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COMPACT MANIFOLDS OF NONPOSITIVE CURVATURE

H. BLAINE LAWSON, JR. & SHING TUNG YAU

0. Introduction and statement of results

Let M be a compact C°° riemannian manifold of nonpositive curvature1 and
with fundamental group π. It is well known [8, p. 102] that M is a K(π, 1)
and thus completely determined up to homotopy type by π. In light of this
fact it is natural to ask to what extent the riemannian structure of M is deter-
mined by the structure of π , and the intent of this paper is to demonstrate that
rather strong implications of this sort exist.

In the case that M has strictly negative curvature, the group π is known to
be highly noncommutative. Every abelian, in fact, every solvable, subgroup
of π is cyclic [3]. It is therefore a plausible conjecture that in the nonpositive
curvature case, π will possess large amounts of commutativity only under
special geometric circumstances. We shall show that this is true, that indeed
those properties of π which involve commutativity have a dramatic reflection
in the riemannian structure of M.

Our first theorem concerns abelian subgroups of π, which, since no element
of π has finite order [8, p. 103], must be torsion free. As remarked above,
when M is negatively curved, every abelian subgroup has rank one. However,
when the curvature of M is simply nonpositive, we prove the following.

The flat torus theorem. There exists an abelian subgroup of rank k in π
if and only if there exists a flat k-torus isometrically and totally geodesically
immersed in M.

The second theorem concerns the case where π is a product of groups. In
particular, we shall prove:

The splitting theorem. Let M be real analytic and assume that π has no cen-
ter. If π can be expressed as a direct product of groups π = srfι X X s/N,
then M is isometric to a riemannian product M = Mλ X X MN, where

πι(Mk) = ^kfork= 1, . . , N .

It is shown in § 4 that in the case that π has a nontrivial center, the splitting
theorem, as stated, is not true. However, by a slight weakening of the conclu-
sion, one can obtain a similar theorem for the general case.

As one may by now suspect, the appearance of a nontrivial center in π must

Received July 24, 1970 and, in revised form, July 21, 1971.
1 Throughout the paper curvature refers to sectional curvature.
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also have strong geometric consequences. In fact, from the work of J. A. Wolf
in [12] one has

The center theorem. Let & be the center of π. Then 3£ ~ kZ for some
k>0, and there exists a foliation of M by totally geodesic, flat k-tori. Further-
more, there exists an abelian covering Tk X M' —• M of M by a riemannian
product of a flat torus and another manifold M\ Let Jί = πx{Mf) and let <srf
be the abelian covering group. Then Jί is a normal subgroup of π which con-
tains [π, π], and the following sequences are exact:

0 -> 2 X {Jίj[π, π]) -> Hλ{M, Z) -> si -> 0 .

As particular consequences of this theorem we have that if if ~ kZ, then:
(a) there exist k linearly independent globally parallel vector fields on M,
(b) the torus group Tk acts effectively by isometries on M.
In § 5 we show that these geometric quantities completely characterize the

center of π, namely:
(a') Suppose there exist exactly k linearly independent globally parallel

vector fields on M. Then rank (3Γ) = k.
(bθ Let I(M) be the group of isometries of M. Then 7(M)° ^ Tk where

k = rank ( ^ ) . Furthermore, if g e I(M) — /(M)°, then g is not homotopic to
the identity.

Part (bθ together with the center theorem gives a generalization of a theorem
of T. Frankel to manifolds of nonpositive curvature (§ 6).

In all of the above theorems the compactness of M is required. In fact,
Bishop and O'Neill have shown that there exists a complete metric of constant
negative curvature on R x F where F is any compact manifold which admits
a flat riemannian metric (e.g., a torus) [2, Cor. 7.10].

However, in the last section we show that certain of the above results can
be shown to hold for complete nonpositively curved manifolds of finite volume.
In particular, a form of Gottlieb's theorem is established for such cases.

We are indebted to S. Kobayashi for several helpful suggestions.
Note. Since writing this paper we have learned that J. A. Wolf and D.

Gromoll2 have obtained independent and somewhat different proofs of the first
two theorems, including a C°° version of the splitting theorem.

1. Definitions, notation and basic lemmas

Thoughout the proofs of the main theorems of this paper we will need to
make repeated use of certain established facts concerning manifolds of non-

2 Added in proof. D. Gromoll & J. A. Wolf, Some relations between the metric
structure and the algebraic structure of the fundamental group in manifolds of nonposi-
tive curvature, Bull. Amer. Math. Soc. 77 (1971) 545-552.
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positive curvature. Therefore, for the sake of completeness and clarity we
begin with a brief discussion of these facts.

We shall always denote by M a compact riemannian manifold of nonpositive
curvature, the metric on M by <( , •), the riemannian connection by F, and
the riemannian curvature by Rx>γ = F [ X ) F ] — VXVY + VYVx. For any smooth
curve γ(t) in M, we denote the velocity vector field of γ by γ(t) or (dγ/dt)(t).

We begin by stating some well known properties of compact manifolds of
nonpositive curvature [1].

Fact 1. For all p e M the exponential map expp: TP(M) —• M is a covering
map (the universal covering map).

We shall always choose our universal coverings this way, where we assume
TP(M) to have the lifted metric and 0 e TP(M) to be the distinguished point
above p. This universal covering shall always be denoted π: M —> M.

Fact 2. If M (Z M is a compact totally geodesic submanifold, then
exp: N(M) —> M is a covering map from the normal bundle of M to M. If
M C M is a complete totally geodesic submanifold, then exp: N(M) —> M is
a diffeomorphism [6].

Fact 3. For any a e πx(M, p) there is a unique geodsic loop at p which
represents a. This is the loop of shortest length in a, and corresponds to the
unique geodesic in M from 0 to Λ(ϋ) where A is the deck transformation cor-
responding to a.

