metric must be a scalar multiple of the biinvariant one on some component of
the isotropy representation of H. Then (5.3) implies that it is a scalar-multiple
on the other components. By Theorem (5.6), M = G/H is nearly Kahlerian
with respect to this naturally reductive metric.

Note. In the following and subsequent tables we adopt the notational con-
ventions of [23]. See [23,p.ll8]. Also k denotes the dimension of the cone of
homogeneous metrics on each homogeneous space compatible with the canon-
ical almost complex structure.

Table I

G: Centerless classical simple

H: Centralizer of a compact total subgroup

G

SU™{ή)/Zn

SL(n,R)/Z2

5l(" β)/Z,

SL(n,C)/Zn

SO2s+2t(2n + 1)

SO(2n+l,C)

Sp^(n)/Z2

Sp(n,R)/Z2

Sp(n,C)/Z2

SO2s+t(2n)/Z2

SO*(2n)/Z2

SO(2n,C)/Z2

H

S{U^n) X l/*«fo) X U<*(rz)}/Zn

{sL(l,c)χΓi}/Zn/2, HEEO(2)

S{GL(r1}C)χGL(r2iC)
XGL(rs,C)}/Zn

Us(r) X SO2t(2n - 2r + 1)

GL(r, C) X SO(2n - 2r - 1, C)

{U»(r) X Sp\n - r)}/Z2

{Us(r)χSp(n-r,R)}/Z2

{GL(r,C)χSp(n-r,C)}/Z2

{Us(r)X SO%2n-2r)}/Z2

{U*(r) X SO*(2n - 2r)}/Z2

{GL(r, C) X SO(2n - 2r, C)}/Z2

Conditions

n = rx + r2 + r3

m = si + s2 + 53

0 < I-! < r2 < r3

1 <r2

\<r<n

1 < r < n

1 < r < n

k

1 if n = 0

3 if n > 0

1 if r = 1

2 if r > 1

1 if r = n

2 if r < n

1 if r = 1

or n

2 if

Kr<n
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Table II

G: Centerless exceptional group

H: Centralizer of a compact toral subgroup

G

G2

Gf = G2,A!A!

Gc

2

F,

F4,B4:

F4,CsCi

Ee/Z,

EQ,A!AS

EβtDsTl

ECJZ,

H

1/(2)

1/(2), U\2)

GL(2,C)

{Spin (7) X Ti}/Z2, {Sp(3) X T^}/Z2

{Spin-(7) χTi}/Z2, {Sp\3)χT>}/Z2

{Spin-(7) X Γi}/Z2, {5p«(3) X T^}/Z2,
{Sp(3,R) X T*}/Z2

{Spin (7, C) X C*}/Z2, {Sp(3,Q X C*}/Z2

{SO(10)χSO(2)}/Z2

{S(U(5)X U(1))XSU(2)}/Z2,
{[5C/(6)/Zs] X lη/Zj

{[5O(8) X 50(2)] X SO(2)}/Z2

{SO*(10) X SO(2)}/Z2, {SO*(10) X SO(2)}/Z2

{S(Ur(5) x C/(l)) x SU*(2)}/Z2

{[SUr(6)/Zz] X Ti}/Z2

{[SO*(S)XSO(2)}/Z2

{[SOr(β) X SO(2)] X SO(2)}/Z2

{W(10) X SO(2)}/Z2, {SO*(10) x SO(2)}/Z2

{S(Ur(5)χU(l))χSUs(2)}/Z2

{[SUr(6)/Zύ X Π}/Z2

{[5O*(8) X SO(2)] X SO(2)}/Z2,
{[SOr(S) X SO(2)] X SO(2)}/Z2

{SO(10,C)X C*}/Z2

{S(GL(5,Q X C*) X SL(2,C)}/Z2,
{[5L(6,C)/Z3]XC*}/Z2

{[SO(β,QxC*\χC*}/Z2

Condit ions

—

—

—

—

r = O,l

r = 2 , 3 ; f = 0 ,1

—

—

—

—

—

(J,r)=(θ,θ),

(0,1), (0,2), (1,2)

r =0,2,3

r = 2,4

r = 0,2

(s,r) = (1,0),
(0,1), (1,1), (0,2)

r = l , 2

r = 0,2

—

—

—

k

2

2

1

2

3

1

2

2

3

1

2

2

3

1

2

3
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Table II—Continued

G: Centerless exceptional group

H: Centralizer of a compact toral subgroup

G

E7/Z2

E7,Λ7

E7,AtDβ

E7>E6T1

E?/Z2

E8

E8,D»

