ON THE GEOMETRY AND CLASSIFICATION OF ABSOLUTE PARALLELISMS. II

JOSEPH A. WOLF

8. The irreducible case

Let ($M, d s^{2}$) be a simply connected globally symmetric pseudo-riemannian manifold, and ϕ an absolute parallelism on M consistent with $d s^{2}$. We assume ($M, d s^{2}$) to be irreducible. Our standing notation is
\mathfrak{p} : the LTS of ϕ-parallel vector fields on M,
\mathfrak{g} : the Lie algebra of all Killing vector fields on M,
σ_{x} : conjugation of g by the symmetry s_{x} at $x \in M$,
$\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$: eigenspace decomposition under σ_{x}.
The irreducibility says that \mathfrak{m} is a simple noncommutative LTS, and thus (Lemma 6.2) says the same for \mathfrak{p}.
8.1. Lemma. Either $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{p}$ or $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$.

Proof. Let $\mathfrak{i}=[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}$. Then $[[\mathfrak{p}, \mathfrak{p}], \mathfrak{p}] \subset \mathfrak{p}$ implies $[\mathfrak{i}, \mathfrak{p}] \subset \mathfrak{i}$ and so $[\mathfrak{i p p}] \subset \mathfrak{i}$. Thus \mathfrak{i} is a LTS ideal in \mathfrak{p}. By simplicity, either $\mathfrak{i}=0$ or $\mathfrak{i}=\mathfrak{p}$.

If $\mathfrak{i}=0$, then $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$. If $\mathfrak{i}=\mathfrak{p}$, then $\mathfrak{p} \subset[\mathfrak{p}, \mathfrak{p}]$. As $[\mathfrak{i}, \mathfrak{p}] \subset \mathfrak{i}$, also $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{p}$. Hence $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{p}$. q.e.d.

We do the group manifolds immediately.
8.2. Proposition. Let $\left(M, d s^{2}\right)$ be irreducible simply connected and globally symmetric, with consistent absolute parallelism ϕ such that the LTS of ϕ parallel fields satisfies $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} \neq 0$. Then $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{p}, \mathfrak{p}$ is a simple real Lie algebra, and $\left(M, \phi, d s^{2}\right) \cong\left(P, \lambda, d \sigma^{2}\right)$ where
(i) P is the simply conncted group for \mathfrak{p},
(ii) λ is the parallelism of left translation on P, and
(iii) $d \sigma^{2}$ is the bi-invariant metric induced by a nonzero multiple of the Killing form of \mathfrak{p}.

The symmetry of $\left(P, d \sigma^{2}\right)$ at $1 \in P$ is given by $s(x)=x^{-1}$. The group G of all isometries of ($P, d \sigma^{2}$) has isotropy subgroup K at 1 given by

$$
K=\operatorname{Aut}_{R}(\mathfrak{p}) \cup s \cdot \operatorname{Aut}_{R}(\mathfrak{p}) .
$$

The identity component G_{0} of G is locally isomorphic to $P \times P$, acting by left and right translations. G is the disjoint union of cosets $\alpha \cdot G_{0}$ and $s \alpha \cdot G_{0}$ as α

[^0]runs through a system of representatives of $\operatorname{Aut}_{R}(\mathfrak{p}) / \operatorname{Int}(\mathfrak{p})$. Finally, $s(\lambda)$ is the parallelism of right translation, and is the only other absolute parallelism on P consistent with $d \sigma^{2}$.

Proof. Theorem 3.8, Lemma 8.1, fact (10.6), and the fact that any invariant bilinear form on a real simple Lie algebra is a multiple of the Killing form, give us $\left(M, \phi, d s^{2}\right) \cong\left(P, \lambda, d \sigma^{2}\right)$ with $s(\lambda)=\rho$, as claimed. The assertions on G and K follow from (5.2) and the fact that every derivation of a simple Lie algebra is inner. q.e.d.

Now we start in on the non-group case.
8.3. Lemma. Let $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$. Then \mathfrak{g} is simple, $\mathfrak{g}=[\mathfrak{p}, \mathfrak{p}]+\mathfrak{p}$, and there is an automorphism

$$
\begin{equation*}
\varepsilon_{x}: \mathfrak{g} \rightarrow \mathfrak{g} \text { such that } \varepsilon_{x}(\xi)=\xi-\sigma_{x}(\xi) \quad \text { for } \xi \in \mathfrak{p} . \tag{8.4}
\end{equation*}
$$

Proof. $\mathfrak{f}=[\mathfrak{m}, \mathfrak{m}]$ is faithfully represented as the Lie algebra of all LTS derivations of \mathfrak{m}. Now (10.3) shows $\mathfrak{g}=\mathfrak{l}_{S}(\mathfrak{m})$ standard Lie enveloping algebra; as \mathfrak{m} is simple this forces $\mathfrak{g}=\mathfrak{l}_{U}(\mathfrak{m})$ universal Lie enveloping algebra. If \mathfrak{g} were not simple, then (10.7) \mathfrak{m} would be the LTS of a Lie algebra, and Theorem 3.8 would force $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{p}$. Thus \mathfrak{g} is simple.

Let $h: \mathfrak{m} \rightarrow \mathfrak{p}$ be the inverse of the LTS isomorphism f_{x} of Lemma 6.2. Then h extends to a Lie algebra homomorphism of $\mathfrak{r}_{U}(\mathfrak{m})=\mathfrak{g}$ onto the algebra $[\mathfrak{p}, \mathfrak{p}]+\mathfrak{p}$ generated by \mathfrak{p}. As \mathfrak{g} is simple, $h: \mathfrak{g} \cong[\mathfrak{p}, \mathfrak{p}]+\mathfrak{p}$. In particular $[p, \mathfrak{p}]+\mathfrak{p}=\mathfrak{g}$ and we realize ε_{x} as h^{-1}. q.e.d.

Our method consists of showing that σ_{x} and ε_{x} generate such a large group of outer automorphisms of g that we can deduce g to be of type D_{4} and ε_{x} to be the triality. Some technical problem (proving σ_{x} outer) forces us to reduce to the compact case.

We construct a compact riemannian version of $\left(M, d s^{2}\right)$. Choose

$$
\begin{equation*}
\theta: \quad \text { Cartan involution of } g . \tag{8.5a}
\end{equation*}
$$

Thus θ is an involutive automorphism of \mathfrak{g}, whose fixed point set is a maximal compactly embdded subalgebra $\mathfrak{l} \subset \mathfrak{g}$. Let \mathfrak{q} be the -1 eigenspace of θ on \mathfrak{g}. Then we have

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{l}+\mathfrak{q} \quad \text { Cartan decomposition under } \theta . \tag{8.5b}
\end{equation*}
$$

Now choose $x \in M$ so that σ_{x} commutes with θ. That is always possible because the $\sigma_{z}, z \in M$, form a conjugacy class of semi-simple automorphisms of g. That done, we have
(8.5c) $\quad \mathfrak{f}=(\mathfrak{f} \cap \mathfrak{l})+(\mathfrak{f} \cap \mathfrak{q}), \quad \mathfrak{m}=(\mathfrak{m} \cap \mathfrak{l})+(\mathfrak{m} \cap \mathfrak{q})$.

Now define

$$
\begin{equation*}
\mathfrak{g}^{*}=\mathfrak{l}+i q \quad \text { compact real form of } \mathfrak{g}^{C} \tag{8.6a}
\end{equation*}
$$

and define subspaces of g^{*} by

$$
\begin{equation*}
\mathfrak{f}^{*}=\mathfrak{f}^{C} \cap \mathfrak{g}^{*}, \quad \mathfrak{m}^{*}=\mathfrak{m}^{C} \cap \mathfrak{g}^{*} . \tag{8.6b}
\end{equation*}
$$

σ_{x} extends to g^{C} by linearity and then restricts to an automorphism (still denoted σ_{x}) of \mathfrak{g}^{*}. Now

$$
\begin{equation*}
\mathfrak{g}^{*}=\mathfrak{f}^{*}+\mathfrak{m}^{*} \text { eigenspace decomposition under } \sigma_{x} . \tag{8.6c}
\end{equation*}
$$

To pass to the group level we define
G^{*} : simply connected group with Lie algebra g^{*},
K^{*} : analytic subgroup for $\mathfrak{1}^{*}$.
Then G^{*} is a compact semisimple group, and K^{*} is a closed subgroup because it is identity component of the fixed point set of σ_{x} on G^{*}. Now we have

$$
M^{*}=G^{*} / K^{*}: \text { compact simply connected manifold. }
$$

The Killing form κ of g^{*} is negative definite, so the restriction of $-\kappa$ to \mathfrak{m}^{*} induces
$d t^{2}: \quad G^{*}$-invariant riemannian metric on M^{*}.
We summarize the main properties as follows.
8.7. Lemma. $\left(M^{*}, d t^{2}\right)$ is a simply connected globally symmetric riemannian manifold of compact type, and g^{*} is the Lie algebra of all Killing vector fields on $\left(M^{*}, d t^{2}\right)$. For simple $\mathfrak{g},\left(M^{*}, d t^{2}\right)$ is irreducible if and only if \mathfrak{g}^{C} is simple. If \mathfrak{g} is simple but \mathfrak{g}^{C} is not simple, then $\mathfrak{g}=\mathfrak{l}^{C}$ with \mathfrak{l} compact simple and σ_{x} C-linear on \mathfrak{g}, and $\mathfrak{g}^{*}=\mathfrak{l} \oplus \mathfrak{l}$ with $\mathfrak{f}^{*}=(\mathfrak{f} \cap \mathfrak{l}) \oplus(\mathfrak{f} \cap \mathfrak{l})$.

