CRITICAL POINTS OF THE LENGTH OF A KILLING VECTOR FIELD

V. OZOLS

Introduction

Let M be a complete Riemannian manifold, X a Killing vector field on M, and φ_{t} its 1-parameter group of isometries of M, and denote by Crit $\left(|X|^{2}\right)$ (resp. Crit $\left(\varphi_{t}\right)$) the critical point set of the function $|X|^{2}$ (resp. $\delta_{\varphi_{t}}^{2}$, where $\delta_{\varphi_{t}}(p)$ is the distance from p to $\varphi_{t}(p)$). In this paper we prove that if M is compact, then there is a number $a>0$ such that Crit $\left(|X|^{2}\right)=\operatorname{Crit}\left(\varphi_{t}\right)$ for every $|t|<a$. In the proof we make use of a slight generalization of the period bounding lemma of ordinary differential equations; The only version of this lemma which we have seen in the literature (see for example [1]) makes a mild transversality assumption which we eliminate.

1. Period bounding lemma

Let M be a compact $C^{r}(r \geq 2)$ manifold of dimension n, and $X^{\tau}, \tau \in\left(-\tau_{0}, \tau_{0}\right)$ and $\tau_{0}>0$, be a parameterized C^{r} vector field on M. Then $X:\left(-\tau_{0}, \tau_{0}\right) \times$ $M \rightarrow T M$ is a C^{r} map such that $\pi\left(X_{p}^{\tau}\right)=p$ for every $(\tau, p) \in\left(-\tau_{0}, \tau_{0}\right) \times M$, where $\pi: T M \rightarrow M$ is the projection of the tangent bundle $T M$ of M. Let ψ_{s}^{τ} be the parameterized flow of X^{τ}, so that, for each fixed $\tau \in\left(-\tau_{0}, \tau_{0}\right)$, ψ_{s}^{τ} is the 1-parameter group of diffeomorphisms of M generated by X^{τ}.

Lemma. For each $0 \leq \bar{\tau}<\tau_{0}$ there is a number $a(\bar{\tau})>0$ such that for every $|\tau| \leq \bar{\tau}$ each closed orbit of ψ_{s}^{τ} has least period $\geq a(\bar{\tau})$.