Fact 4. Consider the diffeomorphism exp^ : T$(M) —> M where T$(M) is
assumed to have the usual flat metric induced from the inner product. Then
exp^ does not decrease the length of curves. In particular, it does not decrease
distance.

We now examine a method for constructing totally geodesic submanifolds in
M. The construction is based on the following notion. A subset C c M i s
said to be completely convex if for all points p,q e C,pΦ q, the unique infinite
(i.e., maximal) geodesic γPtQ passing through p and q is contained in C. It fol-
lows from the work of Cheeger and Gromoll [4] that any completely convex
subset of M is a complete totally geodesic submanifold.

Let 7Ί and γ2 be infinite geodesies in M. Then γx and γ2 are said to be of the
same type if

sup [dist (ftCs), γ2)] + sup [dist (γ2(s), γj] < oo .
s s

This defines an equivalence relation on the infinite geodesies in M. Using Fact
4 and the classical Gauss-Bonnet Theorem, J. A. Wolf [12] established the
following:

Proposition 1. Suppose γ1 and γ2 are distinct infinite geodesies of the same
type in M. Then there exists a flat totally geodesic ribbon of surface of uniform
width between γx and γ2.

It follows that for any infinite geodesic γ in M the set
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Cr = U {γf € G: γ' is the same type as γ] ,

where G denotes the collection of infinite geodesies in M, is geodesically con-
vex. Furthermore, if the manifold M is real analytic, then Cγ is completely
convex. Therefore we have

Corollary 1. Suppose that the manifold M is real analytic. Then for any
infinite geodesic γ, the set Cγ is a complete totally geodesic submanifold.

We now recall the notion of a fundamental vector field on M introduced in
[12]. Let p e M, and choose the universal covering π: M —» M (with natural
base points) as in Fact 1. For each a € πx(M, p) we denote the corresponding
deck transformation on M by the capital letter A. The fundamental vector
field va on M, associated to a, is then defined as follows. For qzM let
γ: [0,1] —» M be the unique geodesic with γ(0) = q and γ(l) = A(q). Then
va(q) = f (0) . Note that if a Φ 1, then va is nowhere-zero.

Lemma 1. At any point q e M the vectors

{va(q)l\\va(q)\\ € Tq(M): \φae ^(M,p)}

are dense on the unit sphere in Tq(M). In particular, they are a spanning set
for Tq(M).

Proof. Choose X e Tq(M) with | | Z | | = 1, and let D c M be a compact
fundamental domain for M which contains q. Then for any t > 0 there exists
a β TΓ^M, p) such that A~ι{tx^q{tX)) e D. Thus, if d is the diameter of D, we
have that for each integer n > 0 there exists <zTO e TΓ^M, p) such that
dist Ol^gXexpgOzZ)) < J. Letting vn denote van(q), we then see from Fact
4 that

lim <*»«-> = 1 ,

l l^l l l l l l
and the lemma is proved.

Lemma 2. For any a,b e TΓ^M, p) w^ /ZΛV^ y4*vδ — v α 6 α - i . T/zŵ y, // αZ? =
ba, the vector field vb is A-invariant.

Proof. Fix any q <ε M. Then q = A(qf) for some qr € M. Let f θ ) : 0 <
s < 1 be the unique geodesic from c?' to B(qf). Then ^7(5) is the unique

geodesic from q to ABA~\q). Hence 04*^)0?) = >4*f(0) = 04^(0) =
Vata-tiq), and the lemma is proved.

Remark. Lemma 2 provides a simple proof of Gottlieb's theorem: // χ(π)
(=zχ(K(π, 1))) Φ 0, then π has no center, for groups π which are fundamental
groups of compact manifolds of nonpositive curvature. In § 7 this is generalized
to fundamental groups of complete manifolds of nonpositive curvature and
finite volume.
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2. The flat torus theorem 

In this section we prove the following 
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Theorem 1. Let M be a compact C 00 riemannian manifold of nonpositive 
curvature. Then there exists an abelian subgroup of rank kin 1r1(M, *) if and 
only if there exists a fiat k-torus immersed isometrically and totally geodesically 
inM. 

Proof. Let f: T------> M be a totally geodesic immersion where Tis a torus. Then 
the induced map f *: 1r1(T)------> 1r1(M) is injective. To see this let 1 =/= a E 1r1(M), 
and choose a geodesic loop r Ea. (See Fact 3.) Then for is a geodesic loop 
in M, and by Fact 1 no geodesic loop in M can be null-homotopic. This proves 
one half of the theorem. 

To prove the converse we proceed as follows. For fixed p0 EM let 
d c 1r1(M, p0) be an abelian subgroup of rank k with generators ai, · · ·, ak. 
(Recall that d is free abelian [8, p. 103].) For each p e M let a~, ... , a~ E 

1r1(M, p) be the images of ai, ···,a,. under some path isomorphism (correspond­
ing to a path in M from Po top), and define f(p) = inf {length Cr): r: [O, 1] 
------> M is a piecewise smooth curve such that for some g e 1r1 (M, p), r I [Ci - 1) / k, 
i / k] E ga:g- 1 for i = 1, ... , k}. Then f is a well defined continuous function 
on M and therefore achieves a minimum at some point q e M. Furthermore, 
from Fact 3 and the fact that the deck transformations are properly discon-
tinuous we know that there exist age 1r1(M, q) and geodesic loops ri, ... , r,. 
at q with ri E ga:g- 1 for i = 1, · · ·, k such that f(q) = length (r 1) + ... + 
length (r,.). For convenience we relabel each element ga:g- 1 E 1r1(M, q) simply 
by at. 

