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ON THE MATHEMATICAL FOUNDATIONS
OF ELECTRICAL CIRCUIT THEORY

S. SMALE

The goal of this note is to derive the differential equations for simple (non-
linear) electrical circuits with resistors, inductors and capacitors. I would like
to express my deep indebtedness in these matters to George Oster. Oster sup-
plied me with the basic references to the literature, and conversations on this
subject with him were very helpful. The reference Brayton & Moser [4] was
also very helpful.

1. A simple electrical circuit provides us first of all with an oriented graph
G which will be assumed to be connected but not necessarily planar. This is
a one-dimensional cell complex with branches or elements (1-cells) and nodes
(0-cells or vertices).

The states of the circuit have two components, the currents through the
branches and the voltages across the branches. Let Cs be the vector space of
real /-chains of G, O the /-cochains of G, / = 0 ,1 . Thus O can be thought
of as the dual vector space of C3. As is well-known, the currents in the circuit
can be represented as an element i of Q . Thus / = 2 iaca where a ranges over

a

all the branches, cσ is the σ-th branch and iβ is the current through the σ-\h
branch.

The voltages in the circuit can be represented by an element v of C1. Thus
v = Σ vada where va is the voltage across the σ-th branch and da is the cochain

a

which is 1 on cσ, and 0 on the others.
Let £f = Cx X C1. Then s = (z, v) e Sf is a state (unrestricted) of the circuit.

Physical laws (Kirchhoff and Generalized Ohm) will constrain the physical states
to lie in a submanifold £ of £f which we proceed to define.

Denote the boundary map by d: Q —> Co and coboundary by d*: C° ->C\
Thus d is a linear transformation of vector spaces, and 9* is its adjoint on the
dual spaces.

In this context the Kirchhoff laws KCL, KVL can be expressed as follows
(see Branin [2] and the references therein):

KCL: i e Ker 3 , KVL: v € ImageS* .

The first condition just expresses the fact that the currents entering a node
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sum to zero while the second asserts the existence of a voltage potential. Note
that we do not use "meshes", and also that Cλ has the natural structure of real
Cartesian space Rb where b is the number of branches of G the same holds for

σ.
Let Bι: Q X Cι —• R be the bilinear pairing of a vector space with its dual,

δ

i = 0,1. Then Bx(i9 v) = £ iσva. The Kirchhofϊ laws yield that any physical
σ = l

state (/, v) eC1 X O is restricted to lie in the linear subspace K = Ker 5 x
Image d* of Q X C1. The first part of the following well-known proposition is
essentially what is called Tellegen's theorem. Cf. Desoer [5], Brayton &
Moser [4].

(1.1) Proposition. Bx vanishes on K and dim K — dim Cx.
Proof. This is standard linear algebra, i.e., if (i,v)eK, then di = 0,

v = d*w and therefore 2^0', v) = B^i, d*ύ) = B0(di, u) = 0. Furthermore
dim K = dim Ker d + dim Image d* = (dim Cx — dim Co + 1) + (dim Co — 1)
= d imQ.

(1.2) Corollary. The 1-form J] vσdiσ on Q X C1 vanishes when restricted
toK.

Since each ia is a linear function on ^ , this corollary is just a restatement
of (1.1).

The next step is to introduce the branch elements which a simple electrical
circuit gives us. The branches of G in our framework can be classified into
exactly three categories, resistance branches, inductor branches and capacitor
branches (batteries are included in our definition of resistor).

We let ^t denote the real vector space of currents through the resistance
branches, so that if / e 0t, then / = Σ ipcp, summation over the resistance
branches. Similarly we define jδ? as the space of currents through the inductor
branches, and # for the currents through the capacitor branches. Analogously
we then have St', 12", &', the dual spaces for the voltages across the respective
branches.

We suppose that the p-th resistance is given by its characteristic, a closed
1-dimensional manifold Λp C R X R = {(/,, vp)} for each resistance branch p.
Let Λ c 3t X Str be the product of the Λp so that A = {(/, v) <= ^ X @! \ (ip, vp)
€ Ap}. Then A is a closed submanifold of 3t X 3ίf with dim A = dim ^ .

Let iR X vR: <¥ -+ & X &' be the natural projection, and πf its restriction
to K. (In the future, we will frequently use the symbols iL: Sf -+ & etc. for
the various projections.)

(1.3) Hypothesis. πr is transverse regular to A in the sense of Thorn; see,

e.g., [1].