Es,AxE7

Eg

H

{E 6 XJi}/Z 3

{SU(2) X [50(10) X 5O(2)]}/Z2,
{5O(2) x 5O(12)}/Z2, 5([/(7) X l/(l))/Z4

{E6,AIASX Ti}/Z2

{SU{2) x [5O*(10) x 5O(2)]}/Z2,

{SU\2) X [5O4(10) X 5O(2)]}/Z2,

{50(2)x5O*(12)}/Z2, {50(2)x5O6(12)} /Z2,

S(Ur(7) X t/(l))/Z4

{̂ 6,z?5Π X Ti}/Z2, E6,AlA5 x Γi}/Z2

{5^(2) X [5Or(10) x 5O(2)]}/Z2,

{SU\2) X [5O*(10) X 5O(2)]}/Z2,

{5O(2)x5OP(12)}/Z2,

5(£/ (7) X C/(l))/Z4

{E6 X Ti}/Zs, {E6fD5T1 X Ji}/Z 2

{5^(2) X [50(10) X 50(2)]}/Z2,

{5C/(2) x [5O*(10) X 50(2)]}/Z2,

{50(2)X5O*(12)} /Z2, {5O(2)X 5O6(12)} /Z2,

S(ZJr(7) x C/(l))/Z4

{EG

Q x C*}/Zz

{SL(2,C) X [50(10,C) x C*]}/Z2,
{C* X 5O(12,C)}/Z2, 5{GL(7,C) X C*}/Z*

50(14) X 5O(2), {E7 X Tl}/Z2

5O(14) X 5O(2), 5O6(14) X 5O(2),
5O*(14) X 5O(2),
{E7,AlD6 X n}/Z 2 , {E7,A7 X Γi}Z2

5O2(14) X 5O(2), 5O4(14) X 5O(2),

5O*(14) X 5O(2),

{ E 7 χ J i } / Z 2 , {E7ίE6Tί X Γ*}/Z2,

{^,^^6 X ^}/Z 2

5O(14,C) X C*, {£? X C*}/Z2

Conditions

—

—

—

r = 0,3

—

(/,r) = (0,0),

(0,2), (1,2), (0,4)

P = 0,4

s= 1,2,3

—

r= 1,2

—

—

—

—

—

—

k

1

2

1

2

1

2

1

2

1

2

2

2

2

2
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Table III
G: Centerless simple
H: Not the centralizer of a torus, rank H = rank G

(k = 1, G is exceptional, H has center of order 3)

G2

G* = G2,AlAl

G%

F4

FiίBι

FilCsCι

Fϊ
E./Z,

E6,D5Tl

Et,F<

Ee,Gι

Eξ/Z,

E7/Z2

Er.A,

Eη,AιDι

Er,E«τ*

E?
Es

E$,Dβ

Eg,AiE7

SU(3)

SU\3)

SL(3,C)

{SU(3) X SU(3)}/Z3

{SU\3) X 5£7(3)}/Z3

{SU(3) X 5C/1(3)}/Z3, {5C71(3) X SU\3)}/Z3

{SL(3,C)χSL(3,C)}/Z3

{SU(3) X SU(3) X 5C/(3)}/{Z3 X Z3}

{SU\3) X 5C/(3) X SU(3)}/{ZZ X Z3}
{5^(3) X SU\3) X 5C/i(3)}/{Z3 X Z3}

{SU\3) X 5^(3) X 5C/(3)}/{Z3 X Z3}

{5L(3,C)X5C7(3)}/Z3

{5L(3,C)x5C/i(3)}/Z3

{5L(3,O X 5L(3,C) X 5I(3,C)}/{Z3 X Z3}

{SUQ) X [5C/(6)/Z2]}/Z3

{5C7(3) X [SU\6)/Z2]}/Z3, {SU\3) X [5t/3(6)/Z2]}/Z3

{SU\3) X [5l/(6)/ZJ}/Z8, {5C7(3) X [5L^6)/ZS]}/Z8,
{5t7i(3)X[5C7«(6)/Zd}/Z8

{5C7i(3) X [5C/i(6)/Z2]}/Z3, {51/(3) X [5C/3(6)/Z2]}/Z3

{5L(3,C)X[5L(6,C)/Z2]}/Z3

{5t7(3) X £6}/Z3, 5t7(9)/Z8

{5C7(3) X E6,D5Ti}/Zs, {SU\3) X £6,Ai45}/Z3,
SU\9)/Z3, SU\9)/Z,

{SU\3) X E6}/Z3, {5t7i(3) X E^D,τι}/ZZt

{5t7(3) X Eβ,^i^}/Z8, 5C/2(9)/Z3, 5C/3(9)/Z3

{5L(3,C) X ̂ }/Z 3 , 5L(9,C)/Z3
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Table IV

rank G > rank H

(* = 1)