Proof. The riemannian metric $d t^{2}$ is symmetric because it is induced by an invariant bilinear form $-\kappa$ of \mathfrak{g}^{*}. As g^{*} is semisimple and σ_{x}-stable it must contain every Killing vector field of ($M^{*}, d t^{2}$).

If \mathfrak{g}^{C} is simple, then \mathfrak{g}^{*} is simple, so $\left(M, d t^{2}\right)$ is irreducible. If $\left(M, d t^{2}\right)$ irreducible, then \mathfrak{m}^{*} is a simple LTS; if further \mathfrak{g} is simple, then \mathfrak{m} (thus also \mathfrak{m}^{*}) is not the LTS of a Lie algebra; thus \mathfrak{g}^{*} is simple, and that proves \mathfrak{g}^{C} simple.

Suppose g to be simple but g^{C} not simple. Then $\mathfrak{g}=\mathfrak{r}^{C}$ where the maximal compactly embedded subalgebra \mathfrak{l} is a compact real form. To avoid confusion we write $\mathfrak{g}=\mathfrak{l}+j \mathfrak{l}$ with $j^{2}=-1$. Were σ_{x} antilinear on \mathfrak{g} its fixed point set \mathfrak{f} would be a real form, so $\mathfrak{g}=\mathfrak{f}+j \mathfrak{f}$ and $\mathfrak{m}=j \mathfrak{j}$; then \mathfrak{f} would be absolutely irreducible on \mathfrak{m}, so ($M, d t^{2}$) would be irreducible, contradicting nonsimplicity of \mathfrak{g}^{C}. Thus σ_{x} is complex-linear on \mathfrak{g}. Now the fixed point set $\mathfrak{f}=(\mathfrak{f} \cap \mathfrak{l})^{C}$, and the assertions on \mathfrak{g}^{*} and \mathfrak{f}^{*} follow. q.e.d.

If ($M, d s^{2}$) is compact, then $\left(M^{*}, d t^{2}\right)=\left(M, c d s^{2}\right)$ for some real $c \neq 0$. If ($M, d s^{2}$) is riemannian, then (Corollary 4.5) it is compact.

We carry ϕ over to an absolute parallelism on ($M^{*}, d t^{2}$).
8.8. Lemma. The Cartan involution θ can be chosen so that $\theta(\mathfrak{p})=\mathfrak{p}$. Assume θ so chosen, and define $\mathfrak{p}^{*}=\mathfrak{p}^{C} \cap \mathfrak{g}^{*}$. Then there is an absolute parallelism ϕ^{*} on M^{*} consistent with dt ${ }^{2}$, such that \mathfrak{p}^{*} is the LTS of ϕ^{*}-parallel vector fields on M^{*}. If $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{p}$, then $\left[\mathfrak{p}^{*}, \mathfrak{p}^{*}\right]=\mathfrak{p}^{*}$. If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$, then $\left[p^{*}, \mathfrak{p}^{*}\right] \cap \mathfrak{p}^{*}=0$.

Proof. If $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{p}$, then $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{v}$ with each summand stable under any choice of θ, and $\mathfrak{p}=\mathfrak{v} \oplus 0$. Then $\mathfrak{g}^{*}=\mathfrak{b}^{*} \oplus \mathfrak{v}^{*}$ with $\mathfrak{p}^{*}=\mathfrak{b}^{*} \oplus 0$ and all the assertions are trivial.

Now suppose $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$. Then from (8.4) we have an involutive automorphism $\pi=\varepsilon_{x}^{-1} \sigma_{x} \varepsilon_{x}$ whose fixed point set is $[\mathfrak{p}, \mathfrak{p}]$ and whose -1 eigenspace is \mathfrak{p}. Note that this shows π to be independent of x. As π is a semisimple automorphism of \mathfrak{g}, we can choose θ to commute with π.

We now assume further that θ commutes with π. In other words, using (8.5), (8.9a) $\quad[\mathfrak{p}, \mathfrak{p}]=([\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{l})+([\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{q}), \quad \mathfrak{p}=(\mathfrak{p} \cap \mathfrak{l})+(\mathfrak{p} \cap \mathfrak{q})$.

From this we see

$$
\begin{equation*}
\left[\mathfrak{p}^{*}, \mathfrak{p}^{*}\right]=[\mathfrak{p}, \mathfrak{p}]^{c} \cap \mathfrak{g}^{*}, \quad \text { so } \quad \mathfrak{g}^{*}=\left[\mathfrak{p}^{*}, \mathfrak{p}^{*}\right]+\mathfrak{p}^{*} \tag{8.9b}
\end{equation*}
$$

In order to proceed we must check that

$$
\begin{equation*}
\left(1-\sigma_{x}\right)[\mathfrak{p}, \mathfrak{p}]=\mathfrak{m}, \quad\left(1-\sigma_{x}\right)\left[\mathfrak{p}^{*}, \mathfrak{p}^{*}\right]=\mathfrak{m}^{*} \tag{8.10}
\end{equation*}
$$

In view of (8.9) it suffices to check the first of these assertions. If $\left(1-\sigma_{x}\right)[\mathfrak{p}, \mathfrak{p}] \neq \mathfrak{m}$, then we have $0 \neq u \in \mathfrak{m}$ such that

$$
b_{x}\left(\left(1-\sigma_{x}\right)[\xi, \eta], u\right)=0 \quad \text { for all } \xi, \eta \in \mathfrak{p} .
$$

Let $\zeta \in \mathfrak{p}$ with $\left(1-\sigma_{x}\right) \zeta=u$. Now

$$
d s_{x}^{2}(\xi,[\eta, \zeta])=d s_{x}^{2}([\xi, \eta], \zeta)=0 \quad \text { for all } \xi, \eta \in \mathfrak{p}
$$

implying $[\mathfrak{p}, \zeta]=0$. Applying ε_{x} now $[\mathfrak{m}, u]=0$. As \mathfrak{m} is a simple noncommutative LTS now $u=0$. We conclude $\left(1-\sigma_{x}\right)[\mathfrak{p}, \mathfrak{p}]=\mathfrak{m}$, and (8.10) is verified.