This means that if x 6 K, y = πf(x) € A, then the composition TX(K) >
Ty(@ X gf) • Ύv{0t X &')/Ty(A) is surjective.

Note that (1.3) is a generic property (i.e., (1.3) will be true for almost all
choices of the A), and we will always assume it to be satisfied.
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Assuming (1.3) then, let Σ = π*~KΛ).
(1.4) Proposition. Σ is a submanijold of K with dim Σ = dim (Jδ? X #')•
Prao/. That Σ is a submanifold is a standard fact of differential topology

(the implicit function theorem) as well as the fact that codim^ Σ = codimΛXΛ A
see [1]. Then we have from (1.1) that dim Σ = dim Cx — dim St =
dim (j£? x <g") since coding Σ = dim 0t. We call 2 the manifold of states
(physical) of the network.

Next we wish to define a symmetric bilinear form / over Σ which will come
from the inductance and capacitance. Thus for each x e Σ> ^ will t>e a sym-
metric bilinear form on the tangent space TX(Σ). For this we first define a
form / over jδf x <#' by J{itV) = - Σ La(/a)dιl + Σ Cγ{vγ)dv). Here the first
sum is over the inductor branches and the second over the capacitor branches.
Lλ is a smooth positive function of iλ e R, the inductance in the Λ-th branch and
given in advance. Similarly, Cr is the capacitance in the f-th branch and is also
a smooth positive function on R given in advance.

The above / on S£ X <€' is a smooth nondegenerate symmetric form, i.e.,
an indefinite metric. Let π: Σ —> & X ^ t>e ^ e restriction of the natural
projection iL X vc: <9* -> & X Ψ, and let / = π*J so that / is a symmetric
form defined over Σ from / via π. If at x e Σ •> the derivative Dπ(x): ^ ( Σ )
—» Tπ{x)(J£ X %?') is an isomorphism then (and only then) the form /^ on
TX(Σ) wiH b e nondegenerate. Recall from (1.4) that dim 7 ^ ^ ) =
dim Γ^CJSP X «Ό

The next step in our development is to define a certain closed 1-form w on
Σ , and using this define the equations of motions for the states.

To this end, let h':Sf->R be the composition Sf l°XVc > V X %'
duality pairing

^ R, and h be the restriction of h! to Σ τ h u s ή'0'> ^) = Σ Kvr

summation over the capacitance branches.
Next let ηx be the 1-form on 3ί x &' defined by ηx = Σ vpdip9 and use the

symbol η for the 1-form on Σ induced by the map π": Σ —> & X &>'
previously defined.

(1.5) Proposition, η is a closed 1-form on Σ
Proof. It is sufficient to show that dηλ vanishes when restricted to A since

π" factors through A. But d(vpdip) = 0 for each p; it is a 2-form on a one-
dimensional manifold Ap.

Define w = η + dh on Σ Thus w is a closed 1-form on Σ
(1.6) Main theorem. The equations of motion for the network are

I(dx/dt, Y) = wOO for all Y e Γ ( Σ )
This is an equation for a curve of states in time, t —> x(f), which must be

satisfied. So x: [a, 6] -> Σ , and at *(*) e Σ we have Ix,t){x\t), Y) = wΛ(ί)(Y)
for all 7 6 T β ( ί ) ( Σ ) .

(1.7) Remark. Let U be the open subset of Σ where Dπ{x)\ TX(Σ) -•
T«{χ)(^ X ^ 0 is an isomorphism. Then on [/, / defines an isomorphism
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between vector fields and 1-forms. Thus on U, there is a vector field X which
corresponds to w under this correspondence. This X when integrated gives the
passage of a state in time on U. That is, X on U can be thought of as the
ordinary diSerential equation (nonsingular) for the circuit. However, for the
full picture, one must keep all of Σ .

Of course if H\Σ) = 0 or even if w is cohomologous to zero, we can write
w = dP for some smooth function P: Σ —> R and the right hand side of our
equation simplifies accordingly. For the usual electric circuits H\ΛP) = 0 for
each p, so H\Λ) = 0 and w = dP\ the equation becomes I(dx/dt, Y) = dP(Y)
for all Γ.