G

Spin (8)

SO4 (8)

Spin (8, C)

Spin (8), Spin1 (8)

Spin3 (8), Spin4 (8)

Spin (8, C)

{L* X L* X L*}/δZ*

{LC X L*}/δZ*

{Lc XLC X Lc}/δZ*

vector group R2

Note 1

Note 2

Stf(3)/Z8

5C/i(3)/Z3

SL(3,C)/Z3

G2

σ*

<5L*/<5Z*

δL*/δZ*

δLP/δZ

{0}

Conditions

—

—

Note (1)

Note (2)

Note (1)

—

^ is an arbitrary compact simple Lie algebra,
jgf* is an arbitrary real form of «£? (x) C.
L* and L σ denote the connected simply connected
Lie groups with Lie algebras j£f* and gG\ Z* and Z
denote their centers.
δ(x) — (xyx,x).

δ(x) = (π(x),x) where π: L*-^ Lc gives the universal
covering of the ^-analytic subgroup of IP with Lie
algebra «£?*.

Corollary (6.2). Let M satisfy the hypotheses of Theorem (6.1), and in ad-

dition assume that M is Riemannian. Then M may be decomposed as a

Riemannian product M = Mo X Mx X X Mr where Mo is a complex

Euclidean space and each Mt (l<i<r) is an indecomposable Riemannian

^-symmetric space. If Mt is compact, it is listed in Tables V, VI, and VII

and if Mt is noncompact, it is listed in Table VIII.
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Table V

G: Compact centerless simple

H: Centralizer of a torus

G

SU(n)/Zn

n>2

SO(2n + 1)
n>\

Sp(n)/Z2

SO(2n)/Z2

n>3

G2

F*

EQ/ZZ

E7/Z2

Es

H

S{U(ri)χ U(r2)χ U(rs)}/Zn

0 < rλ < r2 < r3, 0 < r2, rx + r2 + r3 = n

U(r) X SO(2n - 2r + 1), 1 < r < n

{U(r)Sp(n-r)}/Z2, 1 < r < n

{U(r) X SO(2n - 2r)}/Z2i \<r <n

U(2)

{Spin (7) X T1}/Z2

{SpQ)xTi}/Z2

{SO(10)XSO(2)}/Z2

{S(U(5)X U(l))χSU(2)}/Z2

{[5C/(6)/Z3] X T*}/Z2

{[50(8) X SO(2)] x SO(2)}/Z2

{E6χTi}/Z3

{SU(2)X[SO(10)xSO(2)]}/z2

{SO(2)χSO(12)}/Z2

S{U(7)X C/(l)}/Z4

50(14) X 5O(2)

{E7 X Ti}/Z2

k

l if rx = o
2 if n > 0

1 if r = 1
2 if r > 1

1 if r = n
2 if r < w

1 if r = 1 or n
2 if 1 < r < «

2

2

2

1

2

2

3

1

2

2

2

2

2

Table VI

G: Compact centerless simple
//: Semisimple with center of order 3

(G is exceptional, k = 1)

G

G2

F 4

E6/Z3

E7/Z2

Es

H

SU(3)

{5C/(3)χ5C/(3)}/Z3

{5*7(3) X 51/(3) X 5£/(3)}/{Z3 X Z3}

{5C/(3)X[5C/(6)/Z2]}/Z3

{5C/(3) X E6}/Zs

SU(?)/Z9
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Table VII

G: Compact, rankG > rank//

(* = 1)

G

Spin (8)

{LxLx L}/Z

where L is compact simple

and simply connected and Z

is its center embedded dia-

gonally.

H

5ί/(3)/Z8

G2

L/Z

where L is embedded diago-

nally in L x L X L and Z is

its center.