Let J^{*} denote the analytic subgroup of G^{*} for $\left[p^{*}, \mathfrak{p}^{*}\right]$. It is closed in G^{*}, thus compact, because it is the identity component of the fixed point set of the automorphism $\pi=\varepsilon_{x}^{-1} \sigma_{x} \varepsilon_{x}$ on G^{*}. Denote

$$
\begin{equation*}
x^{*}=1 \cdot K^{*} \in M^{*} \tag{8.11a}
\end{equation*}
$$

Now (8.10) shows $J^{*}\left(x^{*}\right)$ is open in M^{*}. As J^{*} is compact, so is $J^{*}\left(x^{*}\right)$. Thus

$$
\begin{equation*}
J^{*}\left(x^{*}\right)=M^{*} \tag{8.11b}
\end{equation*}
$$

Recall that $d t^{2}$ is induced by negative of the Killing form κ of g^{*}. Note that $\frac{1}{2}\left(1-\sigma_{x}\right)$ is κ-orthogonal projection of g^{*} to \mathfrak{m}^{*}, and also from (8.9) that ε_{x} is well defined on \mathfrak{g}^{*}. Now let $\xi, \eta \in \mathfrak{p}^{*}$. If $j \in J^{*}$, then $\operatorname{ad}(j)^{-1} \xi, \operatorname{ad}(j)^{-1} \eta \in \mathfrak{p}^{*}$, and we compute

$$
\begin{aligned}
4 d t_{j\left(x^{*}\right)}^{2}(\xi, \eta) & =4 d t_{x^{*}}^{2}\left(\operatorname{ad}(j)^{-1} \xi, \operatorname{ad}(j)^{-1} \eta\right) \\
& =-\kappa\left(\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \xi,\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \eta\right) \\
& =-\kappa\left(\varepsilon_{x} \operatorname{ad}(j)^{-1} \xi, \varepsilon_{x} \operatorname{ad}(j)^{-1} \eta\right)=-\kappa(\xi, \eta),
\end{aligned}
$$

which is independent of the choice of $j \in J^{*}$. But (8.11) says that every element of M^{*} is of the form $j\left(x^{*}\right)$. Thus
if $\xi, \eta \in \mathfrak{p}^{*}$, then $d t^{2}(\xi, \eta)$ is constant on M^{*}.
Choose a basis $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ of \mathfrak{p}^{*}. The $\xi_{i x^{*}}$ form a basis of $M_{x^{*}}^{*}$ because $\left(1-\sigma_{x}\right) \mathfrak{p}^{*}=\mathfrak{m}^{*}$. Now (8.12) says that $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ is a global frame on M^{*} with the $d t^{2}\left(\xi_{i}, \xi_{j}\right)$ constant. Recall that the ξ_{i} are Killing vector fields of $\left(M^{*}, d t^{2}\right)$. Corollary 4.15 now says that M^{*} has an absolute parallelism ϕ^{*} consistent with $d t^{2}$ such that \mathfrak{p}^{*} is the space of ϕ^{*}-parallel vector fields. q.e.d.

If \mathfrak{l} is a Lie algebra over a field F, then $\operatorname{Aut}_{F}(\mathfrak{l})$ denotes the group of all automorphisms of \mathfrak{l} over F. If $F=R$ or $F=C$, then Int (\mathfrak{l}) denotes the normal subgroup of $\mathrm{Aut}_{F}(\mathfrak{l})$ consisting of inner automorphisms, i.e., generated by the $\exp (\operatorname{ad} v)$ with $v \in \mathfrak{l}$. If \mathfrak{l} is real or complex semisimple, then $\operatorname{Int}(\mathfrak{l})$ is the identity component of the Lie group $\mathrm{Aut}_{F}(\mathfrak{l})$.

Now we begin to identify ($M, d s^{2}$).
8.13. Lemma. Suppose $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$. If $\alpha \in \operatorname{Aut}_{R}(\mathrm{~g})$ is induced by an isometry of $\left(M, d s^{2}\right)$, in particular, if $\alpha \in \operatorname{Int}(\mathfrak{g})$, then $\alpha(\mathfrak{m}) \neq \mathfrak{p}$, and $\varepsilon_{x} \alpha$ does not commute with σ_{x}. If $\alpha^{*} \in \operatorname{Aut}_{R}\left(\mathrm{~g}^{*}\right)$ is induced by an isometry of $\left(M^{*}, d t^{2}\right)$, in particular, if $\alpha^{*} \in \operatorname{Int}\left(\mathfrak{g}^{*}\right)$, then $\alpha^{*}\left(\mathfrak{m}^{*}\right) \neq \mathfrak{p}^{*}$, and $\varepsilon_{x} \alpha^{*}$ does not commute with σ_{x}.

Proof. Let $\alpha \in \mathrm{Aut}_{R}(\mathrm{~g})$ induced by an isometry a of $\left(M, d s^{2}\right)$. Then $\psi=a^{-1}(\phi)$ is an absolute parallelism on M consistent with $d s^{2}$, and the LTS of ψ-parallel vector fields is $\alpha^{-1}(\mathfrak{p})$. If $\alpha(\mathfrak{m})=\mathfrak{p}$, then \mathfrak{m} is the LTS of ψ-parallel fields, and the comparison of (4.7) with (5.2) proves ($M, d s^{2}$) to be flat. As $\left(M, d s^{2}\right)$ is not flat, we conclude $\alpha(\mathfrak{m}) \neq \mathfrak{p}$. In particular, $\varepsilon_{x} \alpha(\mathfrak{m}) \neq \mathfrak{m}$, i.e., $\varepsilon_{x} \alpha$ does not preserve the -1 eigenspace of σ_{x}, so $\varepsilon_{x} \alpha$ does not commute with σ_{x}.

Lemma 8.8 allows us to use the same argument for $\alpha^{*}, \mathfrak{m}^{*}$ and \mathfrak{p}^{*}. q.e.d.
If \mathfrak{g}^{C} is not simple, Lemma 8.7 tells us $\mathfrak{g}=\mathfrak{l}^{C}$ where \mathfrak{l} is compact simple and $\sigma_{x} \in \mathrm{Aut}_{C}\left(\mathfrak{l}^{C}\right)$. However, it is conceivable that our extension $\varepsilon_{x} \in \operatorname{Aut}_{R}(\mathfrak{g})$ of $f_{x}: \mathfrak{p} \cong \mathfrak{m}$ be complex antilinear. Should that be the case, note that the Cartan involution θ is complex antilinear on \mathfrak{l}^{C}, so $\varepsilon_{x} \theta \in \operatorname{Aut}_{C}\left(\mathfrak{l}^{C}\right)$. Thus either

$$
\begin{equation*}
\varepsilon_{x} \in \operatorname{Aut}_{C}\left(\mathfrak{Y}^{C}\right) \text { and we denote } \varepsilon_{x}^{\prime}=\varepsilon_{x} \in \operatorname{Aut}_{C}\left(\mathfrak{Y}^{C}\right), \tag{8.14a}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon_{x} \notin \operatorname{Aut}_{C}\left(\mathfrak{l}^{C}\right) \text { and we denote } \varepsilon_{x}^{\prime}=\varepsilon_{x} \theta \in \operatorname{Aut}_{C}\left(\mathfrak{(}^{C}\right) . \tag{8.14b}
\end{equation*}
$$

8.15. Lemma. Let $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$. If \mathfrak{g}^{C} is simple, then $\operatorname{Int}\left(\mathfrak{g}^{C}\right), \sigma_{x} \cdot \operatorname{Int}\left(\mathfrak{g}^{C}\right)$ and ε_{x}. Int $\left(\mathrm{g}^{C}\right)$ are three distinct components of $\mathrm{Aut}_{C}\left(\mathrm{~g}^{C}\right)$. If g^{C} is not simple, so $\mathfrak{g}=\mathfrak{l}^{c}$ with \mathfrak{l} compact simple, then Int $(\mathfrak{g}), \sigma_{x} \cdot \operatorname{Int}(\mathfrak{g})$ and $\varepsilon_{x}^{\prime} \cdot \operatorname{Int}(\mathfrak{g})$ are three distinct components of $\mathrm{Aut}_{c}\left(\bigvee^{C}\right)$.

Proof. First consider the case where \mathfrak{g}^{C} is simple. Then \mathfrak{g}^{*} is simple and $\left(M^{*}, d t^{2}\right)$ is irreducible. Every nonzero element of \mathfrak{p}^{*} is a never-vanishing vector field on M^{*}, so the Euler-Poincaré characteristic $\chi\left(M^{*}\right)=0$. That implies $\operatorname{rank} G^{*}>\operatorname{rank} K^{*}$, so σ_{x} is an outer automorphism on \mathfrak{g}^{*}. Now $\sigma_{x} \notin \operatorname{Int}\left(g^{C}\right)$.

If ε_{x} is an inner automorphism of g^{c}, then it is inner on \mathfrak{g}^{*} giving $\alpha^{*}=$ $\varepsilon_{x}^{-1} \in \operatorname{Int}\left(g^{*}\right)$ such that $\varepsilon_{x} \alpha^{*}$ commutes with σ_{x}. Thus Lemma 8.13 forces $\varepsilon_{x} \notin \operatorname{Int}\left(g^{C}\right)$.

It σ_{x} and ε_{x} differ by an inner automorphism of \mathfrak{g}^{C}, then $\alpha^{*}=\varepsilon_{x}^{-1} \sigma_{x} \in \operatorname{Int}\left(\mathfrak{g}^{*}\right)$ such that $\varepsilon_{x} \alpha^{*}$ commutes with σ_{x}. Thus Lemma 8.13 forces $\sigma_{x} \cdot \operatorname{Int}\left(g^{C}\right) \cap \varepsilon_{x} \cdot \operatorname{Int}\left(g^{C}\right)$ to be empty.