Our starting point for the proof of (1.6) is (1.2) which we can write

Σ vpdip + Σ vλdiλ + Σ vγdi7 = 0
p

as a 1-form on Σ c ^ Here according to our usual convention the first sum
is over resistance branches, the second over inductor branches and the third
over capacitor branches. Each of these sums can be interpreted as 1-forms on
Σ as induced by maps:

Σ — • K — > & — • se ysef

>sL JO y\ v>

By the Leibniz rule we have

d(Σ W) - Σ v7diγ + Σ irdvr

Putting this into the first equation, we obtain

- Σ vχdiλ + Σ hdv7 = Σ vpdip + d Σ Kvr = w

We also have the following basic relations of circuit theory (Faraday, etc.):

vλ = Lλ(iλ)dijdt , ir = Cr(vr)dvr/dt .

Making another substitution we obtain

-ΣLλ(iλ)(diλ/dt)diλ + Σ Cr(v7)(dv7/dt)dvγ = w ,

which is just another way of writing the equation of (1.6).
The final part of this section is devoted to showing how energy and power

fit naturally into our framework. Compare, e.g., Valkenburg [12, p. 23]. First
we define a real valued function W on Σ > Λe total energy stored in all the
inductive and capacitive elements, or energy for short.
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Let WL: & -+ R be the function WL(ΐ) = Γ Σ Lλ(iλ)iλdiλ where Γ is any

path from 0 to / in ̂ f. This function is well-defined since clearly the integral
is independent of Γ.

Similarly define Wc: <€' -> R by Wc(v) = Γ Σ Cγ{vγ)vγdvr Then let
or r

o,r
W: Σ-^>R, W = WLoiL + Wcovc be the energy of the network where
iL: Σ —> & i s ώe restriction of the projection iL\ <? —> &9 etc.

The power, or the power in all the resistance elements, can be represented
by another function PR: Σ —> R as the composition

Σ — > £ r 1RXVR> @ χgr-*R.

The last map is just the pairing of a vector space with its dual.
(1.8) Theorem. On the part of Σ w h e r e X is defined via (1.7), XW

= -PR

Here X W is differentiation of the function W with respect to X or in other
words with respect to the natural action of X on W.

The theorem expresses mathematically that the energy decreases along the
trajectories according to the power dissipated in the resistors. For example, if
there are no resistors one has X W = 0 or conservation of energy (but these
are not Hamiltonian systems, however).

Proof of (1.8). By Tellegen's theorem, we can write PR + PL + Pc = 0
on K or on Σ where PL,PC are defined via & x f̂7, # x <€' respectively,
similarly to PR. Then it is sufficient to prove that X- WL = PL, X- WG = Pc

on 2 , where WL, Wc can be thought of as functions on Σ- We prove the
first, the second being similar.

For this we project a solution curve φt(x) of X into i f x i f ' via the restric-
tion p of iL X v L : Sf -* -Sf X JSP7 to Σ X t i s sufficient to check

Using the definition of WL and noting for each λ that

L(ίλ)iλdiλ = L(iλ)iλ^-dt = iλvλdt ,

this last is easily checked.
2. We give some simple examples here of electrical circuits, largely to show

how the framework of the preceding section can act as a unifying force.
Example 1. This is a simple RLC series circuit with the resistance charac-

teristic current controlled. That is to say, we have the situation of Fig. 1 with
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L
Fig. 1

the orientation as depicted and Λp is described by {(ip,f(ip))} C & X 0t where
/: R —> R is a real smooth function.

Here our £ is diffeomorphic to Jδf x <€' = {(/„ vγ)} by π: Σ -> & X «">
with 7Γ the restriction of ιL x ^ : «$" —• if x ψ. In fact it can be easily seen
using the definition of 2 and Kirchhofϊ's laws that an inverse to π is given by

<Λ, vr) -> (ι2, /„ -ii9 /(/,), -/(/, ) + vr, v r) .

Thus our basic equations get transferred to Jδf X ^ ' . Here the forms / and
/ are essentially the same and letting (x,y) = (ii9 vr), where / = —L(x)dx2 +
C(y)dy\ Then w = η + dh = v^d^ + d(/ri;r) = /(JC)JJC - d( cj) and w = dP

where P(JC, y) = —xy + /(OΛ. Of course P is well-defined up to a constant.
0

Now one deduces for the basic equations (see Remark (3) below):

-^L = -^(x, y) = y - f(x) ,
dt dx dt dy

Thus in the case L = 1 and C = 1, the equations are dx/dt = y — f(x),
dy/dt = — x. This is exactly Lienard's equation as a first order equation (cf.
Hartman [6, p. 179], Lefschetz [8, p. 250]).