We now claim that each ri is smoothly closed. Let 1r: M ____. M be the 
universal riemannian covering of M and fix ij e M as the distinguished point 
above q. Let A1, • ··,A,. be the deck transformations of M corresponding to 
ai, ···,a,. respectively. For each i let ti be the lift of ri to a curve emanating 
from ij. Then ft is the unique geodesic in M from ij to At(ij). We shall now 
show that the geodesic r1 is smoothly closed. Suppose it is not. Then the unique 
broken geodesic from ij to A 1 ( ij) to A~( ij) ( = t 1 U A 1 (f 1)) is not smooth. Call 
this geodesic t. Let x Et be a point lying between ij and A 1(ij) but not equal 
to ij or A 1(ij). Then 

d(x, A 1(x)) < d(x, A 1(ij)) + d(A 1(ij), A 1(x)) 

= d(x, A 1(ij)) + d(ij, x) = d(ij, A 1(ij)) , 

where d denotes the distance function on M. Now, let f1 be parametrized over 
[O, 1]. Then, by [2, Lemma 10.1] the function t ...... d(ti(t), Atf 1(t)) is a convex 
function on [O, 1] for each i. However, d(f 1(0), Atf 1(0)) = d(ij, AtCij)) = 
d(Ai(ij), A 1At(ij)) = d(A 1(ij), AtA 1(ij)) = d(fi(l), Atf 1(1)). Thus, for all t E [O, 1] 
we have d(f 1(t), Atf 1(t)) :=:;; d(ij, Atij). Hence, for O < t < 1 
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Σ diUϋMiUt)) < Σ d{q,Ai(q)) •

This contradicts the minimality of / at q, and therefore γλ is smoothly closed.
By proceeding in the same way, one can show that each of the geodesies γ19

• , γk is smoothly closed.

For each i, let γt be the infinite (i.e., maximal) geodesic in M containing f<β

Then fi is AΓinvariant, and since the elements a19 , ak are independent in
efi/, no two geodesies γi9 fj with i Φ j coincide. We shall now construct a com-
plete flat totally geodesic ^/-invariant ^-dimensional submanifold of M which
contains γλ U U fk. We first observe that since AXA2 — A2Al9 all the
geodesies A\γx for k = 0, ± 1, ± 2 , are of the same type. Thus by Proposi-
tion 1 for each integer k > 0 there exists a flat embedded totally geodesic
ribbon of surface, say Σk, between A^kγx and A\yx. Since γ2 is ^-invariant
and AXA2 = A2AU we have γλ c Σ f c C £ * + < for all A:, i > 0. It follows that
J]ι>2 = U 2] fc i s a n embedded totally geodesic ^4^ andy42-invariant surface in

k

M, which is isometric to a flat 2-plane. (Observe that each infinite geodesic in
21,2 which is parallel to γx (respt. f2) is ^-(respt. A2-) invariant.)

For each p e ΣU2 we denote by γp the unique geodesic passing through x
and A3(x). We then define

Σ1.2.3 = U γP

Σi,2,3 ^s invariant under ^41? A2 and ^43 and contains the surfaces ]Γ]li2, 2 i , 3 and
22,3 From the commutativity and independence of α1? α2, α3 and the methods
developed above, it is straightforward to verify that Σi, 2, 3 ^s a n embedded
totally geodesic manifold which is isometric to a flat 3-plane and on which
Aί9A2 and A3 act by translations.

Proceeding in this manner we eventually construct an embedded totally
geodesic ,£/-invariant manifold Σ i , ,* which is isometric to a flat Λ -plane and
on which st acts by translations. This completes the proof.

A straightforward argument using the above techniques establishes the fol-
lowing corollary. (See [14].)

Corollary 2. Let M be as in Theorem 1. Then every abelίan subgroup of
πx(M, *) is a finitely generated {free) group of rank < dim (M), where equality
holds if and only if M is flat.

3. The splitting theorem

We shall now establish
Theorem 2. Let M be a compact real analytic riemannian manifold of

nonpositίve curvature, and suppose that the fundamental group of M splits as
a direct product:
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πx(M) =s/ιX X sίN .

// πλ(M) has no center, then there exists a riemannian splitting of M,

M = Mj x X MN ,

such that πλ(Mk) = sik for each k.
Proof. Suppose πγ(M) has no center and πx(M) = si x J* where both si

and 0& are nontrivial. We shall show that M is isometric to a riemannian
product M^ X M# where πλ{M^) = si and πx{M^) = ^ .

Fix a point /?eM and let π: M —> M be the corresponding universal cover-
ing (cf. Fact 1). Then for each a e si C πγ(M) we have a corresponding deck
transformation A of M, and we shall define the set Ma to be the union of all
infinite A -invariant geodesies in M.

Note that for each a β si, the set Ma is nonempty. Indeed, if a Φ 1, there
exists a smoothly closed geodesic γ C M belonging to the free homotopy class
of a. The various lifts of γ to M are infinite geodesies translated by the various
elements GAG1, for G in the deck group. In particular, one of the lifts is
translated by A, and Ma must be nonempty.

Since any two ^-invariant geodesies are of the same type, the arguments of
Proposition 1 and Corollary 1 show that Ma is a complete connected totally
geodesic submanifold of M.

Moreover, these arguments show that the vector field va is parallel along
Ma, and, in fact, Ma splits as R x Mf where for each (t,x) e R x M',
A(t, x) = (t + ca, x) for some fixed constant ca.

It follows that for some a e <stf, we have dim (Ma) < dim (M). Otherwise,
Ma = M for all a e si and each of the vector fields va is globally parallel on
M. The distribution spanned by these fields gives a riemannian splitting
M = Rk X M;, where Rk is a flat euclidean /:-space, and for each a e si the
corresponding deck transformation A is written as A(τ, x) = (τ + ca,x) for
each (τ,x) 6 Rk X Mf and some fixed cae Rk. In particular, ^ is abelian,
contradicting the assumption on the center of si. For future reference we note
this observation as

Fact A. // Ma = M for all a e si, then si is abelian, and there exists a
splitting M = Rk X Mf where stf fixes the second factor and operates on the
first factor by translation.