The assertions are proved for g^{c} simple. Now suppose g^{C} to be not simple. Then $\mathfrak{g}=\mathfrak{l}^{C}$ with \mathfrak{l} compact simple and $\sigma_{x} \in \operatorname{Aut}_{C}\left(\mathfrak{l}^{C}\right)$ by Lemma 8.7, and we have $\varepsilon_{x}^{\prime} \in \operatorname{Aut}_{C}\left(\mathfrak{l}^{C}\right)$ as in (8.14). Now $\mathfrak{g}^{*} \cong \mathfrak{l} \oplus \mathfrak{l}$ with each summand stable under σ_{x}, so the argument for simple g^{c} shows σ_{x} to be outer on each summand of \mathfrak{g}^{*}. It follows that σ_{x} is outer on $\mathfrak{l}^{C}=\mathfrak{g}$, i.e., that $\sigma_{x} \notin \operatorname{Int}(\mathfrak{g})$.

If ε_{x}^{\prime} is inner on \mathfrak{l}^{C} then $\alpha^{\prime}=\varepsilon_{x}^{\prime-1} \in \operatorname{Int}(\mathfrak{g})$ and $\varepsilon_{x}^{\prime} \alpha^{\prime}$ commutes with σ_{x}. From (8.5c) we see that θ is induced by an isometry of ($M, d s^{2}$). Thus $\varepsilon_{x} \alpha$ commutes with σ_{x}, where either $\alpha=\alpha^{\prime}$ or $\alpha=\theta \alpha^{\prime}$, and where α is induced by an isometry of $\left(M, d s^{2}\right)$. That contradicts Lemma 8.13, forcing $\varepsilon_{x}^{\prime} \notin \operatorname{Int}(\mathfrak{g})$. A similar modification of the argument for simple \mathfrak{g}^{C} proves $\sigma_{x} \cdot \operatorname{Int}(\mathfrak{g}) \cap \varepsilon_{x}^{\prime} \cdot \operatorname{Int}(\mathfrak{g})$ to be empty.

The assertions are proved for g^{C} non-simple. q.e.d.
Given integers $p, q \geq 0$ and a basis $\left\{e_{1}, \cdots, e_{p+q}\right\}$ of R^{p+q} we have the symmetric nondegenerate bilinear form $b_{p, q}$ on R^{p+q} given by

$$
b_{p, q}\left(\sum_{i=1}^{p+q} a^{i} e_{i}, \sum_{j=1}^{p+q} c^{j} e_{j}\right)=\sum_{k=1}^{p} a^{k} c^{k}-\sum_{k=1}^{q} a^{p+k} c^{p+k} .
$$

Now denote

$$
\mathrm{O}(p, q): \quad \text { real orthogonal group of } b_{p, q}
$$

so the usual orthogonal group in m real variables is $\mathrm{O}(m)=\mathrm{O}(m, 0)$. Now $\mathrm{O}(p, q)$ has four components if $p q \neq 0$, and two components if $p q=0$. Denote
$S O(p, q):$ identity component of $\mathrm{O}(p, q)$, $\mathfrak{g o}(p, q)$: Lie algebra of $\mathrm{O}(p, q)$.
Then of course

$$
S O(m)=S O(m, 0), \quad \mathfrak{g o}(m)=\mathfrak{s o}(m, 0)
$$

Consider the $(p+q-1)$-manifold

$$
S O(p, q)\left(e_{1}\right) \cong S O(p, q) / S O(p-1, q), \quad p \geq 1
$$

$b_{p, q}$ induces a pseudo-riemannian metric of signature ($p-1, q$) and constant curvature 1 under which it is globally symmetric, and the case $q=0$ is the sphere $S^{p-1}=S O(p) / S O(p-1)$. We also have

$$
S O(p, q)\left(e_{p+q}\right) \cong S O(p, q) / S O(p, q-1), \quad q \geq 1
$$

there $b_{p, q}$ induces a globally symmetric preudo-riemannian metric of signature ($p, q-1$) and constant curvature -1 , and the case $q=1$ is the real hyperbolic space $H^{p}=S O(p, 1) / S O(p)$. Finally denote

$$
\begin{aligned}
& \mathrm{O}(m, C)=\mathrm{O}(m)^{C} \\
& S O(m, C)=S O(m)^{C} \\
& \text { complex orthogonal group of } b_{p, m-p} ; \\
& 30(m, C)=30(m)^{C}
\end{aligned} \quad \text { Lie algebra of } S O(m, C) .
$$

Viewing $R^{p+q} \subset C^{p+q}$ we have $(m=p+q)$

$$
S O(m, C)\left(e_{i}\right) \cong S O(m, C) / S O(m-1, C)
$$

globally symmetric pseudo-riemannian manifold of signature $(m-1, m-1)$ and nonconstant curvature, affine complexification of S^{m-1}.

Finally we have our classification. Recall that we are using the notation
G : group of all isometries of $\left(M, d s^{2}\right)$;
$\mathrm{g}: \quad$ Lie algebra of G, Killing fields of $\left(M, d s^{2}\right)$;
$x \in M$ and $K=\{g \in G: g(x)=x\}$ so $M=G / K$;
$\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$: decomposition under symmetry $\sigma_{x} ;$
\mathfrak{p} : the LTS of ϕ-parallel vector fields on M.
8.16. Theorem. Let $\left(M, d s^{2}\right)$ be an irreducible simply connected globally symmetric pseudo-riemannian manifold with consistent absolute parallelism ϕ. If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} \neq 0$, then $\left(M, \phi, d s^{2}\right)$ is a group manifold as in Proposition 8.2. If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$, then there are just three cases, all of which occur, as follows.

Case 1. $\quad M=S O(8) / S O(7)$, the sphere S^{7}, and $d s^{2}$ is a positive or negative multiple of the $S O(8)$-invariant riemannian metric of constant curvature 1. Here $G=O(8)$ and $K=O(7)$, 2-component groups.

Case 2. $M=S O(4,4) / S O(3,4)$, diffeomorphic to $S^{3} \times R^{4}$, and $d s^{2}$ is a positive or negative multiple of the $S O(4,4)$-invariant pseudo-riemannian metric of signature $(3,4)$ and constant curvature 1 . Here $G=O(4,4)$ and $K=O(3,4)$, 4-component groups.

Case 3. $\quad M=S O(8, C) / S O(7, C)$, affine complexification of S^{7} and diffeomorphic to $S^{7} \times R^{7}$, and ds ${ }^{2}$ is a multiple of the nonconstant curvature metric of signature $(7,7)$ induced by the Killing form of $\operatorname{SO}(8, C)$. Here

$$
G=O(8, C) \cup \nu \cdot O(8, C), \quad K=O(7, C) \cup \nu \cdot O(7, C)
$$

where ν is complex conjugation of C^{8} over R^{8} (so that conjugation by ν is a Cartan involution θ of G_{0}).

All possibilities for ϕ are as follows. There is a triality automorphism ε of order 3 on g with fixed point set g^{ε} of type G_{2} such that both ε and σ_{x} commute with a Cartan involution θ. Denote

$$
\mathfrak{p}_{0}=\varepsilon^{-1}(\mathfrak{m}) \quad \text { so that } \quad\left[\mathfrak{p}_{0}, \mathfrak{p}_{0}\right]=\varepsilon^{-1}(\mathfrak{f}),
$$

and observe that

$$
\varepsilon^{-1}(\mathfrak{f}) \text { is the image of the spin representation of } \mathfrak{f} .
$$

Denote

$$
J=\left\{j \in G: \text { ad }(j) \mathfrak{p}_{0}=\mathfrak{p}_{0}\right\}, \quad \text { and } \quad \mathfrak{p}_{r}=\operatorname{ad}(g) \mathfrak{p}_{0} \text { for } r=g J \in G / J
$$

Then J_{0} is the analytic subgroup of G for $\varepsilon^{-1}(\mathfrak{f})$, and
(i) $J=\left\{ \pm I_{8}\right\} \cdot J_{0}$ 2-component group in cases 1 and $2, J=\left\{ \pm I_{8}, \pm \nu\right\} \cdot J_{0}$ 4-component group in case 3;
(ii) the $\mathfrak{p}_{r}, r \in G / J$, are mutually inequivalent under the action of G;
(iii) if $r \in G / J$ then there is an absolute parallelism ϕ_{r} on M consistent with ds ${ }^{2}$ whose LTS is \mathfrak{p}_{r};
(iv) every absolute parallelism on M consistent with $d s^{2}$ is in the 7-parameter ${ }^{4}$ family $\left\{\phi_{r}\right\}_{r \in G / J}$;
(v) the parameter space G / J of $\left\{\phi_{r}\right\}$ is diffeomorphic (via ε) to the disjoint union of two copies of $M /\left\{ \pm I_{8}\right\}$; and
(vi) J_{0} is transitive on M.