Remarks. (1) For f(x) = x3 — x, this becomes Van der Pol's equation.
(2) Of course a battery can be included, by incorporating it into the resist-

ance term.
(3) Formally the equations are derived as follows from the main theorem

of § 1. Suppose on R2 = {(jq, *2)}, / = -L{x,)dx\ + C(x2)dx\, I(X, Y) = dP(Y)
for all Y. Let Yx = (1,0), Y2 = (0,1). Then -L(x1)X1 = I(X, Yd = dP(Yλ)
= (dP/dx2)(x1,x2), and similarly C(x2)X2 = I(X,Y2) = (dPIdx2){xx,x2) where
X = {Xx,Xd.

(4) The power dissipated in the resistor is —PR(x,y) = —xf(x), and the
energy of § 1 is given by W(x9 y) = x2 + y2 assuming L = C = 1.

Let us look at the phase portrait of the above system of differential equations
in the (x, j>)-ρlane, under the assumptions there exist positive constants c, k with
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( a ) xf(x) > C|JC| for |JC| > k (natural assumption),

(b) f(0) < 0 (nonlinearity assumption).

Proposition. Under the above assumptions (including L = 1, C = 1),
orbits starting with large energy tend towards a periodic orbit, there is one zero
of the vector field, a source, and there is a cross-section to the flow in the
strongest sense.

First it is clear that x = 0, y = — /(0) is the unique zero, and the vector

1 θ) a s i t s m a t r i x o f first P a r t i a l derivatives at (0, — /(0)).

The eigenvalues are λ = j(—f(0) ± Vf(O)2 — 4) and will both have positive
real part since f(0) < 0. Thus the singularity is a source.

Using the theorem of § 1 that X W = —Pr, remark (4) of this example
and our assumption (a), one can check the following lemma.

Lemma. There is some disk D in R2 defined by W(x, y) < K such that
every orbit 0(t) has an associated t0 so that {0(011 > t0} C D.

This gives us our proposition except for the cross-section Q which we define
by Q = {(x,y) εR2\x = 0,y> -/(0)}. Then dQ = the zero, and the vector
field at every other point of Q is perpendicular to Q (i.e., horizontal). Further-
more, fairly direct, and well-known arguments yield that every non-trivial orbit
meets Q and after leaving Q returns again to Q. Thus we define T: Q —> Q by
taking this point of first return to obtain a diίfeomorphism which is the identity
on dQ, which contains all of the qualitative information of the system. Further-
more T expands away from oo and dQ. This finishes the proof of the proposi-
tion and our discussion of Example 1.

Example 2. A simple RLC circuit in parallel with voltage controlled
characteristic as in Fig. 2 with ίp = f(vp).

Fig. 2

We have here a diίϊeomorphism if x tf' -* J] defined by (compare
Example 1)

0"i> %) -> (f(vr), ii9Kvr)-iλ, -vγ, vr, vr) .

Then w = -vγdf(yγ) + d(yγ(f(yr) - ίλ)), and w = d((f(y) - x)y) - y df(y)
if (x,y) = (iλ,vr). So
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P(x,y) = - x y

and the equations are

L(x)dx/dί = -dP/dx = y ,

= -L{x)dx2 + C(y)dy2 ,

C(y)dy/dt = dP/dy = -x + f(y) .

These equations are essentially the same as in Example 1. Behind this is a
duality, see for example Desoer & Kuh [5].

Example 3. We will see in detail how an example from Brayton [3, p. 14]
fits into our framework. This is the circuit in the following Fig. 3.

vvv
R

• ^ —

'VV

—2»~

1

Kv)
C -

+ 1 -
E

Fig. 3

Here L, the resistance R in branch 2, and C are all linear. E is the constant
voltage source and can be thought of as a resistance with characteristic (i19 vj
= (i19 E) and the resistance in branch 3 is voltage controlled with characteristic
defined by the function / on R.

In this case the map π: Σ -* & X *#' is a difϊeomorphism, and in fact an
inverse is given by

0*4, v5) - * 0'4, i4, f(v5), Ϊ 4, i4 - f(vδ), -E, Ri4, vδ, E - Ri, - vδ, vδ) ,

where we have used the natural R3 structure on 0t ond 0V'. Also we have used
Kirchhoίϊ laws which in this case read: ix = ί2 = z4 = z3 + /5 and v3 = v59

vλ + v2 + v3 + vi = 0 it is easy to see that we have exhibited an inverse to
π. Let (x, y) = (i4, vδ), and we get for / or / even, / = — L dx2 + C dy2. We
obtain the "mixed potential" P as follows: dP(x,y) = w = dh + η =
d((x - f(y))-y) -Edx + Rxdx + ydf(y),

;y) = xy-Ex.+ R-£- - fVf(u) du .P(x

The differential equations are

L dx/dt = -y - Rx + E , Cdy/dt = x - f(y) .
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Furthermore we have expressions as follows for the work and power:

W(x, y) = Lx2 + Cf , PR = Rx2 - Ex + yf(y) .