Proof. Suppose the lemma is false. Then there are a sequence $p_{i} \in M$ and sequences $\tau_{i} \in[-\bar{\tau}, \bar{\tau}], \alpha_{i} \in \boldsymbol{R}$ such that the orbit $\left\{\psi_{s}^{\tau_{i}}\left(p_{i}\right) \mid s \in \boldsymbol{R}\right\}$ is closed and has least period $\alpha_{i}>0$ with $\alpha_{i} \rightarrow 0$ as $i \rightarrow \infty$. By choosing subsequences if necessary, we may assume $p_{i} \rightarrow p_{*} \in M$ and $\tau_{i} \rightarrow \tau_{*} \in[-\bar{\tau}, \bar{\tau}]$. Then $X_{p_{i}}^{\tau_{i}} \rightarrow$ $X_{p_{*}}^{\tau_{*}^{*}}$ as $i \rightarrow \infty$. Now either $X_{p_{*}}^{\tau_{*}^{*}}=0$ or $X_{p_{*}}^{\tau_{*}} \neq 0$. If $X_{p_{*}}^{\tau_{*}} \neq 0$, then $X_{p}^{\tau} \neq 0$ for all (τ, p) near $\left(\tau_{*}, p_{*}\right)$. There is a neighborhood U of p_{*} such that for each τ near τ_{*} there is a coordinate system ($x_{1}^{\tau}, \cdots, x_{n}^{\tau}$) in U satisfying $X^{\tau}=\partial / \partial x_{1}^{\tau}$. But since the periods of the orbits $\left\{\psi_{s}^{\tau_{i}}\left(p_{i}\right) \mid s \in \boldsymbol{R}\right\}$ approach 0 , these curves eventually lie in arbitrarily small neighborhoods of p_{*}, contradicting the fact that they are level curves of coordinate systems valid in all of U. Therefore
we may assume $X_{p_{*}}^{\tau_{*}}=0$. Now choose a fixed coordinate system $\left(x_{1}, \cdots, x_{n}\right)$ in a neighborhood U of p_{*}, and assume $p_{i} \in U$ for all i. Thus we may assume that the parameterized family of vector fields X^{τ} is defined in a neighborhood V of 0 in \boldsymbol{R}^{n}, and p_{i} is a sequence of points of V converging to 0 as $i \rightarrow \infty$. (Identify $p_{*} \equiv 0$). Moreover, we may assume the 1 -parameter groups ψ_{s}^{τ} of the X^{τ} are defined in V. Let $\gamma_{i}(s)=\psi_{s}^{\tau i}\left(p_{i}\right)$ be the i-th orbit in the sequence. For each i, let P_{i} be the hyperplane in \boldsymbol{R}^{n} through p_{i} and orthogonal to γ_{i} at p_{i}, and let $v_{i}=X_{p_{i}}^{\tau_{i}}$ be the tangent to γ_{i} at p_{i}. Let $s_{i} \in\left(0, \alpha_{i}\right)$ be the largest value such that $q_{i}=\gamma_{i}\left(s_{i}\right) \in P_{i}$. Then q_{i} is the last point of intersection of γ_{i} with P_{i} before p_{i}, and the points $\gamma_{i}(s), s_{i}<s<\alpha_{i}$, lie on the opposite side of P_{i} from the vector v_{i}. Let $\tilde{v}_{i}=\left(\psi_{s_{i}}^{\tau_{i}}\right) * v_{i}$, tangent to γ_{i} at s_{i}. By the construction, $v_{i} \perp P_{i}$ and \tilde{v}_{i} either lies in P_{i} or points into the half-space on the other side of P_{i} from v_{i}. In any case, the angle between v_{i} and \tilde{v}_{i} is always $\geq \pi / 2$. (Clearly, $v_{i} \neq 0$, and $\tilde{v}_{i} \neq 0$.) By choosing a subsequence if necessary, we may assume that the sequence of unit vectors $v_{i} /\left|v_{i}\right|$ converges to a unit vector v. Then the sequence of hyperplanes P_{i} converges to a hyperplane $P \perp v$ through p_{*}. Since $0<s_{i}<\alpha_{i}$ and $\alpha_{i} \rightarrow 0$, we have $s_{i} \rightarrow 0$ as $i \rightarrow \infty$; therefore $\left(\psi_{s_{i} \tau_{i}}^{\tau_{i}} \rightarrow\right.$ id: $T_{p_{*}} M \rightarrow T_{p_{*}} M$ as $i \rightarrow \infty$. Consequently, $\lim _{i \rightarrow \infty}\left(\psi_{s_{i} \tau_{i}}^{*}\left(v_{i} /\left|v_{i}\right|\right)\right.$ $=v=\lim _{i \rightarrow \infty} v_{i} /\left|v_{i}\right|$. But the angles $\Varangle\left(v_{i} /\left|v_{i}\right|,\left(\psi_{s_{i}}^{\tau_{i}}\right)_{*}\left(v_{i} /\left|v_{i}\right|\right)\right) \geq \pi / 2$ for all i, so $\Varangle\left(v, \lim _{i \rightarrow \infty}\left(\psi_{\left.s_{i} i_{i}\right)}\left(v_{i} /\left|v_{i}\right|\right)\right) \geq \pi / 2\right.$, which is a contradiction.

Remark. This result clearly applies to compact neighborhoods of arbitrary (i.e., possibly noncompact) manifolds.

2. Application to Killing vector fields

Suppose M is a complete Riemannian manifold of class C^{∞}, and $f: M \rightarrow M$ is an isometry such that for every $p \in M$ there is a unique minimizing geodesic from p to $f(p)$; such an isometry is said to have "small displacement". Let $\delta_{f}: M \rightarrow \boldsymbol{R}$ be defined by: $\delta_{f}(p)=$ distance from p to $f(p)$, and let Crit (f) be the critical point set of δ_{f}^{2}. In [3] we showed that for isometries f of small displacement δ_{f}^{2} is C^{∞} so that Crit (f) has meaning, and that $p \in \operatorname{Crit}(f)$ if and only if f preserves the minimizing geodesic from p to $f(p)$ (in the sense that f is a simple translation along this geodesic). In [2], R. Hermann studied the analogous problem for Killing vector fields, and showed that if X is a Killing vector on M, then the critical point set Crit $\left(|X|^{2}\right)$ of the function $|X|^{2}$ consists of those points of M whose orbits by the 1-parameter group of isometries φ_{t} generated by X are geodesics. It is then clear that Crit $\left(|X|^{2}\right) \subset \operatorname{Crit}\left(\varphi_{t}\right)$ for all t such that φ_{t} has small displacement, and it is not hard to show that Crit $\left(|X|^{2}\right)=\bigcap_{0<t<t_{0}}$ Crit $\left(\varphi_{t}\right)$, where t_{0} is so small that φ_{t} has small displacement if $|t|<t_{0}$. We prove here that if M is compact, then there is a number $a>0$ such that Crit $\left(|X|^{2}\right)=$ Crit $\left(\varphi_{t}\right)$ if $0<|t|<a$.