Proof. If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} \neq 0$, we apply Proposition 8.2. Now suppose $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}=0$.

First, consider the case where \mathfrak{g} is a compact simple Lie algebra. Then \mathfrak{g}^{c} is simple and Lemma 8.15 says that $\operatorname{Aut}_{C}\left(g^{C}\right) / \operatorname{Int}\left(g^{C}\right)$ has order ≥ 3, so $\operatorname{Aut}_{R}(\mathrm{~g}) / \operatorname{Int}(\mathrm{g})$ has order ≥ 3. This implies that g is of Cartan classification type D_{4}, i.e., $\mathfrak{g}=\mathfrak{\xi o}(8)$. Again by Lemma $8.15, \varepsilon_{x}$ is triality, and σ_{x} is outer

[^1]on \mathfrak{g}, so the possibilities for \mathfrak{f} are $\mathfrak{B o}(7)$ and $\mathfrak{g o}(3) \oplus \mathfrak{g o}(5)$. In the latter case \mathfrak{f} and $\varepsilon_{x}(\mathfrak{f})$ would be $\operatorname{Int}(\mathfrak{g})$-conjugate, so we would have $\alpha \in \operatorname{Int}(\mathfrak{g})$ with $\varepsilon_{x} \alpha(\mathfrak{f})=\mathfrak{f}$; then $\varepsilon_{x} \alpha$ commutes with σ_{x} in violation of Lemma 8.13. Thus $\mathfrak{f}=$ $\mathfrak{g o}(7)$ and $M=S O(8) / S O(7)=S^{7}$, as in case 1 . Invariance forces $d s^{2}$ to be a multiple of the standard riemannian metric $d \sigma^{2}$ of constant curvature 1 . Then $\left(M, d \sigma^{2}\right)$ and ($M, d s^{2}$) have the same isometry group, so $G=O(8)$, whence $K=O(7)$.

Second, consider the case where g is noncompact but g^{c} is simple. Then g^{*} is simple. Lemma 8.8 and the argument for compact simple \mathfrak{g} show that $\mathfrak{g}^{*}=$ $\mathfrak{S o}(8), \mathfrak{f}^{*}=\mathfrak{g o}(7)$ and $M^{*}=S^{7}$, and that ε_{x} is triality on \mathfrak{g}^{*}. The noncompact
 whose maximal compactly embedded subalgebra is the Lie algebra $\mathfrak{u}(4)$ of the unitary group in four complex variables, is triality-equivalent to $30(2,6)$. However \mathfrak{g} is stable under the triality automorphism ε_{x} of $\mathfrak{g}^{C}=\mathfrak{s o}(8, C)$. Let $Y=$ G_{0} / L, irreducible symmetric space of noncompact type where L is a maximal compact subgroup of G_{0}; now ε_{x} induces an isometry e of Y. Let $e=a b$ where $a \in G_{0}$ and $b(1 \cdot L)=1 \cdot L$; then conjugation by b induces an automorphism β of \mathfrak{l} which extends to a triality automorphism of \mathfrak{g}, so β^{2} is an outer automorphism of \mathfrak{l}. If β is an automorphism of $\mathfrak{S o}(7)$, of $\mathfrak{S o}(2) \oplus \mathfrak{B O}(6)$, or of $\mathfrak{S o}(3) \oplus \mathfrak{g o}(5)$, then β^{2} is inner. We conclude that $\mathfrak{g}=\mathfrak{z o}(4,4)$, which in fact does admit triality from the split Cayley algebra. Thus $\mathfrak{f}=\mathfrak{S o}(3,4), M=$ $S O(4,4) / S O(3,4)$, and $d s^{2}, G$ and K are specified as in case 2.

Third, consider the case where g^{C} is not simple. Lemma 8.7 says $\mathfrak{g}=\mathfrak{l}^{C}$ with \mathfrak{l} compact simple, $\mathfrak{f}=(\mathfrak{f} \cap \mathfrak{l})^{C}, \mathfrak{g}^{*}=\mathfrak{l} \oplus \mathfrak{l}$ and $\mathfrak{f} *=(\mathfrak{f} \cap \mathfrak{l}) \oplus(\mathfrak{f} \cap \mathfrak{l})$. The argument for compact simple \mathfrak{g} says $\mathfrak{l}=\mathfrak{s o}(8), \mathfrak{f} \cap \mathfrak{l}=\mathfrak{j o}(7)$ and $M^{*}=S^{7} \times S^{7}$. Thus $\mathfrak{g}=\mathfrak{s o}(8, C), \mathfrak{f}=\mathfrak{s o}(7, C)$ aud $M=S O(8, C) / S O(7, C)$. Now $d s^{2}, G$ and K are specified as in case 3 .

It remains to verify the assertions on the construction of all consistent absolute parallelisms for the spaces $\left(M, d s^{2}\right)$ of cases 1,2 and 3.

Let $M=G / K$ and $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ as in case 1,2 or 3 of the theorem. Then g admits a triality automorphism ε of order 3 with fixed point set g^{ε} of type G_{2} [12, Table 7.14]. Fix a Cartan involution θ of g which commutes with σ_{x}. As $\varepsilon^{3}=1, \varepsilon$ is a semisimple automorphism of \mathfrak{g}, so we may replace ε by an Int (g)conjugate if necessary to arrange $\varepsilon \theta=\theta \varepsilon$. That done we use θ to construct a compact real form $\mathfrak{g}^{*}=\mathfrak{f}^{*}+\mathfrak{m}^{*}$ of \mathfrak{g}^{C} as in (8.5) and (8.6), and ε extends by linearity to g^{C} preserving g^{*}. Define $\mathfrak{p}_{0}=\varepsilon^{-1}(\mathfrak{m})$ as prescribed; then $\mathfrak{p}_{0}^{*}=$ $\mathfrak{p}_{0}^{C} \cap \mathfrak{g}^{*}$ is $\varepsilon^{-1}\left(\mathfrak{m}^{*}\right)$.

Let κ denote the Killing form on g . We need to prove the following facts:

$$
\begin{gather*}
\left(1-\sigma_{x}\right) \mathfrak{p}_{0}=\mathfrak{m}, \quad\left(1-\sigma_{x}\right)\left[\mathfrak{p}_{0}, \mathfrak{p}_{0}\right]=\mathfrak{m}, \quad \text { and } \tag{8.17a}\\
\text { if } \xi, \eta \in \mathfrak{p}_{0}, \quad \text { then } \kappa(\xi, \eta)=\kappa\left(\left(1-\sigma_{x}\right) \xi,\left(1-\sigma_{x}\right) \eta\right) .
\end{gather*}
$$

To do this we note that $\mathrm{g}^{e}=\mathfrak{f} \cap \varepsilon^{-1}(\mathfrak{f})$, so the orthocomplement of g^{e} in g
relative to κ is $\mathfrak{f}^{\perp}+\varepsilon^{-1}\left(\mathfrak{f}^{\perp}\right)=\mathfrak{m}+\varepsilon^{-1}(\mathfrak{m})=\mathfrak{m}+\mathfrak{p}_{0}$. Now ε^{-1} is a rotation by $2 \pi / 3$ on $\mathfrak{m}^{*}+\mathfrak{p}_{0}^{*}$. As $\frac{1}{2}\left(1-\sigma_{x}\right)$ is the orthogonal projection of $\mathfrak{m}^{*}+\mathfrak{p}_{0}^{*}$ to \mathfrak{m}^{*}, that says $\kappa(\xi, \eta)=\kappa\left(\left(1-\sigma_{x}\right) \xi,\left(1-\sigma_{x}\right) \eta\right)$ for $\xi, \eta \in \mathfrak{p}_{0}^{*}$. The same follows by linearity for $\xi, \eta \in \mathfrak{p}_{0}^{c}$, and thus for $\xi, \eta \in \mathfrak{p}_{0}$. That proves (8.17b), and the first assertion of (8.17a) follows. Let dim denote dim_{R} in cases 1 and 2, and dim_{C} in case 3. Then $\operatorname{dim} \mathfrak{g}=28, \operatorname{dim} \mathfrak{f}=21, \operatorname{dim} \mathfrak{g}^{c}=14$ and $\operatorname{dim} \mathfrak{m}=7$. Thus $\operatorname{dim}\left(1-\sigma_{x}\right)\left[\mathfrak{p}_{0}, \mathfrak{p}_{0}\right]=\operatorname{dim} \varepsilon^{-1}(\mathfrak{f})-\operatorname{dim} \mathfrak{g}^{\varepsilon}=21-14=7=\operatorname{dim} \mathfrak{m}$, proving the second part of (8.17a). Now (8.17) is verified.