For the function / considered by Brayton, one has the fact that there is a
disk in the (x, j)-plane such that every orbit stays in the disk for large enough
time. This is similar to the case of Example 1 and uses the fact that

χ.w= -PR.
Furthermore, if in addition there is just one zero, one can easily check that

this zero is an attractor and that there is a 1-dimensional cross-section.
Note that up to now all the examples satisfy the condition that π: Σ —>

S£ X Ψ is a (global) difϊeomorphism. Compare this to the Brayton-Moser
hypothesis [4] that the currents through the inductors and the voltages across
the capacitors determine all currents and voltages in the circuit via Kirchhoίϊ's
law. In fact it is a reasonable interpretation that the B-M hypothesis means
exactly that π: Σ —* & X *%' has a well-defined inverse and hence is a
difϊeomorphism. In this case, the derivation of Example 1 generalizes to give
the equations:

Lλ(iλ)diλ/dt = -dPjdh ,

Cr(vr)dvr/dt = -dP/dvr ,

each λ, an inductor branch,

each γ, a capacitor branch.

These are the B-M equations (up to a sign Brayton and Moser seem to use
an unusual sign convention).

Remark 1. These equations contain as special cases, all examples to this
point. If there are no inductors, then one has a gradient dynamical system.

Remark 2. As with Brayton and Moser, these equations admit an easy
extension to the case of mutual inductance, capacitance.

Example 4. This circuit has just two elements, a linear capacitor and a
nonlinear current controlled resistor as given in Fig. 4.

-K-

l WWW '

Fig. 4 Fig. 5

Here /, /(/) are the current and voltage in the resistor where we assume that

/ has the qualitative properties indicated in Fig. 5. Let / be a parameterization

of 2 s o
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Σ = {(!, -i,K0,K0) 6 at x <e x a x «"}.

Then </P(0 = -d(//(0) + K0di,P(i) = -#(/) + Γf(f)dj, and the equation
0

can be read off from the main theorem of § 1 as

C(df(i))2(X, Y) = dP(Y) ,

or

Cf(i)2di/dt = dP/di = -if(ί) ,

or finally

Cdi/dt= -i/f(ί) .

Note that this equation does not fit into the framework of the B-M equations,
π: 2 —* & X *&' is not a diffeomorphism and in fact the equation is singular
where f(ι) = 0. So we have obtained a singular first order, ordinary differential
equation on the 1-dimensional manifold J] or a vector field as in Fig. 6 where
the singularities (not the zero) are marked with an x.

Fig. 6

What happens at the singularity is undetermined by the mathematics, i.e., by
the differential equation.

However, one can give a prescription for what happens at these singularities
which is consistent with experiment and can be justified by circuit theory.
This has to do with the theory of "relaxation oscillations" and proceeds as
follows. At a singularity, the state jumps instantaneously to the part of Σ
described by the dotted arrows ji9j2 in the following Fig. 7.

Thus, at least after a while, the state oscillates, the oscillation including two
portions which take no time and two passages along the manifold.

To justify this interpretation of what happens at the jumps, we proceed as
follows according to a suggestion of C. Desoer and some ideas in the literature
[7], [9]. R. E. Kalman first mentioned to me that this study was connected
with relaxation oscillations (in connection with Example 5). We introduce into
the circuit of Fig. 4, an inductor in series with inductance L, to obtain the
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Fig. 7

circuit of Example 1, (see Fig. 1). The differential equations for this example
are nonsingular and thus so to speak we have regularized the differential equa-
tions of the original circuit. We may in fact assume that L is as small as we
want, so that there is a good physical justification in introducing L.

The new differential equations are

L di/dt = +vγ - f(ί) , C dvjdt = -i ,

where / is the current through the inductor (or through the resistor, which is
the same thing) and vγ is the voltage across the capacitor. Thus if L = 0, then
vγ = /(/), dvjdt = f(ί)di/dt and dvr/dt = — i/C so we recover the equations
of Example 4.