We now choose a e si so that dim (Mα) < dim (M). Of course, for any
i e J , we have BA = AB and therefore B(Ma) = Ma. Hence Ma is @-
invariant.

We claim that the set π(Ma) in M is compact. To see this let {pn} be a
sequence from π(Ma) such that pn-^> p € M. Through each pw there passes a
smooth closed geodesic (not necessarily embedded) of length / = dist (q, Aq)
where q is any point of Ma. Denote this geodesic by γn(s); 0 < s < I. Let
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en = γn(0). By passing to a subsequence we may assume that the sequence
{en} converges in the tangent sphere bundle of M to a vector e e TP(M). Then
the geodesic γ^is) = expp (se) is a smooth closed geodesic. Since the conver-
gence of γn to γw is uniform, there is some integer N such that each γn, for
n> N, represents essentially the same bound homotopy class (bound, say, at
p by moving γn(0) slightly). Let U be a neighborhood of p which has an even
covering in M, and by possibly raising N assume γn(0) e U for all n > N. Let
U be any component of the even cover of £/, and lift {pn}n>N and p to the
sequence pn —* p in U. Then each γn, N < n < oo, lifts to an infinite geodesic
γn through pn, and all these geodesies are invariant under the same deck trans-
formation ( = GAG~1 for some G) since they are smoothly closed and lie in
the same bound homotopy class. In particular, if we choose U so that fN is
A -invariant, then each fn9 N < n < oo, is /4-invariant. Thus pn,p£ Mα> and
s o p ζ π(Ma) and π(Ma) is compact.

To recapitulate, we have proven
Fact B. Let {pn} be any sequence in π(Ma). Then there exists a subsequ-

ence {pn.} such that pn.-+p<z π(Ma) and such that if the lift of any pn. (or p)
to pni (respt. p) in M lies in Ma9 then the lift of the whole sequence to the
same neighborhood of M also lies in Ma.

Suppose now that for some aλes/ we have A^MJ Π Ma Φ 0. Then
A^Ma) = Ma.aaΓi (the manifold of ^ ^ ^ f M n v a r i a n t geodesies) and we can
apply the above argument to show that πlA^MJ] is compact. It is clear that
A^Ma) Π Ma is a totally geodesic ^-invariant submanifold of M. Further-
more, π[Aλ(Ma) Π Ma\ is compact. To see this let {pn} be a sequence in this
set, and choose successive subsequences by using Fact B first for Ma and then
for A^Ma). The final sequence lifts to a convergent subsequence in
A^Ma) Π Ma, and compactness follows.

It is clearly possible to choose elements al9 •• , α ( ? € j / such that the
totally geodesic J'-invariant manifold N= Πf=1 Aι(Ma) (Ί Ma has the
following property. For any c € πλ(M) either C(N) = N or C(N) Π N = 0.

def ~
Thus N = π(N) is an embedded totally geodesic submanifold which by the
above argument is compact in the relative topology. We assert, moreover, that
N is topologically embedded, that is, for every point p € N there is a neighbor-
hood U of p in M, for which π \ U is a diffeomorphism into M, such that

π(N (Ί U) = N Π π(U) .

If this were not so, there would exist a p and U and a sequence of points
{pn} in t/ Π ^ ( A O such that pn-*p and no two distinct pn lie in the same
component of T Γ " 1 ^ ) . (Note that T^ΛO = U {C(N)> c € πλ(M)} and for all
Q , C2 either Q(iV) = C2(N) or Q(iV) Π C2(N) = 0.) However, by applying
Fact B to the sequence {π(pn)} we obtain a contradiction. Thus N is a compact
totally geodesic submanifold of M. Finally, we have that N = N/G where
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G = {c e πx(M): C(TV) = TV} and, clearly, G — si' x 38 for some subgroup
s/'as/.

We now focus attention on the manifold TV. Observe that by Fact A we may
assume that the group s/f is abelian and the universal covering space TV of TV
splits as Rk X TV7 where for each a e s/' the corresponding deck transforma-
tion is a simple translation of the first factor. If this were not the case, there
would exist azsrf' such that dim(TVα) < dim (TV), and we would repeat the
process to obtain a new manifold TV\ C TV C M of smaller dimension. Con-
sequently after a finite number of steps we would arrive at the desired situa-
tion.

For later use we shall analyse the action of s/' X <% on TV. Let a e J / ' .
Then there exists a vector cα e i?fc such that A(t, x) = (t + ca,x) for each
(t, x) e Rk X TV' = TV. The vectors cα span /ffc. Hence for each fr e ^ there are
a vector cδ € Rk and an isometry 5X: TV' -^ N' such that Bit, x) = (t + cb9 Bλ(x)).
Note that since N = N/s/' X & is compact, so is the set iV7/^ where ^ acts
by the projected action b-+Bx. Furthermore, from Lemma 1 we see that at
any point x 6 N', the normalized fundamental vector fields for this projected
action are dense in the unit sphere of 7^(TV7). As a consequence we have the
following

Fact C. Let S C TV be any &-invariant geodesically convex set.

i) Then for any translation T(t,x) = (t + c, x), the set T(S) is again &-
invariant and convex.

ii) Let pr: TV —> TV7 be the natural projection. Then pr(S) = TV7.