As prescribed, let J be the normalizer of \mathfrak{p}_{0} in G. As \mathfrak{f} is the normalizer of \mathfrak{m} in \mathfrak{g}, so $\left[\mathfrak{p}_{0}, \mathfrak{p}_{0}\right]=\varepsilon^{-1}(\mathfrak{f})$ is the Lie algebra of J, and assertion (i) on the structure of J follows.

Let $j \in J$ and $\xi, \eta \in \mathfrak{p}_{0}$, and let β be the multiple of κ that induces $d s^{2}$. We compute

$$
\begin{aligned}
4 d s_{j(x)}^{2}(\xi, \eta) & =4 d s_{x}^{2}\left(\operatorname{ad}(j)^{-1} \xi, \operatorname{ad}(j)^{-1} \eta\right) \\
& =4 \beta\left(\frac{1}{2}\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \xi, \frac{1}{2}\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \eta\right) \\
& =\beta\left(\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \xi,\left(1-\sigma_{x}\right) \operatorname{ad}(j)^{-1} \eta\right) \\
& =\beta\left(\operatorname{ad}(j)^{-1} \xi, \operatorname{ad}(j)^{-1} \eta\right)=\beta(\xi, \eta),
\end{aligned}
$$

which is independent of $j \in J$. Thus $d s^{2}(\xi, \eta)$ is constant on $J(x)$. However (8.17a) says that the Lie algebra [$\mathfrak{p}_{0}, \mathfrak{p}_{0}$] of J orthogonally projects onto \mathfrak{m}. Thus $J(x)$ is open in M. Now choose a basis $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ of \mathfrak{p}_{0}. We have just checked that the $d s^{2}\left(\xi_{i}, \xi_{j}\right)$ are constant on the open set $J(x) \subset M$. Now $\left(1-\sigma_{x}\right) \mathfrak{p}_{0}=\mathfrak{m}$ shows that $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ is a global frame on $J(x)$. Thus Corollary 4.15 says that there is an absolute parallelism ψ on the connected manifold $J_{0}(x)$, consistent with $d s^{2}$ there, for which the ξ_{i} are parallel. Lemma 6.4 says that $\left(M, d s^{2}\right)$ has an absolute parallelism ϕ_{0} such that the $\left.\xi\right|_{J_{0}(x)}, \xi \in \mathfrak{p}_{0}$, are ϕ_{0}-parallel on $J_{0}(x)$. By analyticity, or because ϕ_{0}-parallel fields are Killing vector fields, now \mathfrak{p}_{0} is the LTS of all ϕ_{0}-parallel vector fields on M.

If $r=g J \in G / J$, we define $\mathfrak{p}_{r}=\operatorname{ad}(g) \mathfrak{p}_{0}$ as specified. Then $\phi_{r}=g\left(\phi_{0}\right)$ is an absolute parallelism on M consistent with $d s^{2}$, and its LTS is ad $(g) \mathfrak{p}_{0}=\mathfrak{p}_{r}$. This gives us our 7-parameter family $\left\{\phi_{r}\right\}$ of absolute parallelisms consistent with $d s^{2}$.

We check that the original absolute parallelism ϕ on M is contained in the family $\left\{\phi_{r}\right\}$. Let Aut (g) denote $\operatorname{Aut}_{R}(\mathrm{~g})$ in cases 1 and 2, and $\mathrm{Aut}_{C}(\mathrm{~g})$ in case 3. Then Aut $(\mathrm{g}) / \operatorname{Int}(\mathrm{g})$ is the group of order 6 given by $e^{3}=s^{2}=1$, ses ${ }^{-1}=$ e^{-1}. Here s represents the component of σ_{x}, and e the component of ε. Thus ε_{x} (or ε_{x}^{\prime} in case 3) is in a component represented by e,es, ses ${ }^{-1}$ or se. Now there are isometries $g, b \in G$ of $\left(M, d s^{2}\right)$ such that $\varepsilon_{x}=\operatorname{ad}(b) \cdot \varepsilon \cdot \mathrm{ad}(g)^{-1}$ and either $b=1$ or $b=s_{x}$ symmetry. Let $r=g J \in G / J$. Then $\mathfrak{p}=\varepsilon_{x}^{-1}(\mathfrak{m})=$ $\operatorname{ad}(g) \cdot \varepsilon^{-1} \cdot \operatorname{ad}\left(b^{-1}\right)(\mathfrak{m})=\operatorname{ad}(g) \varepsilon^{-1}(\mathfrak{m})=\operatorname{ad}(g) \mathfrak{p}_{0}=\mathfrak{p}_{r}$. Thus $\phi=\phi_{r}$.

Assertion (ii) on the structure of J and $\left\{\phi_{r}\right\}$ is immediate from the definition of J. We have just proved assertions (iii) and (iv). Now (i), (v) and (vi) remain.

Let $N=G_{0} / J_{0}$, and let β be the multiple of the Killing form of g which induces $d s^{2}$ on M. Then β induces a metric $d u^{2}$ on N, and ε induces an isometry of ($N, d u^{2}$) onto ($M, d s^{2}$). If $g \in G$, we notice that ad $(g)^{2}$ is an inner automorphism of g . If h is an isometry of ($N, d u^{2}$), it follows that $a d(h)^{2}$ is an inner automorphism of \mathfrak{g}. Thus $\mathfrak{p}_{0} \neq \operatorname{ad}(g) \varepsilon^{-1}\left(\mathfrak{p}_{0}\right)$ whenever $g \in G_{0}$, for $\left(\mathrm{ad}(g) \varepsilon^{-1}\right)^{2}$ is outer on g . If J meets $s_{x} G_{0}$, say $g s_{x} \in J$ where $g \in G_{0}$, then

$$
\begin{aligned}
\mathfrak{p}_{0} & =\operatorname{ad}(g) \sigma_{x}\left(\mathfrak{p}_{0}\right)=\operatorname{ad}(g) \sigma_{x} \varepsilon^{-1}(\mathfrak{m})=\operatorname{ad}(g) \varepsilon \sigma_{x}(\mathfrak{m}) \\
& =\operatorname{ad}(g) \varepsilon(\mathfrak{m})=\operatorname{ad}(g) \varepsilon^{2}\left(\mathfrak{p}_{0}\right)=\operatorname{ad}(g) \varepsilon^{-1}\left(\mathfrak{p}_{0}\right)
\end{aligned}
$$

which was just seen impossible. Thus
(8.18a) J does not meet the component $s_{x} G_{0}$ of G.

The Int (g)-normalizer of \mathfrak{m} is the connected group ad $\left(K_{0} \cup\left(-I_{8}\right) K_{0}\right)$, so the normalizer of $\mathfrak{p}_{0}=\varepsilon^{-1}(\mathfrak{m})$ in Int (g) is ad $\left(J_{0} \cup\left(-I_{8}\right) J_{0}\right)$. Thus

$$
J \cap G_{0}=\left\{\begin{array}{l}
\left\{ \pm I_{8}\right\} \cdot J_{0}(2 \text { components }) \text { in cases } 1 \text { and } 3 \tag{8.18b}\\
J_{0} \text { (connected) in case } 2 .
\end{array}\right.
$$

Note $\nu \in J$ in case 3. Denote

$$
J^{\prime}=\left\{ \pm I_{8}\right\} \cdot J_{0} \text { in cases } 1 \text { and } 2, \text { and } \quad J^{\prime}=\left\{ \pm I_{8}, \pm \nu\right\} \cdot J_{0} \text { in case } 3
$$

J^{\prime} meets one of the two components of G in case 1 , and meets two of the four components of G in cases 2 and 3. Thus $G / J^{\prime} G_{0}$ has order 2. But (8.18a) says that $G / J G_{0}$ has order ≥ 2. As $J^{\prime} \subset J$, now $J G_{0}=J^{\prime} G_{0}$. However, (8.18b) says $J \cap G_{0}=J^{\prime} \cap G_{0}$. We conclude $J=J^{\prime}$, thus proving assertion (i) on the structure of J.