Now to justify our prescription of the jumps one looks at the phase portrait
of the above as L —> 0.

For this we refer to the literature [7], [9]. The idea is that Σ of Example 4
can be imbedded naturally in the (/, ̂ -p lane of Example 1: / —• (i, f(ΐ) = vr),
and one can imbed the cycle of Example 4 including the jumps also (in fact
just look at Fig. 7). Then given any neighborhood of the cycle, by taking L
small enough, the unique cycle of Example 1 (for the choice of /) falls into
this neighborhood, with the time taken along the jump part arbitrarily small.
The proof is not difficult.

Example 5. The circuit we discuss here has some features of Example 4
but is more complicated. It and Example 4 both fit naturally into the framework
of § 1 and the differential equations there apply. In both of these examples,
the map π: 2 -> J£? X <€' has a singular derivative and the Brayton-Moser
framework does not fit. The indefinite metric / is degenerate and this leads to
singularities of the differential equation as a vector field on 2 (singularity in
the sense that the vector field is not defined there). A regularization is developed
in Example 6 for Example 5.

The circuit then is exactly that of Example 1 except that the resistor charac-
teristic is not assumed to be current-controlled and the orientation is different.
See Fig. 8. We do assume that the resistor is voltage controlled so that its
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Fig. 8

characteristic is the graph of a real function f(yp) = ip. In this case one has a
global coordinate system for £ given by the restriction of the projection
^ X ^ : ^ - > ^ X ^ t o 2 . A n inverse 3t' X Ψ -> Σ c & i s β ί v e n bY

(*, y) = O,, vr) -* (f(vp), f(vp), f(vp), vp,-vp- vr, vr) .

Again this is checked from the definitions and Kirchhofϊ's laws. Then w = η
+ dh = vpdip + d(irvr) = xdf(x) + d(y f(x)) and w = dP where P(x, y) =

(x + y)f(x) — \f(t)dt. In this case / has the form

C(vγ)dv) = -L(f(x))(df(x)γ + C(y)df

= C(y)dy2 - L(f(x))(df(x)/dx)2dx2 .

Note that this form is degenerate when (df/dx)(x) = 0. This fact prevents
one from using the B-M (iλ, vr) as coordinates for Σ.

Our equations for the circuit now become:

L(f(x))(df/dx)2dx/dt = -(dP/dx)(x,y) , C(y)dy/dt = (dP/dy)(x,y) .

Thus if C = L = 1, we obtain

(df/dx)(x)dx/dt = -(x + y) , dy/dt = f(x) .

One can write down the energy and power as W = i\ + v\ = f(x)2 + y2

and PR = ipvp = xf(x) respectively.
One can expect that df(x) \dx = 0 for certain isolated x if the resistance is

sufficiently nonlinear. In this case the equations for the circuit have a 1-dimen-
sional set of singularities.

Remark. The same equations are valid for the dual circuit, that of Example
2 where the resistance is current controlled.

We now proceed to study the phase portrait in the (x, y)-plane of these
equations when the characteristic has the qualitative behavior described by
Fig. 9.

There will be three zeros of this vector field given by f(x) = 0, x + y = 0
or (x19 —xj, (x2, —x2)> C*3> — *3) where xt are the three zeros of /. The local
behavior of the flow in the neighborhood will in general be determined by the
eigenvalues of the matrix of partical derivatives
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/(',) = v,

Fig. 9

a

fix)

•i//'W\

o / with a =_ xf"(x) - f (x)
fix)2

for x = someΛ^. This is an easy calculation from the basic equations. Then

the eigenvalues have the form λ = \{a ± ^a2 — 4).
Typically under these conditions if xx < x2 < JC3, one might expect that

|α| < 2 and flίJCj) < 0, a(x2) > 0, α(jc3) < 0, in which case the first and third
zeros are sinks while the second is a source. We will make this assumption in
what follows.

Next let x', x" be the values of x where fix) = 0. The vector field will be
undefined then at the two vertical lines through x', x".

Fig. 10
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One knows exactly the qualitative behavior of the vector field along the
curves x + y = 0, f(x) = 0, as well as f(x) = 0. This follows from the form
of the differential equations. Putting all of this information together, we can
obtain the phase portrait as partially depicted in Fig. 10.

This leaves open the question of what happens as a trajectory runs into a
singular line fix) = 0. We give a prescription for this with a justification in
the next section.