We shall now construct a totally geodesic ^-invariant submanifold Ma c TV
such that d i m ( M J = dim (TV) — k. Fix a point p € TV C M and let <(^p>
denote the smallest closed ^-invariant geodesically convex set containing p.
Of course, iβpy C TV. Now for any point JC € TV7 consider the convex set
Cx = (βp) Π Rk X {JC}. We assert that C^ is a bounded set. To see this we
proceed as follows. Suppose Cx is unbounded. Then there exists a sequence of
points {qj}J=1 in ζβpy Π Rk X {*} such that | | ^ || —> oo. Let F be a compact
fundamental domain for the action of sύ1 on l?fc x {x}. Then there exists a
sequence of points {pj} from F and a sequence of translations {aj}J=1 from J / 7

such that AjPj = ^ for each /. Furthermore, since | | ^ || —> oo and the Hull's
are bounded, we may assume, after passing to a subsequence, that the elements
aό are mutually distinct.

We now choose any element a e J / , and consider the function d(p\Ap')
= dist (//, y4/?0 defined for points pf e M. This function is constant on the set
gβp — {B(p): b e &}, and is bounded on the set (βpy since it is a convex
function [2]. It follows that the sequence diq^Aq^ = d^AjP^AA^p^) —
d(pj, A^AAjPj) is bounded for all /'. Consequently, by passing to subsequences
we see that there exist points po,qQ€M such that Pj-^p0 and A^AAjipj) —> q0.
Moreover, since
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,) < diq^AfAAjPj) +

^AAjPj) + d(pj9p0) -> 0 ,

we have that A^AAjfa) —• qQ. Therefore, since the deck group acts properly
discontinuously, there is a constant Ja such that for /', / > Ja

From the fact that s/ is finitely generated it then follows that there exists a
constant / such that for / > i> J the nontrivial element AάA^λ lies in the
center of πλ(M). This contradicts our assumption that π^M) has no center, and
the assertion is established.

We now claim that for each x, Cx consists of exactly one point. Suppose not.
Then since Cx C Rk X {x} is a compact convex set in euclidean space, given
any p zCx there would exist a translation T of Rk X {x} such that p eCx

Π T(CX) Q Cx. Extending T naturally to N = Rk X N' we would have by
Fact C that (βpy Π T((βpy) is a proper closed ^-invariant convex subset
of (βpy which contains p. However, in the special case x = x0 where
p =z (tQ, JC0), if we set p = p, we would obtain a contradiction to the minimality
of <βpy. Thus CXo = {p}. In the case of any other x, we would have

n r « Λ p » n Rk x {JC0} = {p} n

which contradicts (ii) of Fact C.
It follows that (βpy is the graph of a function /: N' —* Rk and therefore

Mgg = (βpy is a totally geodesic ^-invariant manifold without boundary and
of dimension = dim (TV7).

Furthermore, the manifold M^j^ is compact. In fact, let Fo c Nf be a
compact fundamental domain for the projected action of & or N', and let
pr: Mgg —> iV7 be the projection. Then F = pr~\F^ is a compact fundamental
domain for 3$ on M Λ .

We can now construct a foliation of M by totally geodesic ^-invariant
manifolds parallel to M Λ . To begin, let γ C M^ be any infinite geodesic and
fix any α e i . Then the geodesies γ and Ay are of the same type. To see this
let F C M# be a compact fundamental domain, and let δ — max {d(p, Ap):peF}.
Then for each value of t there exists b e 8& such that B(γ(t)) e F. Consequently,
d(γ(t),Aγ(t)) = d(Bγ(t),BAγ(t)) = d(Bγ(t),ABγ(t)) <δ, and the geodesies are
of the same type. Thus by Corollary 1 and analyticity there is a flat totally
geodesic surface through γ and Ay. There are two important consequences of
this:

(1) Each geodesic yt{s) = exp r ( s ) (tva) for t e R is of the same type as γ.
(2) By considering all geodesies γ C M^ we have that va is globally parallel

along Ma, i.e., for all tangent vector fields X on Ms
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(3.1) Fxva = 0 .

Furthermore, the sectional curvature

(3.2) (V^^

From (1) it is easy to see that for any t β R and any a e s/ the manifold
Mattta = {expx (tva): xeM#\ is totally geodesic and ^-invariant. Moreover,
the map exp: M# —> M^>t,a is a J'-equivariant isometry. Any two such mani-
folds Matt,a either are disjoint or coincide since the tangent space at any point
p e MΛtt,a is simply the span of {vb(p)}beίg.

By Lemma 1 the union of the manifolds Ma$t,a *s dense in M. Moreover,
since each MΛtttaj^ is compact we may repeat our game of exponentiation
there. It follows easily that through every point p eM there passes a unique
totally geodesic J'-invariant submanifold Ma,P which is ^-equivariantly
isometric and geodesically parallel to Ma. We thus have our desired folia-
tion. (Note that at any p eM, the tangent plane to the distribution is span

We may now repeat the process to obtain a similar foliation of M by s/-
invariant manifolds (whose tangent planes are spanned by {v a } a 6 J.

From (2) above we see that for any a e s/ and b e @i

(3.3) FVavb = VVbva = 0 ,

(3.4) (RVafVbva,vb} = 0 .

Furthermore we claim that

(3.5) <va,vby = 0.

Suppose this were not the case. Then the orthogonal projection of some va

onto Ms would be a globally paralled J'-invariant nonzero tangent vector field
on Ma. However, by Theorem 3 (§ 5) this implies & has a nontrivial center.

We can now express M = M^ X M# (a riemannian product) where si acts
only on the first factor and & only on the second, and so M = (M^/s/) X
{Ma\3S) as claimed.