Table VIII

G: Noncompact centerless simple

H: Compact

G

SUrt(n)/Zn

SO2r(2n + l)

Spr(n)/Z2

SO*r(2ή)/Z2

G*=G2,A1A1

F^CsCt

Eβ,AtA5

Eβ,D5Ti

E7iA7

E7,A!De

H

S{U{rx) X U(r2) X U(n))/Zn

U(f) X SO(2n - 2r + 1)

(C/(r) X Spin - r))/Z2

(U(n - r) X Srtr))/Zi

(C/(r) X 5O(2n - 2r))/Za

(C/(Λ - r) X 5O(2r))/Z2

C/(2)

(5p(3) X Ji)/Z2

((5(1/(5) X C/(l))) X 5C/(2))/Z2

(5C/(6)/Z3 X ΓO/Z2

50(10) x 5O(2)/Z2:

5(1/(7) X T 1 ) ^

(5C/(2) X 50(10) X Γi)/Z2

(5O(12) X Ti)/Z2

conditions

0 < ri < r2 < r3

1 < r 2

1 < r < n

1 <r <n

l<r<n

—

—

—

—

—

—

—

—

k

1 if n = 0

3 if n > 0

1 if r = 1

2 if r > 1

1 if r = /I

2 if /* < w

1 if r = 1 or n

2 if 1 < r < n

2

2

2

2

1

2

2

2
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Table VIII—Continued

G: Noncompact centerless simple

H: Compact

G

E7fEβTi

E8,D»

E8,A!EΊ

Spin1 (8)

vector group R2

H

(Eβ X Ji)/Z3

50(14) X SO(1)

(E7 X T)/Zι

G2

{0}

conditions

—

—

—

—

—

k

1

2

2

Note (1) in
Table IV

Note (2) in
Table IV

Corollary (6.3). Let Mbea simply connected pseudo-Riemannian Hermitian

symmetric space such that the group f{M) of holomorphic isometries is a re-

ductive Lie group. Then M may be decomposed as a Riemannian product

M = Mo x M1χ X Mr where Mo is a complex Euclidean space and Mi =

Gil Hi is one of the spaces listed in Table IX. The metric on Mt is unique up

to a scalar multiple.

Table IX: Reductive pseudo-Riemannian Hermitian symmetric spaces

G: Centerless simple

H: Centralizer of a torus

(rank G = rankl£, k = 1)

G

SUu+"(p + q)/Zp+q

SL(2n,R)/Z2

SL(n,Q)/Z2

SL(p + q,C)/Zp+q

SOt+s(2n + 1)

SO(2n+ 1,C)

SpKΌ/Zi

Sp(n,R)

Sp(n,C)

H

S(U"(p) X U*(q))/Zp+q

(SL^QXT^/Zn

{SHn,C)xT)/Zn

S(GL(p, C) X GL(q, C) X C*)/Zp+q

SO%2n - 2) X T1

SO(2n - 1) X C*

U\n)IZ2

U\n)/Z%

GL(n,C)/Z2

conditions

1 < p < q, 2u<p, 2v < q

n> 1

n> 1

l<P<q

0 < / < n — 1, 5 = 0,2

—

0 < 2ί < n

0 < 2t < n

—
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Table IX: Reductive pseudo-Riemannian Hermitian symmetric spaces—continued '

G: Centerless simple >

H: Centralizer of a torus

(rank G = rank K, k = 1)

G

SOt+s(2n)/Z2

SO2t(2n)/Z2

SO*(2ή)/Z2

SO(2n,C)/Z2

E6/Zs

Eβ,A!A5

E6fD5Ti

ES/Z9

E7/Z2

Eγ,A7

Ei^AxDa

Eγ^EβTί

E?/Z2

H

(SO\2n - 2) X Ti)/Z2

UKn)/Z2

(SO*(2n - 2) X Γi)/Z,

U\ri)IZ2

(SO(2n-2,C)χC*)/Z2

GL(n,C)/Z2

(50(10) X T^/Z2

(5O*(10)) X Ji)/Z2

(so\io) x v-yz*

(50(io) x τη/z2

(5O2(i0) x τη/z2

(5O*(10) X Ji)/Za

(5O(10,C)χC*)/Z2

Eβ X ΓVZ 8

(^β,^. x τi)/Zi

(Eβ,D5Tx X Γi)/Z2

( £ β i i i U β x T-yZi

(E6 X Γi)/Z8

(EβtD5Ti X TVZ2

(E6

σ x c*yz3

conditions

0< t< n — 2, 5 = 0,2

0 < 2t < n

—

0 < 2t < r

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Table IX can also be deduced from Berger's classification of affine sym-

metric spaces G/H with G simple [2].
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