Example 6. We follow a suggestion of C. Desoer to regularize Example 5
by adding a (small) capacitance C" as in Fig. 11.

Fig. 11

The goal will be to give a prescription for what happens in Example 5 at the
singularities (undefined places of the vector field) and to provide some informa-
tion on the phase portrait of Example 6. We emphasize that the resistor in
Example 6 is the same non-linear one as in Example 5.

Proposition. As C" —> 0 in Example 6, one obtains Example 5 with the
following "prescription". When a trajectory hits the line x = x", the state
jumps instantaneously to the line x = x keeping the same y value. When a
trajectory hits the line x = x', the state jumps instantaneously to the line
x = x, again keeping the same y value.

In what follows, clarification will be added to this proposition. The first step
is to write down the equation for Example 6. As usual, we find a coordinate
chart on £ , this time as a map se X <€' -* Σ C ϊ? which is an inverse to
π: Σ -* & X W a n d

(iλ, vr, v'γ) - * (/(vp, iλ9 iλ, iλ - f(v'r), v'v —vr - v'γ, vr, v'γ) ,

where iλ is of course the current through L, and vr, v[ is the voltage across the
capacitor C, C respectively. Here we have used the Kirchhoff laws ip + ζ =
ί7 = h> vλ + vr + vp = 0, vp = v'r.

Then one checks easily that P = iλ(vr + v'r) — I f(v'r)dv'r. The equations
0

are

L dijdt = -(vr + v'r) , C dvjdt = /, , C dv'r/dt = iλ - f(v$ .
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If C = 0,L = C = 1, then iλ = f(v'r), dijdt = f'(v'r)dv'r/dt, v\ = vp and

dv r/A = f(vp) , f(vp)dvp/dt = - ( v r + i;,) .

This checks these are the equations of Example 5. We let (x, y9 z) = (v'r, vr, ίλ),
and L = C = 1. So we have

ώ / A = (z - f(x))/C , dy/Λ = z , dz/Λ = - ( J C + y) .

Energy and power have the form W = z2 + y2 + Ox2, PR = xf(x).
Now we consider the surface S imbedded in R2, (x, y, z) = (x, y, /(*)). This

surface we think of as Example 5 imbedded in Example 6, and the question is
what happens on S as C" —> 0.

Now we leave to the reader to carry out this process in detail to prove the
previous proposition. One chases along trajectories for C very small, and keeps
sharp account of how the signs of components of our vector field change.

Now we discuss the more general problem of the phase portrait of Fig. 11,
and we do not necessarily assume that C" is small.

My feeling is that one can expect the qualitative behavior of this differential
equation in 3-space to be rather complicated. One property is that for the kind
of resistor characteristic we have been considering, there will be three zeros of
the vector field. The study of the local behavior of the system about these zeros
should be rather straightforward.

Furthermore, using (1.8), our expression for W and PR and the form of
these differential equations, one can check that the states eventually contract
onto some fixed, compact subset of our 3-dimensional phase space thus one
knows the qualitative behavior of this differential equation at oo of R3.

Finally we remark that there is a very well-behaved cross-section Q in this
example, defined by

Q = {(x,y,z) ε R3\x + y > 0, z - /(JC)}

with associated diffeomorphism T: Q —> Q. It should not be a problem of too
great difficulty to study the behavior of T on the boundary dQ of β . The
general problem then reduces to the study of T. I would think that this should
be a relevant, interesting and challenging problem, to study the qualitative
properties of this transformation T, say for / of the type we have been con-
sidering. It might be useful to impose other conditions such as /, say of a
generic type. Can one use (1.8) to obtain further information? Is the fact that
this system is of gradient type for an indefinite metric of some use?

Example 7. Consider the circuit of Fig. 12. Note that the map iL X vc: £f
—> S£ X <€' restricted to K has image in a one-dimensional subspace of JP x # ' ,
££ X <€' being of dim 2. This is because <€' is zero, and iL X vc amounts to
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Fig. 12

iL: Ker 3 -* if. But dim Ker 3 = 1. Thus no matter what the characteristic
of 0t is, or LlyL2 are, the differential equations of (1.6) are degenerate every-
where on 2 for this Example 7.