4. On the splitting theorem for fundamental groups with center

In the case that π = srf X & and π has a nontrivial center, the splitting
theorem as stated is not true. To see this, let Σ be a compact surface of genus
g > 1 and constant negative curvature, and consider the homology covering
Σ —> Σ with deck group D ^ 2gZ (and πxΣ = [πλΣ, π^]). Choosing a basis
a19 - ,a2g for D we can construct an action of D (by isometries) on a flat
rectangular torus T2g = S1 X X S1 by letting ak rotate the k-\h factor
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through some irrational angle. The diagonal action of D on T2g X Σ is certainly
free and properly discontinuous, since the action on Σ is. The manifold

M=(Γ* X ί)/D

is compact nonpositively curved and has fundamental group πλ(M) = 2g&
X πx(Σ). However, there is no global riemannian splitting of M (nor is this true
of any finite covering space). One way to see this is to observe that on the uni-
versal covering space M of M the fundamental vector fields which correspond
to πλ(Σ) actually span the tangent space at any point.

Note, of course, that M is diffeomorphic to a product. It can be expressed
as a flat torus bundle over Σ where πλ(Σ) acts on the torus fiber by rotations.
Thus the bundle is differentiably, but not metrically, trivial.

This example is indicative of what happens in the general case. Let M be a
compact nonpositively curved manifold with fundamental group π = srf X ̂ ,
and let %π = %* = &*X &# be the center of π. Then %', = Z α and &'a =
Zb for some integers a and b, and the universal covering M of M splits as a rie-
mannian product Ra x Rb x MQ, where ^ acts by translations of Ra, &# acts
by translations of Rb, and, in general, any g e π acts by a translation of Ra X Rb

and an isometry of Mo, [12].
Consider the projected action of π/3fπ = stf' X 3&f where si1 = sf I&* and

& — £8''/&'a on the manifold Mo. This action is properly discontinuous and has
compact quotient. Using the above techniques it is not hard to show that there
exists a riemannian splitting Mo = M^ x M# such that srff acts only on the
first factor and J> / only on the second. (First construct N = Ra X Rb X No

C M and then use the fact that the effective action on Mo z> No is centerless
and properly discontinuous.)

It follows that we have a covering of M by a riemannian product

(Ta x MJ x (Tb χMa)-+M

(Ts being a flat ^-torus) with covering group srff X ffi where srf' acts on the
second factor only by rotations of the torus Tb, and 31' acts on the first factor
only by rotations of Ta.

Therefore, as in the example, the manifold M is diffeomorphic to a product,
and locally there exists a riemannian splitting. However, globally there may be
some twisting along the flat foliations arising from the center of π. In analogy
with flat manifold theory, we say that M is a toral extension of (Ta x MJ) \srff

by (Tb X MΛ)/a\

5. On parallel vector fields and isometries

Recall that a vector field v on a riemannian manifold M is said to be globally
parallel (or simply parallel) if for all p e M and all X e TP(M) we have Vxv — 0.
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The integral curves of such a field are all geodesies and, if the curvature of M
is everywhere nonpositive, then every such vector field is harmonic.

Proposition 2. Let M be a compact riemannian manifold of nonpositive
curvature, and suppose that there exists a nontrivial ίsometry f:M—>M which
is homotopic to the identity map. Then there exists a globally parallel vector
field v on M, and the flow generated by v is a 1-parameter group of isometries
which contains f.

Proof. Let π: M —* M be the universal riemannian covering of M, and
/: M-^M be a lifting of / to M. Since / is homotopic to the identity, we have
that / commutes with every deck transformation of the covering. We now
define a vector field ϋ on M as follows. For each p e M let γp(t), 0 < t < 1,
be the (unique) geodesic in M from p to f(p), and set ϋp = (dγp/dt)(O). We
assert that v is globally parallel on M. To see this we first note that by [2,
§ 4.2] the function φ(p) = eP(p, /(/?)), where d is the distance function on M,
is a convex function on M which is left invariant by every deck transforma-
tion. Thus φ projects to a convex function φ on M which by the compactness
of M must be constant [2, § 2.2]. We now consider any p e M and X € TP(M),
and let γ(t), — oo < / < oo, be the unique geodesic in M with (dγ/dt)(O) = X.
Then since d(γ(s), f oγ(s)) = constant, the geodesies γ and foγ are of the same
type. Thus it follows from Proposition 1 that either / translates the geodesic γ
or there exists a flat totally geodesic ribbon of surface between γ and / o γ to
which v I γ is everywhere tangent. In either case we have iVxϋ)p = 0 and the
assertion is proved.

Let D be any deck transformation of the covering. Then since Df = fD, we
have that D^v — v. Thus the vector field ϋ projects to a well defined globally
parallel vector field v on M. Since / is nontrivial, v is nonzero. The rest of the
proposition now follows easily.

We now establish the following.
Theorem 3. Let M be a compact riemannian manifold of nonpositive

curvature. Then there exist exactly k linearly independent globally parallel
vector fields on M if and only if the center of πx(M) has rank k.

Proof. It follows from the center theorem that if the center of πx{M) has
rank k, then there exist k globally parallel linearly independent vector fields on
M. For the converse we shall suppose vl9 , vk form a maximal set of linearly
independent parallel vector fields on M and show that the rank of the center
is > k. Let π: M —> M be the universal riemannian covering of M, and
v19 , vk be the lifts of v19 , vk to M. Let Π a πλ(M) be the group of
deck transformations of M. Then for each G € 77, G^Vj = vό for / = 1, , k.
It is not difficult to see that the distribution span{t>1? •••,#*} is involutive
and its integral leaves determine a riemannian product M = Rk χMf where
Rk is a flat euclidean λ-space. Furthermore, we must have that for each G e 77,

(5.1)
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for all (x, y) ^ R X M', where cG e Rk and g: M' —> Af' is an isometry. (From
now on, for any deck transformation G the component of G on the noneuclidean
factor will always be denoted by the corresponding small letter g.) Let 2£ denote
the center of 77 and note that Z e 3S if and only if Z(JC, y) = (x + cz, y) for all
(JC, y) e Rk X Af'. Our first assertion is the following.

