J. DIFFERENTIAL GEOMETRY 7 (1972) 143-148

CRITICAL POINTS OF THE LENGTH OF A KILLING VECTOR FIELD

V. OZOLS

Introduction

Let *M* be a complete Riemannian manifold, *X* a Killing vector field on *M*, and φ_t its 1-parameter group of isometries of *M*, and denote by Crit $(|X|^2)$ (resp. Crit (φ_t)) the critical point set of the function $|X|^2$ (resp. $\delta_{\varphi_t}^2$, where $\delta_{\varphi_t}(p)$ is the distance from *p* to $\varphi_t(p)$). In this paper we prove that if *M* is compact, then there is a number a > 0 such that Crit $(|X|^2) = \text{Crit}(\varphi_t)$ for every |t| < a. In the proof we make use of a slight generalization of the period bounding lemma of ordinary differential equations; The only version of this lemma which we have seen in the literature (see for example [1]) makes a mild transversality assumption which we eliminate.

1. Period bounding lemma

Let *M* be a compact $C^r(r \ge 2)$ manifold of dimension *n*, and X^r , $\tau \in (-\tau_0, \tau_0)$ and $\tau_0 > 0$, be a parameterized C^r vector field on *M*. Then $X: (-\tau_0, \tau_0) \times M \to TM$ is a C^r map such that $\pi(X_p^r) = p$ for every $(\tau, p) \in (-\tau_0, \tau_0) \times M$, where $\pi: TM \to M$ is the projection of the tangent bundle *TM* of *M*. Let ψ_s^r be the parameterized flow of X^r , so that, for each fixed $\tau \in (-\tau_0, \tau_0), \psi_s^r$ is the 1-parameter group of diffeomorphisms of *M* generated by X^r .

Lemma. For each $0 \leq \overline{\tau} < \tau_0$ there is a number $a(\overline{\tau}) > 0$ such that for every $|\tau| \leq \overline{\tau}$ each closed orbit of ψ_s^{τ} has least period $\geq a(\overline{\tau})$.

Proof. Suppose the lemma is false. Then there are a sequence $p_i \in M$ and sequences $\tau_i \in [-\bar{\tau}, \bar{\tau}], \alpha_i \in \mathbf{R}$ such that the orbit $\{\psi_s^{\tau_i}(p_i) | s \in \mathbf{R}\}$ is closed and has least period $\alpha_i > 0$ with $\alpha_i \to 0$ as $i \to \infty$. By choosing subsequences if necessary, we may assume $p_i \to p_* \in M$ and $\tau_i \to \tau_* \in [-\bar{\tau}, \bar{\tau}]$. Then $X_{p_i}^{\tau_i} \to X_{p_*}^{\tau_*}$ as $i \to \infty$. Now either $X_{p_*}^{\tau_*} = 0$ or $X_{p_*}^{\tau_*} \neq 0$. If $X_{p_*}^{\tau_*} \neq 0$, then $X_p^{\tau} \neq 0$ for all (τ, p) near (τ_*, p_*) . There is a neighborhood U of p_* such that for each τ near τ_* there is a coordinate system $(x_1^{\tau_1}, \dots, x_n^{\tau_n})$ in U satisfying $X^{\tau} = \partial/\partial x_1^{\tau_1}$. But since the periods of the orbits $\{\psi_s^{\tau_i}(p_i) | s \in \mathbf{R}\}$ approach 0, these curves eventually lie in arbitrarily small neighborhoods of p_* , contradicting the fact that they are level curves of coordinate systems valid in all of U. Therefore

Received June 6, 1970, and, in revised form, October 20, 1970.