From now on, we assume M is a compact Riemannian manifold of class C^{∞}
and X is a Killing vector field on M. Suppose that there is no number $a>0$ such that Crit $\left(|X|^{2}\right)=$ Crit $\left(\varphi_{t}\right)$ for all $0<|t|<a$. Then there are sequences $t_{i} \in \boldsymbol{R}$ and $p_{i} \in M$ such that $t_{i}>0, t_{i} \rightarrow 0$ as $i \rightarrow \infty$, and $p_{i} \in\left(\operatorname{Crit}\left(\varphi_{t_{i}}\right)-\right.$ Crit $\left(|X|^{2}\right)$) for all i. We may take t_{i} to be strictly decreasing. Since M is compact, we may assume, by taking a subsequence if necessary, that $p_{i} \rightarrow p \in M$ as $i \rightarrow \infty$.

Lemma 1. $p \in \operatorname{Crit}\left(|X|^{2}\right)$.
Proof. Let γ_{i} be the minimizing geodesic from p_{i} to $\varphi_{t_{i}}\left(p_{i}\right)$. Since the vector fields tangent to the γ_{i} lie in a compact neighborhood in $T M$ (restrict to the portion of γ_{i} between p_{i} and $\varphi_{t_{i}}\left(p_{i}\right)$) we can assume, by choosing a subsequence if necessary, that the γ_{i} converge to a geodesic γ through p. Now γ_{i} intersects the orbit $\left\{\varphi_{t}\left(p_{i}\right) \mid t \in \boldsymbol{R}\right\}$ at the points $\varphi_{t_{i}}^{m}\left(p_{i}\right)=\varphi_{m t_{i}}\left(p_{i}\right), m \in \boldsymbol{Z}$. We see that since $t_{i} \rightarrow 0$, these points approach a dense set of points on γ at which the orbit $\varphi_{t}(p)$ meets γ. Therefore $\gamma=\left\{\varphi_{t}(p) \mid t \in \boldsymbol{R}\right\}$, and $p \in \operatorname{Crit}\left(|X|^{2}\right)$. q.e.d.

Now either $X_{p}=0$ or $X_{p} \neq 0$. If $X_{p}=0$, then p is a fixed point of all the $\varphi_{t}, t \in \boldsymbol{R}$. Also, since $p_{i} \notin$ Critt $\left(|X|^{2}\right), p_{i}$ is not fixed by all $\varphi_{t}, t \neq 0$.

Lemma 2. There is a number $\bar{t}>0$ such that p_{i} is not fixed by any $\varphi_{t}, 0<|t|<\bar{t}$.

Proof. Assume to the contrary that there is a sequence $t_{k} \rightarrow 0$ such that $t_{k}>0$ and p_{i} is fixed by $\varphi_{t_{k}}$. Then p_{i} is fixed by $\varphi_{t_{k}}^{m}=\varphi_{m t_{k}}$ for all $m \in \boldsymbol{Z}$, so p_{i} is fixed by φ_{t} for a dense subset of \boldsymbol{R}. Consequently p_{i} is fixed by all $\varphi_{t}, t \in \boldsymbol{R}$, which is a contradiction. q.e.d.