Lemma 3. Let G e 77, and suppose that there exists some (x0, y0) e Rk x Mr

such that G(xQ,y0) = (*0 + cG,yQ). Then there exists an integer n > 1 swcA
ίΛΛί Gn €&.

Proof. Let # be any element of 77, and consider the transformations
HGnHιGn e 77. For all n we have

where d denotes the distance function on M. Since 77 acts properly discon-
tinuously, there must be integers p, q such that p > q and HGpH~ιG~p(x0,yQ)
= HG^H-'G^x^y,). Since 77 acts freely, we then have that HGpHιG'p =
HGqH~ιGq, i.e., HGmHιGm = 1 where m = p — q. The lemma now
follows from the fact that 77 is finitely generated.

We now observe that if 1; is a parallel vector field on M, then v must be a
Killing vector field. Choose any p € M and any I , 7 e TP(M). Extend Γ̂ and
Y to local fields Z and Ϋ by parallel translation along geodesic rays emanating
from p. Then we have [v, X]p = (FVX)P = 0, and similarly [v, Ϋ]p = 0.
Hence for the riemannian metric g on M we have that

0 = vpg(X, Ϋ)

)p(X, Y) + gp(lv, X]p, Y) + gp(X, [v, Ϋ]p)

* , Y) ,

where <?v denotes Lie differentiation. Thus &vg = 0, and v is a Killing
vector field.

Let /(M) denote the group of isometries of M, and let 7(M)° denote the
identity component. By the above, every parallel vector field gives rise to a 1-
parameter group in 7(M), and by Proposition 2 every nontrivial element of
7(M)° gives rise to a nonzero parallel vector field on M. Thus the Lie algebra
of I(M) is naturally isomorphic to the space of parallel vector fields on M.
Since for any two parallel vector fields v ,wwe have [v, w] = Fvw — Fwv = 0,
the group 7(M)° must be a A -torus. Furthermore, it is clear that 7(M)° acts
locally freely on M and each orbit of the action is a flat totally geodesic k-
torus.
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Let To be any such orbit, and let 1?J = Rk X {p0} C Rk X Mf be the inverse
image of To in the universal covering space. We now consider the subgroup

ΠQ = {GεΠ: G(Rk) = Rk} .

Since Πo acts freely and properly discontinuously by isometries on Rk and since
Rk/ΠQ = Γo, we have that Πo~ Z X X Z (Λ-times). Let Al9 -,Ak be
a set of generators for Πo. Then by Lemma 3 there exist integers nx, , nk

such that Aγ e ^f for i — 1, , &. Let m = nx X X nfc, and set 77J1 =
{Am: A € 770}

 τ h e n #™ i s a f r e e abelian group of rank k which is contained
in &. Thus rank (3Γ) > A: and the theorem follows immediately.

6. The Bochner-Frankel-Hurwitz theorem

It is known that if M is a compact manifold with strictly negative curvature,
then the only isometry of M which is homotopic to the identity ( = 1 ) is the
identity itself [5]. As an immediate consequence of our previous discussion,
we now have a generalization of this theorem for manifolds of nonpositive
curvature.

Theorem 4. Let M be a compact riemannian manifold of nonpositive
curvature, and suppose that there exists a nontrivial isometry f of M such that
f ^ 1. Then:

(a) M admits a globally parallel nonzero vector field,
(b) the center of πλ(M) is nontrivial {and thus the conclusions of the center

theorem hold),
(c) there exists a torus Tk acting locally freely (i.e., the isotropy subgroup

of every point is finite) on M by isometries, and f eTk.
Corollary 3. Let M be as in Theorem 4, and suppose that any of the fol-

lowing conditions holds.
(a) The curvature of M is strictly negative.
(b) The Euler characteristic of M is nonzero.
(c) The center of πλ(M) is trivial.
(d) The first Betti number of M is zero.

Then the only isometry of M homotopic to the identity is the identity itself.
In particular, the group of isometries is finite.

Corollary 4. Let M be as in Theorem 4, and let I(M) denote the group of
isometries of M. Then

(a) /(M)° = Tk where k is the rank of the center of πγ(M).
(b) // / e I(M) ~ /(M)°, then f £ 1.
Note. The action of I(M)° is locally free and, in particular, fixed-point

free. However, in general it may not be free. Consider, for example, the
standard flat Klein bottle K = R2/π where π is the group of euclidean motions
generated by A,B:R2-*R2 where A(x,y) = (x,y + 1) and B(x,y) =
(x + 1, — y). The center of π is the infinite cyclic group generated by B2.
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I(K)Q ~ Sι and corresponds to the group of translations of R2 in the jc-direction.
The orbits of I(Kf corresponding to the lines y = n/2, n = 0, ± 1, ±2, ,
are singular and have 1 /2 the length of the other orbits on K. We note that
the orbit structure in this case is exemplary of the general one since the
isotropy subgroup of /(M)° for any singular orbit must be finite.

7. Manifolds of finite volume

Several of the theorems discussed above can be shown to hold in the follow-
ing somewhat more general context.

Theorem 5. Let M be a complete riemannian manifold of nonpositive
curvature and finite volume. Then the center theorem and Proposition 2 hold
for M. If, furthermore, πλ(M) is finitely generated, then Theorems 3, 4 and all
their corollaries hold for M.