V. OZOLS

we may assume $X_{p_*}^{\tau_*} = 0$. Now choose a fixed coordinate system (x_1, \dots, x_n) in a neighborhood U of p_* , and assume $p_i \in U$ for all i. Thus we may assume that the parameterized family of vector fields X^{τ} is defined in a neighborhood V of 0 in \mathbb{R}^n , and p_i is a sequence of points of V converging to 0 as $i \to \infty$. (Identify $p_* \equiv 0$). Moreover, we may assume the 1-parameter groups ψ_s^{τ} of the X^t are defined in V. Let $\gamma_i(s) = \psi_s^{\tau_i}(p_i)$ be the *i*-th orbit in the sequence. For each i, let P_i be the hyperplane in \mathbb{R}^n through p_i and orthogonal to γ_i at p_i , and let $v_i = X_{p_i}^{\tau_i}$ be the tangent to γ_i at p_i . Let $s_i \in (0, \alpha_i)$ be the largest value such that $q_i = \gamma_i(s_i) \in P_i$. Then q_i is the last point of intersection of γ_i with P_i before p_i , and the points $\gamma_i(s), s_i < s < \alpha_i$, lie on the opposite side of P_i from the vector v_i . Let $\tilde{v}_i = (\psi_{s_i}^{\tau_i})_* v_i$, tangent to γ_i at s_i . By the construction, $v_i \perp P_i$ and \tilde{v}_i either lies in P_i or points into the half-space on the other side of P_i from v_i . In any case, the angle between v_i and \tilde{v}_i is always $\geq \pi/2$. (Clearly, $v_i \neq 0$, and $\tilde{v}_i \neq 0$.) By choosing a subsequence if necessary, we may assume that the sequence of unit vectors $v_i/|v_i|$ converges to a unit vector v. Then the sequence of hyperplanes P_i converges to a hyperplane $P \perp v$ through p_* . Since $0 < s_i < \alpha_i$ and $\alpha_i \to 0$, we have $s_i \to 0$ as $i \to \infty$; there-fore $(\psi_{s_i}^{\tau_i})_* \to \mathrm{id}: T_{p_*}M \to T_{p_*}M$ as $i \to \infty$. Consequently, $\lim_{i \to \infty} (\psi_{s_i}^{\tau_i})_*(v_i/|v_i|)$ $= v = \lim_{i \to \infty} v_i/|v_i|. \text{ But the angles } \langle (v_i/|v_i|, (\psi_{s_i}^{\tau_i})_*(v_i/|v_i|)) \geq \pi/2 \text{ for all } i,$ so $\langle (v, \lim_{i \to \infty} (\psi_{s_i}^{\tau_i})_*(v_i/|v_i|)) \geq \pi/2$, which is a contradiction.

Remark. This result clearly applies to compact neighborhoods of arbitrary (i.e., possibly noncompact) manifolds.

2. Application to Killing vector fields

Suppose M is a complete Riemannian manifold of class C^{∞} , and $f: M \to M$ is an isometry such that for every $p \in M$ there is a unique minimizing geodesic from p to f(p); such an isometry is said to have "small displacement". Let $\delta_f: M \to \mathbf{R}$ be defined by: $\delta_f(p) = \text{distance from } p \text{ to } f(p)$, and let Crit (f) be the critical point set of δ_f^2 . In [3] we showed that for isometries f of small displacement δ_f^2 is C^{∞} so that Crit (f) has meaning, and that $p \in \text{Crit}(f)$ if and only if f preserves the minimizing geodesic from p to f(p) (in the sense that f is a simple translation along this geodesic). In [2], R. Hermann studied the analogous problem for Killing vector fields, and showed that if X is a Killing vector on M, then the critical point set Crit $(|X|^2)$ of the function $|X|^2$ consists of those points of M whose orbits by the 1-parameter group of isometries φ_t generated by X are geodesics. It is then clear that $\operatorname{Crit}(|X|^2) \subset \operatorname{Crit}(\varphi_t)$ for all t such that φ_t has small displacement, and it is not hard to show that Crit $(|X|^2) = \bigcap_{0 < t < t_0}$ Crit (φ_t) , where t_0 is so small that φ_t has small displacement if $|t| < t_0$. We prove here that if M is compact, then there is a number a > 0such that Crit $(|X|^2) =$ Crit (φ_t) if 0 < |t| < a.

From now on, we assume M is a compact Riemannian manifold of class C^{∞}

and X is a Killing vector field on M. Suppose that there is no number a > 0such that Crit $(|X|^2) = \text{Crit}(\varphi_t)$ for all 0 < |t| < a. Then there are sequences $t_i \in \mathbf{R}$ and $p_i \in M$ such that $t_i > 0$, $t_i \to 0$ as $i \to \infty$, and $p_i \in (\text{Crit}(\varphi_{t_i}) - \text{Crit}(|X|^2))$ for all *i*. We may take t_i to be strictly decreasing. Since M is compact, we may assume, by taking a subsequence if necessary, that $p_i \to p \in M$ as $i \to \infty$.

Lemma 1. $p \in Crit(|X|^2)$.