Let's look briefly at the generalization of this forced degeneracy.
Consider generally the map iL X vc: S? -* Jδf X Ψ restricted to K. This is

a product

Ker 3 X Im 3* -> S£ x <g"

of the restriction of projections ιL: Ker 3 -* &, vc: I m 3 * -> # ' . Thus the
condition for forced degeneracy is precisely "either /L: Ker 3 —• i f or v σ : Im 3*
—* c€r fails to be surjective". In the case of forced degeneracy, the differential
equations are everywhere ill-defined on 2 CA! independent of the charac-
teristics.

There is one sufficient criterion for the above necessary and sufficient con-
dition for forced degeneracy. Namely, if either

dim i f > dim Ker 3 or dim <βf > dim Im 3* ,

then iL X vc -» i f X <€' will fail to be surjective. This last criterion can be
easily verified by a counting procedure, e.g., as in the original example of
Fig. 11. More generally, dim ^ = the number of inductors, dim Ker 3 =
# branches — # nodes + 1 , so if # inductors > # branches — # nodes + 1
then one has forced degeneracy. A dual statement can be made for the
capacitors, namely, # capacitors > # nodes — 1 implies forced degeneracy.

3. This section consists essentially of a number of remarks related to the
preceding sections.

Theorem (1.6) suggests that it might be worthwhile to consider abstractly
dynamical systems of that type. The ordinary gradient systems of a function
with respect to a (positive definite) Riemannian metric are well understood
(see, e.g., [11 §1.2] or [10]). The equations of (1.6) involve extensions of
these in several ways. For example, consider this.

(3.1) Problem. What can one say about the dynamical systems which are
gradient systems of a function with respect to a nondegenerate indefinite metric,
say on a compact manifold? That is to say, let M be a compact manifold with
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a nondegenerate symmetric form defined over it (e.g., a Lorentz manifold),
and /: M —> R a smooth function. Then grad / is the vector field correspond-
ing under this form to the 1-form df. What special properties do such systems
have?

Now (1.6) motivates one to consider a further extension of (3.1). This
consists of replacing df by a closed 1-form w on M. We will call such a system
grad w where grad w is the vector field corresponding to w under the non-
degenerate metric.

Moe Hirsch pointed out to me the facts in this paragraph. We construct
examples of systems of this generalized gradient type. Let a compact manifold
M have a vector field X which is a suspension as defined in [11, §11.1]. Then
one has a canonical map π: M —» Sι,Sι the circle. Now take any Riemannian
metric on M such that | |^(JC) | | = 1 for each x e M and π~\q) is orthogonal to
X for each q e S1, and let wQ be the canonical 1-form on S1. It can be checked
that X = grad (τr*>v0). One also has a converse construction. Suppose X —
grad w, dw = 0 and X is never zero on a compact manifold M. Consider [w]
in Hι(M, R) and take an approximation w1 with [wj e H\M, Q), Q the rationals.
Let p be a positive integer so that [p, wj e H\M, Z), Zthe integers. Then there
is a smooth function /: M —• Sι generated by p wx (Bruschlinsky). If the ap-
proximation wλ is good enough, f~\q) will be transversal to X for each q e Sι.
Thus f~\q) is a cross-section. Is the following true?

(3.2). Suppose X = grad (w) is the gradient of a closed 1-form with respect
to a Riemannian metric on a compact manifold M. Suppose further that w is
not cohomologous to zero and that X is well-behaved in the sense it satisfies
the conditions of (2.2) of [11]. Then X has a closed orbit, not a point, which
is asymptotically stable (i.e., a sink).

The conclusion would seem to be relevant to electrical circuit problems since
a stable periodic solution is of direct physical interest. However the hypothesis
on the behavior of X is strong.

The following would seem to be interesting problems.
(3.3) Problem. Can one always regularize the equations of (1.6) by adding

arbitrarily small inductors and capacitors to the circuit appropriately? How?
By regularizing we mean obtaining new equations which have the property
π: Σ —• & X ^ ' is a difϊeomorphism (or at least a local difϊeomorphism),
e.g., as in Example 4 and Examples 5, 6.

(3.4) Problem. Suppose the power PR of a circuit can be written in the
form PR — πpPp where each Pp: ΛP-*R has the property Pp(ip, vp) > CP(PP + v2

p)
for large (ip,vp) with some positive constant Cp. Suppose also that π: 2 —>

i f X <€' is a difϊeomorphism. Then (under possibly additional conditions) does
there exist a compact set U C 2 w i ώ Λ e property, given x e 2 ^s there a *o
such that the orbit φt(x) C U if / > to7 In other words is there a compact set
of attraction for the system? The idea would be to use (1.8).
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