In view of (i), G / J is the disjoint union of two copies of $G_{0} /\left(J \cap G_{0}\right)=$ $G_{0} /\left\{ \pm I_{8}\right\} \cdot J_{0}$. Since the isometry $\left(N, d u^{2}\right) \rightarrow\left(M, d s^{2}\right)$ induced by ε, where $N=$ G_{0} / J_{0}, induces a diffeomorphism of $G_{0} /\left\{ \pm I_{8}\right\} \cdot J_{0}$ onto $M /\left\{ \pm I_{8}\right\}$. Assertion (v) follows.

Recall that the Lie algebra $\varepsilon^{-1}(\mathfrak{f})$ of J is the image of the spin representation of \mathfrak{f}. Thus

$$
\begin{equation*}
J_{0}=\operatorname{Spin}(7), \operatorname{Spin}(3,4), \operatorname{Spin}(7, C) \text { in cases } 1,2,3 . \tag{8.19a}
\end{equation*}
$$

Recall also that $\mathfrak{f} \cap \varepsilon^{-1}(\mathfrak{f})=g^{\varepsilon}$ algebra of type G_{2}. Let G_{2} denote the compact connected group of that type, G_{2}^{C} the complex connected group of that type, and G_{2}^{*} the analytic subgroup of G_{2}^{C} which is the noncompact real form. Now

$$
\begin{equation*}
(J \cap K)_{0}=G_{2}, G_{2}^{\#}, G_{2}^{C} \text { in cases } 1,2,3 . \tag{8.19b}
\end{equation*}
$$

Now count dimensions, or recall from (8.17a), to see that

$$
J_{0}(x) \text { is open in } M .
$$

In case 1 , where J_{0} is compact, this give us $J_{0}(x)=M$.
In cases 2 and 3 , we choose a basis $\left\{e_{1}, \cdots, e_{8}\right\}$ of the ambient space R^{8} or C^{8} of M such that the e_{k} are mutually orthogonal, each $\left\|e_{k}\right\|^{2}=\left|b\left(e_{k}, e_{k}\right)\right|=1$, and
case 2: $\quad U=e_{1} R+e_{2} R+e_{3} R+e_{4} R$ is positive definite, and $V=e_{5} R+e_{6} R+e_{7} R+e_{8} R$ is negative definite;
case 3: $\quad U=e_{1} R+\cdots+e_{8} R$ is positive definite, and so $V=i U=i e_{1} R+\cdots+i e_{8} R$ is negative definite.

Then

$$
e_{1} \in M=\left\{u+v: u \in U, v \in V \quad \text { and } \quad\|u\|^{2}-\|v\|^{2}=1\right\} .
$$

Given real $r>s \geq 0$ with $r^{2}-s^{2}=1$ we define

$$
S_{r, s}=\left\{u+v: u \in U, v \in V,\|u\|^{2}=r^{2} \quad \text { and } \quad\|v\|^{2}=s^{2}\right\}
$$

Now M is the disjoint union of the $S_{r, s}$.
As J_{0} is noncompact semisimple, its Lie algebra has an element $w \neq 0$ which is diagonable with all eigenvalues real. The eigenvalues come in pairs $\{h,-h\}$ by (8.19a). Renormalizing w, now we may assume $\left\{e_{1}, \cdots, e_{8}\right\}$ chosen so that
case 2: $\quad w\left(e_{1}+e_{5}\right)=e_{1}+e_{5} \quad$ and $\quad w\left(e_{1}-e_{5}\right)=-\left(e_{1}-e_{5}\right) ;$
case 3: $\quad w\left(e_{1}+i e_{2}\right)=e_{1}+i e_{2}$ and $w\left(e_{1}-i e_{2}\right)=-\left(e_{1}-i e_{2}\right)$.
Now by direct calculation

$$
\exp (t w) \cdot e_{1} \in S_{\cosh (t), \sinh (t)}, \quad t \geq 0
$$

Thus $J_{0}\left(e_{1}\right)$ meets each of the sets $S_{r, s}$.
Let $H=\left\{g \in J_{0}: g(U)=U\right\}$. Then also $g(V)=V$ for $g \in H$, and H is the maximal compact subgroup

$$
\text { Spin (3) } \cdot \text { Spin (4) in case } 2, \quad \text { Spin (7) in case } 3 .
$$

In case 2 the Spin (3)-factor on H is transitive on the sphere $\|u\|^{2}=r^{2}$ in U, and the Spin (4)-factor is transitive on the sphere $\|v\|^{2}=s^{2}$ in V. Thus H is transitive on each $S_{r, s}$. As $J_{0}\left(e_{1}\right)$ meets each $S_{r, s}$, now $J_{0}\left(e_{1}\right)=M$.

In case $3, H$ is transitive on the sphere $\|u\|^{2}=r^{2}$ in U, and the subgroup H_{1} preserving e_{1} is G_{2} by (8.19b). Thus H_{1} is transitive on the spheres $\left\|v_{1}\right\|^{2}=$ s_{1}^{2} in $i\left(e_{2} R+e_{3} R+\cdots+e_{8} R\right)$. If $z \in S_{r, s}$, then some element of H carries z to $z^{\prime}=r e_{1}+i\left(a e_{1}+b e_{2}\right)$ where $b \geq 0$ and $a^{2}+b^{2}=s^{2}$. However, $z^{\prime} \in M$ says
$(r+i a)^{2}+(i b)^{2}=1$ so $r a=0$; as $r>0$ now $a=0$; thus $z^{\prime}=r e_{1}+i s e_{2}$. Choose $t \geq 0$ such that $r=\cosh (t)$, so $s=\sinh (t)$; now

$$
z^{\prime}=\cosh (t) e_{1}+i \sinh (t) e_{2}=\exp (t w) \cdot e_{1}
$$

Thus $J_{0}\left(e_{1}\right)=M$, and (vi) is proved, completing the proof of Theorem 8.16.

9. Global classification of reductive parallelisms

Theorems 7.6 and 8.16 completely describe the possibilities for the $\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$ in Theorem 6.7. Splitting the flat factor as in the proof of Proposition 7.5, we thus reformulate Theorem 6.7 as follows.
9.1. Theorem. Let $\left(M, \phi, d s^{2}\right)$ be a connected manifold with absolute parallelism and consistent pseudo-riemannian metric such that ϕ is of reductive type relative to $d s^{2}$. Then there exist
(1) unique integers $t \geq u \geq 0$,
(2) simply connected globally symmetric pseudo-riemannian manifolds ($\left.M_{i}, d s_{i}^{2}\right),-1 \leq i \leq t$, unique up to global isometry aud permutations of $\{1,2, \cdots, u\}$ and $\{u+1, u+2, \cdots, t\}$, and
(3) absolute parallelisms ϕ_{i} on M_{i} consistent with $d s_{i}^{2}$ and unique up to global isometry, such that the ($M_{i}, \phi_{i}, d s_{i}^{2}$) and

$$
\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)=\left(M_{-1}, \phi_{-1}, d s_{-1}^{2}\right) \times \cdots \times\left(M_{t}, \phi_{t}, d s_{t}^{2}\right)
$$

have the following properties:
(i) For $-1 \leq i \leq u, M_{i}$ is the simply connected group for a real Lie algebra $\mathfrak{p}_{i}, \phi_{i}$ is its absolute parallelism of left translation, and ds ${ }_{i}^{2}$ is the biinvariant metric induced by a nondegenerate invariant bilinear form b_{i} on \mathfrak{p}_{i}. Here $\left(\mathfrak{p}_{-1}, b_{-1}\right)$ is obtained as in (7.2) and (7.4a), and \mathfrak{p}_{-1} has center $\bar{\delta}_{-1}=z_{-1}^{1}$ relative to b_{-1}; so $\left(M_{-1}, d s_{-1}^{2}\right)$ is flat. \mathfrak{p}_{0} is commutative, so $\left(M_{0}, d s_{0}^{2}\right)$ is flat and ϕ_{0} is its euclidean parallelism. If $1 \leq i \leq u$, then \mathfrak{p}_{i} is simple and b_{i} is a nonzero real multiple of its real Killing form, so ($M_{i}, d s_{i}^{2}$) is irreducible.
(ii) For $u+1 \leq i \leq t, M_{i}$ is one of the symmetric coset spaces G_{0} / K_{0} given by

$S O(8) / S O(7)$	ordinary	7-sphere,
$S O(4,4) / S O(3,4)$	indefinite	7-sphere, or
$S O(8, C) / S O(7, C)$	complexified	7-sphere;

$d s_{i}^{2}$ is induced by a nonzero real multiple of the real Killing form of G_{0}, and ϕ_{i} comes from a triality automorphism of \mathfrak{g} as in Theorem 8.16.
(iii) Every $x \in M$ has a neighborhood U and an isometry $h:\left(U, d s^{2}\right) \rightarrow$ $\left(\tilde{U}, d \sigma^{2}\right), \tilde{U}$ open in \tilde{M}, such that h sends $\left.\phi\right|_{U}$ to $\tilde{\phi} \mid \tilde{U}$.
(iv) If ϕ is complete, i.e., if $\left(M, d s^{2}\right)$ is complete, then there is a pseudoriemannian covering $\pi:\left(\tilde{M}, d \sigma^{2}\right) \rightarrow\left(M, d s^{2}\right)$ which sends $\tilde{\phi}$ to ϕ.