Proof. Let γ_i be the minimizing geodesic from p_i to $\varphi_{t_i}(p_i)$. Since the vector fields tangent to the γ_i lie in a compact neighborhood in *TM* (restrict to the portion of γ_i between p_i and $\varphi_{t_i}(p_i)$) we can assume, by choosing a subsequence if necessary, that the γ_i converge to a geodesic γ through p. Now γ_i intersects the orbit $\{\varphi_t(p_i) | t \in \mathbf{R}\}$ at the points $\varphi_{t_i}^m(p_i) = \varphi_{mt_i}(p_i), m \in \mathbf{Z}$. We see that since $t_i \to 0$, these points approach a dense set of points on γ at which the orbit $\varphi_t(p)$ meets γ . Therefore $\gamma = \{\varphi_t(p) | t \in \mathbf{R}\}$, and $p \in \operatorname{Crit}(|\mathbf{X}|^2)$. q.e.d.

Now either $X_p = 0$ or $X_p \neq 0$. If $X_p = 0$, then p is a fixed point of all the $\varphi_t, t \in \mathbf{R}$. Also, since $p_i \notin \operatorname{Crit}(|X|^2)$, p_i is not fixed by all $\varphi_t, t \neq 0$.

Lemma 2. There is a number $\bar{t} > 0$ such that p_i is not fixed by any φ_t , $0 < |t| < \bar{t}$.

Proof. Assume to the contrary that there is a sequence $t_k \to 0$ such that $t_k > 0$ and p_i is fixed by φ_{t_k} . Then p_i is fixed by $\varphi_{t_k}^m = \varphi_{mt_k}$ for all $m \in \mathbb{Z}$, so p_i is fixed by φ_t for a dense subset of \mathbb{R} . Consequently p_i is fixed by all φ_t , $t \in \mathbb{R}$, which is a contradiction. q.e.d.

Let Zero $(X) = \{p | X_p = 0\}.$

Lemma 3. There is $\overline{t} > 0$ such that Fix $(\varphi_t) = \text{Zero}(X)$ for all $0 < t \le \overline{t}$. *Proof.* Suppose the lemma is false. Then there are sequences $t_i \to 0$ and $p_i \in (\text{Fix}(\varphi_{t_i}) - \text{Zero}(X))$. By taking subsequences if necessary, we may assume $p_i \to p \in M$. Since $\varphi_{t_i}^m(p_i) = p_i$ for all $m \in \mathbb{Z}, \varphi_t(p) = p$ for a dense set of $t \in \mathbb{R}$. Therefore $p \in \text{Zero}(X)$. We may assume $t_i > 0$ is minimal such that $\varphi_{t_i}(p_i) = p_i$, for if no minimal positive t_i exists then $p_i \in \text{Zero}(X)$ by Lemma 2. Now the curves $\{\varphi_t(p_i) | t \in \mathbb{R}\}$ are periodic solutions of the differential equation X in a neighborhood of p, and their least periods coverage to 0. This contradicts the period bounding lemma. q.e.d.

Now assuming $X_p = 0$, we have a sequence $p_i \to p$ with $\varphi_{t_i}(p_i) \neq p_i$, such that φ_{t_i} preserves the minimizing geodesic γ_i from p_i to $\varphi_{t_i}(p_i)$. Since φ_{t_i} preserves γ_i and fixes p, the geodesic γ_i never gets farther away from p than $r_i = \max \{\rho(p, \gamma_i(s)) \mid 0 \leq s \leq \rho(p_i, \varphi_{t_i}(p_i))\}$, where $\rho(p, q)$ is the distance from p to q. Since $p_i \to p$ and $t_i \to 0$, it is clear that $r_i \to 0$ as $i \to \infty$. Thus we have a sequence of geodesics γ_i which converges to a point; this is impossible. Therefore $X_p \neq 0$. Then $X \neq 0$ in a neighborhood of p, and we may choose a coordinate system (x_1, \dots, x_n) in a neighborhood U of p such that $x_i(p) = 0$, $1 \leq i \leq n$, and $X = \partial/\partial x_1$ in U. Let $g_{ij} = \langle \partial/\partial x_i, \partial/\partial x_j \rangle$ be the coefficients of the Riemannian metric in these coordinates, where \langle , \rangle is the Riemannian inner product. Then