Proof. Let π: M —> M be the universal covering of M, and 77 ~ πλ(M) be
the group of deck transformations of the covering. Let Z be a nontrivial
element of the center of 77, and consider the function φ: M —> R given by
φ(p) = d\p,Z(p)). Then φ is a convex function [2, §4.2] which, since Z
centralizes 77, projects to a convex function on M and thus, by [2, §2.2] is
constant. Hence, if γ is any infinite geodesic in M, then γ and Zγ are of the
same type. It follows that the fundamental vector field vz on M (cf. § 1) is
globally parallel. The remainder of the proof of the center theorem can now
be carried out exactly as in [12].

Observe that by using the fact that any convex function on M is a constant
[2, § 2.2] one can prove Proposition 2 for M in exactly the same manner as
above.

It remains only to establish Theorem 3. Let v19 , vk be a maximal set of
linearly independent globally parallel vector fields on M. As in § 5, we get a
splitting M — Rk X Mf where each G z Π satisfies equation (5.1), and if G
lies in the center 3T of 77, then G(x, y) = (x + cG, y). Let Jί = {G e 77: cG = 0}.
Then Jί is a normal subgroup which contains [77,77]. Dividing out by the
group 3Γ X Jί C 7r, we obtain a covering

TP X Rq X Mf -* M ,

where Tp is a flat torus, p = rank (^f), p + q = k, and each element A of the
abelian deck group si ~ 77/(Jf X Jί) can be written as

(7.1) Λ(τ, x, y) = (τ + τA, x + xΛ> βύO)

for all (r, x, y)eTp X Rq X M'.
We shall prove that q = 0 (and thus establish the theorem). Observe that

since 77 is finitely generated, Lemma 3 is valid here. It follows that if for any
A £<$/ there is a y e M' such that a(y) = v (cf. (7.1)), then there is an integer
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n > 1 such that An = 1. Let T = {A e si: An = 1 for some n > 1}. Then,
since si is finitely generated and abelian, T is a finite group of order, say, m.
Hence the group sim = {Am: A e si} acts freely on the factor M' (by y «-• α(y)).
We assert that this action is also properly discontinuous. If it were not, there
would exist yQ e Mr and a sequence {An}™=1 in sim such that an(yQ) —> y0. By
passing to a subsequence we may assume that there is an isometry αTO of M'
such that an —> α^ in the compact-open topology [7, Th. 4.7]. Clearly, for
all A € J / we have that αTOα = αα^. We now define a sequence of isometries
{Gn} of Γ* X Rq x M' by setting

G*(r, x, v) = (7, x, azxan{y))

for all (j% x, y) zTp X Rq X M'. Then G n -> 1 in the group of isometries of
Tp X Rq X M'. Since each Gn commutes with all of si, we have that {Gn}
projects to a sequence {Gn} of isometries of M which converge to the identity
in the group 1{M) of isometries of M. Thus, for some sufficiently large n0, we
have Gno e /(M)° (and therefore Gn o = 1). It now follows from Proposition 2
that Gno defines a globally parallel vector field v on M which, by the construc-
tion, is independent of v19 , vk if it is nonzero. However, since ano acts
freely on Mf and fl^Cyo) = y0, Gno is nontrivial and thus v is nonzero. This
contradicts the maximality of v19 , vk and establishes the assertion.

We now show that q = 0. Observe that since the index of sim in si is finite,
the manifold Mλ = (Tp X Rq X Mf)l<$fm has finite volume. However, since
sim acts properly discontinuously on M', we can find a set of the type Tp X
Rq X U, where U is an open subset of M', contained in a fundamental domain
for the action of s/m on Tp X Rq X M'. It follows that q must be zero, and
the theorem is proved.

Corollary 5. Let M be a complete nonpositively curved manifold of finite
volume and negative definite Ricci curvature. Then I(M)° = {e}.

Proof. Suppose there were an isometry / e /(M)° — {e}. Then by Proposi-
tion 2 there would exist a nonzero globally parallel vector field v on M.
Clearly, for any tangent vector field J o n M w e have

xv - FXFVV - Fίv,xlv,x)y = 0 .

Thus the Ricci curvature Ric (v,v) = 0, contrary to assumption.
Finally we mention a corollary related to Gottlieb's theorem.
Corollary 6. Let π be a finitely generated group such that K(π, 1) has the

homotopy type of a complete nonpositively curved riemannian manifold of
finite volume. Let 2£ be the center of π and assume 2£ has rank k. Then there
exists a subgroup πf of finite index in π with 2£ C π1 such that the fibration

can be realized as a {finite demensionaΐ) differentiable fibre bundle.



228 H. BLAINE LAWSON, JR. & SHING TUNG YAU

Proof. Let M be the complete nonpositively curved manifold with finite

volume and fundamental group π. As in the proof of Theorem 5 there is a

covering Tk X Mf —* M whose deck group J / is finitely generated and abelian.

Furthermore, there is an integer m > 0 such that stfm acts freely and properly

discontinuously on the second factor. Let M — (Tk X M ' ) / ^ m and set πf =

TΓxίAf). Then π' has finite index in π, M = K(τr', 1), and we clearly have a

difϊerentiable (in fact, principal) fibre bundle Tk —> M —> M where M is dif-

feomorphic to M' jstfm. The manifold M inherits a natural nonpositively

curved complete Riemannian metric from the factor Mf. Thus M — K{πx(M), 1)

= K(π'/$?, 1) and the theorem is proved.

Remarks 1. Let π be as in Corollary 6. From Corollary 6 and a spectral

sequence argument we can conclude Gottlieb's theorem: // χ(τr) ( = χ(K(π, 1)))

Φ 0, then % = {1} (see [11, §4.3]) provided H^Kiπ, l),R) is finite dimen-

sional. As noted above, if K(π, 1) is a compact nonpositively curved manifold,

the theorem is easy.

2. It can be shown by example that finite volume does not imply that π

is finitely generated. It would be interesting to know whether Corollary 6 con-

tinues to hold if the condition that π be finitely generated is dropped.
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