Let Zero $(X)=\left\{p \mid X_{p}=0\right\}$.
Lemma 3. There is $\bar{t}>0$ such that $\operatorname{Fix}\left(\varphi_{t}\right)=\operatorname{Zero}(X)$ for all $0<t \leq \bar{t}$.
Proof. Suppose the lemma is false. Then there are sequences $t_{i} \rightarrow 0$ and $p_{i} \in\left(\right.$ Fix $\left(\varphi_{t_{i}}\right)-$ Zero $\left.(X)\right)$. By taking subsequences if necessary, we may assume $p_{i} \rightarrow p \in M$. Since $\varphi_{t_{i}}^{m}\left(p_{i}\right)=p_{i}$ for all $m \in Z, \varphi_{t}(p)=p$ for a dense set of $t \in \boldsymbol{R}$. Therefore $p \in \operatorname{Zero}(X)$. We may assume $t_{i}>0$ is minimal such that $\varphi_{t_{i}}\left(p_{i}\right)=p_{i}$, for if no minimal positive t_{i} exists then $p_{i} \in \operatorname{Zero}(X)$ by Lemma 2. Now the curves $\left\{\varphi_{t}\left(p_{i}\right) \mid t \in \boldsymbol{R}\right\}$ are periodic solutions of the differential equation X in a neighborhood of p, and their least periods coverage to 0 . This contradicts the period bounding lemma. q.e.d.

Now assuming $X_{p}=0$, we have a sequence $p_{i} \rightarrow p$ with $\varphi_{t_{i}}\left(p_{i}\right) \neq p_{i}$, such that $\varphi_{t_{i}}$ preserves the minimizing geodesic γ_{i} from p_{i} to $\varphi_{t_{i}}\left(p_{i}\right)$. Since $\varphi_{t_{i}}$ preserves γ_{i} and fixes p, the geodesic γ_{i} never gets farther away from p than $r_{i}=\max \left\{\rho\left(p, \gamma_{i}(s)\right) \mid 0 \leq s \leq \rho\left(p_{i}, \varphi_{t_{i}}\left(p_{i}\right)\right)\right\}$, where $\rho(p, q)$ is the distance from p to q. Since $p_{i} \rightarrow p$ and $t_{i} \rightarrow 0$, it is clear that $r_{i} \rightarrow 0$ as $i \rightarrow \infty$. Thus we have a sequence of geodesics γ_{i} which converges to a point; this is impossible. Therefore $X_{p} \neq 0$. Then $X \neq 0$ in a neighborhood of p, and we may choose a coordinate system $\left(x_{1}, \cdots, x_{n}\right)$ in a neighborhood U of p such that $x_{i}(p)=0$, $1 \leq i \leq n$, and $X=\partial / \partial x_{1}$ in U. Let $g_{i j}=\left\langle\partial / \partial x_{i}, \partial / \partial x_{j}\right\rangle$ be the coefficients of the Riemannian metric in these coordinates, where \langle,$\rangle is the Riemannian$ inner product. Then

$$
\begin{array}{r}
X g_{i j}=\left\langle\left[\partial / \partial x_{1}, \partial / \partial x_{i}\right], \partial / \partial x_{j}\right\rangle+\left\langle\partial / \partial x_{i},\left[\partial / \partial x_{1}, \partial / \partial x_{j}\right]\right\rangle=0 \\
\text { for all } 1 \leq i, j \leq n
\end{array}
$$

because X is a Killing vector field, so the $g_{i j}$ are independent of x_{1}. Consequently, all the Christoffel symbols $\Gamma_{i j}^{k}$ are also independent of x_{1}. The orbits $\left\{\varphi_{t}(q) \mid t \in R\right\}$ are integral curves of X and therefore have the form:

$$
t \mapsto\left(x_{1}(q)+t, x_{2}(q), \cdots, x_{n}(q)\right) \quad \text { for all } q \in U
$$

Thus $\varphi_{t}:\left(x_{1}(q), \cdots, x_{n}(q)\right) \mapsto\left(x_{1}(q)+t, x_{2}(q), \cdots, x_{n}(q)\right)$. Now let $\gamma_{i}(s)=$ $\left(x_{1}^{i}(s), \cdots, x_{n}^{i}(s)\right)$ be the minimizing geodesic from p_{i} to $\varphi_{t_{i}}\left(p_{i}\right)$ with arc length s. Since $\varphi_{t_{i}}$ preserves γ_{i}, we have $\varphi_{t_{i}} \gamma_{i}(s)=\gamma_{i}\left(s+\alpha_{i}\right)$ for some constant $\alpha_{i}>0$ and all $s \in \boldsymbol{R}$. Since $\alpha_{i}=\rho\left(p_{i}, \varphi_{t_{i}}\left(p_{i}\right)\right)$, we see that $\alpha_{i} \rightarrow 0$ as $i \rightarrow \infty$. (Note that since $t_{i} \rightarrow 0$, there is a sequence $m_{i} \in Z$ such that $m_{i} \rightarrow \infty$ as $i \rightarrow \infty$, and $\varphi_{t_{i}}^{k}\left(p_{i}\right) \in U$ for all $|k| \leq m_{i}$.) In local coordinates, the equation $\varphi_{t_{i} r_{i}}(s)=$ $\gamma_{i}\left(s+\alpha_{i}\right)$ becomes:

$$
\left(x_{1}^{i}(s)+t_{i}, x_{2}^{i}(s), \cdots, x_{n}^{i}(s)\right)=\left(x_{1}^{i}\left(s+\alpha_{i}\right), x_{2}^{i}\left(s+\alpha_{i}\right), \cdots, x_{n}^{i}\left(s+\alpha_{i}\right)\right) .
$$

Thus $x_{1}^{i}(s)+t_{i}=x_{1}^{i}\left(s+\alpha_{i}\right)$, and the $x_{j}^{i}(s), 2 \leq j \leq n$, are periodic of period α_{i}. Then the functions $\bar{x}_{1}^{i}(s) \equiv x_{1}^{i}(s)-\left(t_{i} / \alpha_{i}\right) s, \bar{x}_{j}^{i}(s) \equiv x_{j}^{i}(s), 2 \leq j \leq n$, are all periodic of period α_{i}. Since the functions $x_{j}^{i}, 1 \leq j \leq n$, satisfy the differential equations for a geodesic:

$$
\frac{d^{2} x_{k}^{i}}{d s^{2}}+\sum_{l, m=1}^{n} \Gamma_{l m}^{k} \frac{d x_{l}^{i}}{d s} \frac{d x_{m}^{i}}{d s}=0, \quad 1 \leq k \leq n
$$

the functions \bar{x}_{k}^{i} satisfy the system:

$$
\begin{aligned}
\frac{d^{2} \bar{x}_{k}^{i}}{d s^{2}} & +\sum_{l, m=1}^{n} \Gamma_{l m}^{k}\left(x_{2}^{i}(s), \cdots, x_{n}^{i}(s)\right) \frac{d \bar{x}_{l}^{i}}{d s} \frac{d \bar{x}_{m}^{i}}{d s} \\
& +2\left(\frac{t_{i}}{\alpha_{i}}\right) \sum_{m=1}^{n} \Gamma_{l m}^{k}(\cdots) \frac{d \bar{x}_{m}^{i}}{d s}+\Gamma_{11}^{k}(\cdots)\left(\frac{t_{i}}{\alpha_{i}}\right)^{2}=0 .
\end{aligned}
$$

Here $\Gamma_{l m}^{k}$ is a function of $\bar{x}_{2}^{i}(s), \cdots, \bar{x}_{n}^{i}(s)$ alone, since it is independent of x_{1}. Equivalently, we have the first-order system:

$$
\begin{aligned}
& \quad d \bar{x}_{k}^{i} / d s=y_{k}^{i}, \\
& \text { (*) } \frac{d y_{k}^{i}}{d s}+\sum_{l, m=1}^{n} \Gamma_{l m}^{k} y_{l}^{i} y_{m}^{i}+2\left(\frac{t_{i}}{\alpha_{i}}\right) \sum_{m=1}^{n} \Gamma_{l m}^{k} y_{m}^{i}+\Gamma_{11}^{k}\left(\frac{t_{i}}{\alpha_{i}}\right)^{2}=0 .
\end{aligned}
$$

The system (*) is autonomous for each i. Assume now that X is normalized so that the parameter t of φ_{t} is the arc length along the geodesic $\gamma(t)=\varphi_{t}(p)$, i.e., $\left|X_{\gamma(t)}\right|=1$ for all t.