V. OZOLS

$$\begin{split} Xg_{ij} &= \langle [\partial/\partial x_1, \partial/\partial x_i], \partial/\partial x_j \rangle + \langle \partial/\partial x_i, [\partial/\partial x_1, \partial/\partial x_j] \rangle = 0\\ \text{for all } 1 \leq i, j \leq n \end{split}$$

because X is a Killing vector field, so the g_{ij} are independent of x_1 . Consequently, all the Christoffel symbols Γ_{ij}^k are also independent of x_1 . The orbits $\{\varphi_t(q) | t \in \mathbf{R}\}$ are integral curves of X and therefore have the form:

$$t \mapsto (x_1(q) + t, x_2(q), \dots, x_n(q))$$
 for all $q \in U$.

Thus $\varphi_i: (x_1(q), \dots, x_n(q)) \mapsto (x_1(q) + t, x_2(q), \dots, x_n(q))$. Now let $\gamma_i(s) = (x_i^i(s), \dots, x_n^i(s))$ be the minimizing geodesic from p_i to $\varphi_{t_i}(p_i)$ with arc length s. Since φ_{t_i} preserves γ_i , we have $\varphi_{t_i}\gamma_i(s) = \gamma_i(s + \alpha_i)$ for some constant $\alpha_i > 0$ and all $s \in \mathbf{R}$. Since $\alpha_i = \rho(p_i, \varphi_{t_i}(p_i))$, we see that $\alpha_i \to 0$ as $i \to \infty$. (Note that since $t_i \to 0$, there is a sequence $m_i \in \mathbf{Z}$ such that $m_i \to \infty$ as $i \to \infty$, and $\varphi_{t_i}^k(p_i) \in U$ for all $|k| \le m_i$.) In local coordinates, the equation $\varphi_{t_i \tau_i}(s) = \gamma_i(s + \alpha_i)$ becomes:

$$(x_1^i(s) + t_i, x_2^i(s), \cdots, x_n^i(s)) = (x_1^i(s + \alpha_i), x_2^i(s + \alpha_i), \cdots, x_n^i(s + \alpha_i)) .$$

Thus $x_i^i(s) + t_i = x_i^i(s + \alpha_i)$, and the $x_j^i(s), 2 \le j \le n$, are periodic of period α_i . Then the functions $\bar{x}_i^i(s) \equiv x_1^i(s) - (t_i/\alpha_i)s$, $\bar{x}_j^i(s) \equiv x_j^i(s), 2 \le j \le n$, are all periodic of period α_i . Since the functions $x_j^i, 1 \le j \le n$, satisfy the differential equations for a geodesic:

$$\frac{d^2 x_k^i}{ds^2} + \sum_{l,m=1}^n \Gamma_{lm}^k \frac{dx_l^i}{ds} \frac{dx_m^i}{ds} = 0 , \qquad 1 \le k \le n ,$$

the functions \bar{x}_k^i satisfy the system:

$$\begin{aligned} \frac{d^2 \bar{x}_k^i}{ds^2} &+ \sum_{i,m=1}^n \Gamma_{lm}^k(x_2^i(s), \cdots, x_n^i(s)) \frac{d \bar{x}_l^i}{ds} \frac{d \bar{x}_m^i}{ds} \\ &+ 2 \left(\frac{t_i}{\alpha_i} \right) \sum_{m=1}^n \Gamma_{lm}^k(\cdots) \frac{d \bar{x}_m^i}{ds} + \Gamma_{11}^k(\cdots) \left(\frac{t_i}{\alpha_i} \right)^2 = 0 \end{aligned}$$

Here Γ_{lm}^k is a function of $\bar{x}_2^i(s), \dots, \bar{x}_n^i(s)$ alone, since it is independent of x_1 . Equivalently, we have the first-order system:

$$\begin{aligned} d\bar{x}_{k}^{i}/ds &= y_{k}^{i} , \\ (*) \quad \frac{dy_{k}^{i}}{ds} &+ \sum_{l,m=1}^{n} \Gamma_{lm}^{k} y_{l}^{i} y_{m}^{i} + 2 \Big(\frac{t_{i}}{\alpha_{i}} \Big) \sum_{m=1}^{n} \Gamma_{lm}^{k} y_{m}^{j} + \Gamma_{11}^{k} \Big(\frac{t_{i}}{\alpha_{i}} \Big)^{2} &= 0 . \end{aligned}$$

The system (*) is autonomous for each *i*. Assume now that X is normalized so that the parameter t of φ_t is the arc length along the geodesic $\gamma(t) = \varphi_t(p)$, i.e., $|X_{r(t)}| = 1$ for all t.

146

Lemma 4. $\lim_{i \to \infty} (t_i / \alpha_i) = 1.$

Proof. Let $C_i(t) = \varphi_i(p_i)$ be the orbit of p_i . Since $p_i \to p$, we know that $C_i(t) \to \gamma(t)$ uniformly in some compact neighborhood of p. Since the sequence of geodesics γ_i also has this property, we see that $\lim_{i \to \infty} (L(C_i)/L(\gamma_i)) = 1$, where $L(C_i)$ (resp. $L(\gamma_i)$) is the length of C_i (resp. γ_i). Now $L(\gamma_i) = \alpha_i$, and $L(C_i) = \int_0^{t_i} |X_{C_i(t_i)}| dt = t_i |X_{C_i(\tilde{t}_i)}|$ for some $0 < \tilde{t}_i < t_i$; so $\frac{t_i}{\alpha_i} = \frac{1}{|X_{C_i(\tilde{t}_i)}|} \cdot \frac{L(C_i)}{L(\gamma_i)}$. Since $C_i(\tilde{t}_i) \to p$ as $i \to \infty$, $|X_{C_i(\tilde{t}_i)}| \to 1$, and the lemma is

proved. q.e.d.

Now consider the following autonomous system with parameter τ , defining a parameterized vector field Y^{τ} in a neighborhood of 0 in \mathbb{R}^{2n} :

$$\begin{aligned} & dx_k/ds = y_k , \\ (**) \quad & \frac{dy_k}{ds} + \sum_{l,m=1}^n \Gamma_{lm}^k y_l y_m + 2(1+\tau) \sum_{m=1}^n \Gamma_{lm}^k y_m + (1+\tau)^2 \Gamma_{11}^k = 0 . \end{aligned}$$

If $1 + \tau_i = t_i/\alpha_i$, then we see that the sequence of functions $\eta^i = (\bar{x}_1^i, \dots, \bar{x}_n^i, y_1^i, \dots, y_k^i)$ which we constructed earlier satisfies (**) with parameter values τ_i . Moreover, $\tau_i \to 0$ as $i \to \infty$ since $t_i/\alpha_i \to 1$, and the solution η^i is periodic of period α_i approaching 0 as $i \to \infty$. This contradicts the period bounding lemma. Therefore our original assumption that the number a > 0 does not exist is false. Hence we have proved:

Theorem. Let M be a compact Riemannian manifold of class C^{∞} , X a Killing vector field on M, and φ_t the 1-parameter group of isometries generated by X. Then there is a number a > 0 such that $Crit(|X|^2) = Crit(\varphi_t)$ for |t| < a.

Example. We construct a simple example of a (noncompact) manifold M and a 1-parameter group of isometries φ_t of M such that Crit $(|X|^2) \neq$ Crit (φ_{t_0}) for some $t_0 > 0$, where X is the Killing vector field associated to φ_t . Let $M = \mathbf{R}^5$ with the usual metric, and define

$$\varphi_{t}(x_{1}\cdots x_{5}) = \begin{pmatrix} 1 & & & \\ \cos t & \sin t & 0 & \\ -\sin t & \cos t & & \\ 0 & -\sin 2t & \cos 2t & \\ & & -\sin 2t & \cos 2t \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} + \begin{pmatrix} t \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

 φ_t is clearly a 1-parameter group of isometries, and the only geodesic of \mathbb{R}^5 which is preserved by φ_t for all t is the line $t \mapsto (t, 0, \dots, 0)$. Crit $(|X|^2)$ therefore equals this line. The set Crit (φ_{π}) of points lying on geodesics preserved by φ_{π} is: { $(x_1, 0, 0, x_4, x_5)$ }, and Crit $(\varphi_{2\pi}) = \mathbb{R}^5$.

V. OZOLS

Bibliography

- [1] R. Abraham & J. Robbin, *Transversal mappings and flows*, Benjamin, New York, 1967.
- [2] R. Hermann, Totally geodesic orbits of groups of isometries, Indag. Math. 24 (1962) 291-298.
- [3] V. Ozols, Critical points of the displacement function of an isometry, J. Differential Geometry 3 (1969) 411-432.

UNIVERSITY OF WASHINGTON