Lemma 4. $\lim _{i \rightarrow \infty}\left(t_{i} / \alpha_{i}\right)=1$.
Proof. Let $C_{i}(t)=\varphi_{t}\left(p_{i}\right)$ be the orbit of p_{i}. Since $p_{i} \rightarrow p$, we know that $C_{i}(t) \rightarrow \gamma(t)$ uniformly in some compact neighborhood of p. Since the sequence of geodesics γ_{i} also has this property, we see that $\lim _{i \rightarrow \infty}\left(L\left(C_{i}\right) / L\left(\gamma_{i}\right)\right)=1$, where $L\left(C_{i}\right)\left(\operatorname{resp.} L\left(\gamma_{i}\right)\right)$ is the length of C_{i} (resp. γ_{i}). Now $L\left(\gamma_{i}\right)=\alpha_{i}$, and $L\left(C_{i}\right)=\int_{0}^{t_{i}}\left|X_{C_{i}(t)}\right| d t=t_{i}\left|X_{C_{i}\left(\tilde{t}_{i}\right)}\right|$ for some $0<\tilde{t}_{i}<t_{i}$; so $\frac{t_{i}}{\alpha_{i}}=\frac{1}{\left|X_{C_{i}\left(\tilde{t}_{i}\right)}\right|}$ $\cdot \frac{L\left(C_{i}\right)}{L\left(\gamma_{i}\right)}$. Since $C_{i}\left(\tilde{t}_{i}\right) \rightarrow p$ as $i \rightarrow \infty,\left|X_{C_{i}\left(\tilde{t}_{i}\right)}\right| \rightarrow 1$, and the lemma is proved. q.e.d.

Now consider the following autonomous system with parameter τ, defining a parameterized vector field Y^{τ} in a neighborhood of 0 in $\boldsymbol{R}^{2 n}$:

$$
\begin{aligned}
& \quad d x_{k} / d s=y_{k} \\
& (* *) \quad \frac{d y_{k}}{d s}+\sum_{l, m=1}^{n} \Gamma_{l m}^{k} y_{l} y_{m}+2(1+\tau) \sum_{m=1}^{n} \Gamma_{l m}^{k} y_{m}+(1+\tau)^{2} \Gamma_{11}^{k}=0
\end{aligned}
$$

If $1+\tau_{i}=t_{i} / \alpha_{i}$, then we see that the sequence of functions $\eta^{i}=\left(\bar{x}_{1}^{i}, \cdots, \bar{x}_{n}^{i}\right.$, $y_{1}^{i}, \cdots, y_{k}^{i}$) which we constructed earlier satisfies ($* *$) with parameter values τ_{i}. Moreover, $\tau_{i} \rightarrow 0$ as $i \rightarrow \infty$ since $t_{i} / \alpha_{i} \rightarrow 1$, and the solution η^{i} is periodic of period α_{i} approaching 0 as $i \rightarrow \infty$. This contradicts the period bounding lemma. Therefore our original assumption that the number $a>0$ does not exist is false. Hence we have proved:

Theorem. Let M be a compact Riemannian manifold of class $C^{\infty}, X a$ Killing vector field on M, and φ_{t} the 1-parameter group of isometries generated by X. Then there is a number $a>0$ such that $\operatorname{Crit}\left(|X|^{2}\right)=\operatorname{Crit}\left(\varphi_{t}\right)$ for $|t|<a$.

Example. We construct a simple example of a (noncompact) manifold M and a 1-parameter group of isometries φ_{t} of M such that Crit $\left(|X|^{2}\right) \neq \operatorname{Crit}\left(\varphi_{t_{0}}\right)$ for some $t_{0}>0$, where X is the Killing vector field associated to φ_{t}. Let M $=\boldsymbol{R}^{5}$ with the usual metric, and define

$$
\varphi_{t}\left(x_{1} \cdots x_{5}\right)=\left(\begin{array}{rrrrr}
1 & & & & \\
& \cos t & \sin t & 0 & \\
& -\sin t & \cos t & & \\
& 0 & & & \cos 2 t \\
& \sin 2 t \\
& & & & \sin 2 t \\
\cos 2 t
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)+\left(\begin{array}{l}
t \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

φ_{t} is clearly a 1-parameter group of isometries, and the only geodesic of \boldsymbol{R}^{5} which is preserved by φ_{t} for all t is the line $t \mapsto(t, 0, \cdots, 0)$. Crit $\left(|X|^{2}\right)$ therefore equals this line. The set Crit $\left(\varphi_{\pi}\right)$ of points lying on geodesics preserved by φ_{π} is: $\left\{\left(x_{1}, 0,0, x_{4}, x_{5}\right)\right\}$, and $\operatorname{Crit}\left(\varphi_{2 \pi}\right)=\boldsymbol{R}^{5}$.

Bibliography

[1] R. Abraham \& J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967.
[2] R. Hermann, Totally geodesic orbits of groups of isometries, Indag. Math. 24 (1962) 291-298.
[3] V. Ozols, Critical points of the displacement function of an isometry, J. Differential Gecmetry 3 (1969) 411-432.