We draw two corollaries of Theorems 3.8, 7.6 and 8.16 which complement the statement of Theorem 9.1.
9.2. Corollary. Let $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ be a complete simply connected pseudoriemannian manifold with consistent absolute parallelism of reductive type.
(i) Then the group of all isometries g of $\left(\tilde{M}, d \sigma^{2}\right)$ such that $g(\tilde{\phi})=\tilde{\phi}$ is transitive on \tilde{M}.
(ii) If $\left(\tilde{M}, d \sigma^{2}\right)$ has no euclidean (flat) factor, and $\tilde{\psi}$ is another absolute parallelism consistent with $d \sigma^{2}$, then $\left(\tilde{M}, d \sigma^{2}\right)$ has an isometry g such that $(g \tilde{\psi})=\tilde{\phi}$.

Proof. ($\left.\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ is the product of the $\left(M_{i}, \phi_{i}, d s_{i}^{2}\right),-1 \leq i \leq t$, as in Theorem 9.1. If $-1 \leq i \leq u$ there, then the left translations of the group manifold M_{i} are transitive and preserve ϕ_{i}. If $u+1 \leq i \leq t$, then the required transitivity is the transitivity of the group J in Theorem 8.16. Thus (i) holds for each ($M_{i}, \phi_{i}, d s_{i}^{2}$), and thus for ($\tilde{M}, \tilde{\phi}, d \sigma^{2}$). Similarly, (ii) follows from Proposition 8.2 and Theorem 8.16.
9.3. Corollary. Let $d s^{2}$ be of signature $(n-q, q)$ or $(q, n-q), 0 \leq q \leq 2$, in Theorem 9.1.
(i) M_{-1} is reduced to a point, i.e., the parallelism on the flat factor of $\left(\tilde{M}, d \sigma^{2}\right)$ is euclidean.
(ii) At most q of the simple group manifolds $M_{i}(1 \leq i \leq u)$ are noncompact. Each noncompact one is the universal covering group of $\operatorname{SL}(2, R)$.
(iii) Each of the quadrics $M_{i}(u+1 \leq i \leq t)$ is an ordinary 7-sphere.
(iv) If $\tilde{\psi}$ is any absolute parallelism on \tilde{M} consistent with $d \sigma^{2}$, then $\left(\tilde{M}, d \sigma^{2}\right)$ has an isometry g such that $g(\tilde{\psi})=\tilde{\phi}$.

Proof. If M_{-1} is not reduced to a point, then \mathfrak{p}_{-1} is nonabelian by the normalization $\delta_{-1}=\gamma^{\perp}-1$ (rel. b_{-1}) of Theorem 9.1 (i). Then the 3 -form τ in the construction (7.2) of \mathfrak{p}_{-1} must be nonzero. But τ is a 3 -form on an r-dimensional vector space where $d s_{-1}^{2}$ has signature (r, r). The latter implies $r \leq 2$ so $\tau=0$. Assertion (i) follows.

Let the simple group manifold $M_{i}(1 \leq i \leq u)$ be noncompact, and $\mathfrak{p}_{i}=\mathfrak{r}_{i}$ $+\mathfrak{q}_{i}$ the decomposition of its Lie algebra under a Cartan involution. If $l_{i}=$ $\operatorname{dim} \mathfrak{l}_{i}$ and $q_{i}=\operatorname{dim} \mathfrak{q}_{i}$, then $d s_{i}^{2}$ has signature $\left(l_{i}, q_{i}\right)$ or (q_{i}, l_{i}). Thus either $l_{i} \leq 2$ or $q_{i} \leq 2$. If $l_{i} \leq 2$, then \mathfrak{l}_{i} has no simple ideal, so \mathfrak{l}_{i} is 1 -dimensional by simplicity of \mathfrak{p}_{i}; then R-irreducibility of \mathfrak{l}_{i} on \mathfrak{q}_{i} implies $q_{i} \leq 2$. If $q_{i} \leq 2$, the symmetric space of noncompact type associated to \mathfrak{p}_{i} must have constant curvature and therefore must be the real hyperbolic plane, so \mathfrak{p}_{i} is the Lie algebra of $S L(2, R)$. Each such M_{i} contributes $(1,2)$ or $(2,1)$ to the signature of $d s^{2}$, so at most q occur. Assertion (ii) is proved.

The quadrice $M_{i}(u+1 \leq i \leq t)$ have $d s_{i}^{2}$ of signature

$$
\begin{array}{llll}
S O(8) / S O(7): & (7,0) & \text { or } & (0,7) ; \\
S O(4,4) / S O(3 / 4): & (3,4) & \text { or } & (4,3) \\
S O(8, C) / S O(7, C): & & & (7,7)
\end{array}
$$

The last two quadrics are excluded because $q<3$. That leaves the 7 -sphere, proving assertion (iii).

Let $\tilde{\psi}$ be another absolute parallelism on \tilde{M} consistent with $d \sigma^{2}$. Then $\tilde{\psi}$ is of reductive type by Lemma 6.2, and assertion (i) for ($\tilde{M}, \tilde{\psi}, d \sigma^{2}$) shows $\tilde{\psi}$ is euclidean on the flat factor of $\left(\tilde{M}, d \sigma^{2}\right)$. Thus Lemma 6.2 shows $\left(\tilde{M}, \tilde{\psi}, d \sigma^{2}\right)$ to be the product of the $\left(M_{i}, \psi_{i}, d s_{i}^{2}\right)$ for certain ψ_{i} with $\psi_{0}=\phi_{0}$. Now assertion (iv) follows from Corollary 9.2. q.e.d.

Our goal now is a complete description of the possibilities for the coverings of Theorem 9.1 (4).
9.4. Lemma. Let $\pi:\left(M^{\prime}, d \sigma^{2}\right) \rightarrow\left(M, d s^{2}\right)$ be a pseudo-riemannian covering, and ϕ an absolute parallelism on M consistent with ds s^{2}. Let \mathfrak{p} be the LTS of ϕ-parallel vector fields on M, and \mathfrak{p}^{\prime} the space of all fields ξ^{\prime} on M^{\prime} with $\pi_{*} \xi^{\prime}$ defined and in \mathfrak{p}.
(i) There is a unique absolute parallelism ϕ^{\prime} on M^{\prime} such that $\pi\left(\phi^{\prime}\right)=\phi$. It is consistent with $d \sigma^{2}$, and \mathfrak{p}^{\prime} is its LTS of parallel vector fields.
(ii) If $\xi^{\prime} \in \mathfrak{p}^{\prime}$ and γ is a deck transformation of the covering, then $\gamma * \xi^{\prime}=\xi^{\prime}$.

Proof. Assertion (i) is immediate with ϕ^{\prime} defined by the condition that \mathfrak{p}^{\prime} be its LTS. Then $\pi_{*}: \mathfrak{p}^{\prime} \cong \mathfrak{p}$, so as $\pi \circ \gamma=\pi$ implies $\pi_{*} \gamma_{*} \xi^{\prime}=\pi_{*} \xi^{\prime}$ we get $\gamma_{*} \xi^{\prime}=\xi^{\prime}$.
9.5. Proposition. Let $\left(M^{\prime}, \phi^{\prime}, d \sigma^{2}\right)$ be a connected pseudo-riemannian manifold with consistent absolute parallelism, and Z be the Lie group of all isometries g of $\left(M^{\prime}, d \sigma^{2}\right)$ such that if ξ^{\prime} is ϕ^{\prime}-parallel then $g_{*} \xi^{\prime}=\xi^{\prime}$.
(i) If $1 \neq g \in Z$, then g has no fixed point on M^{\prime}.
(ii) A subgroup of Z is discrete if, and only if, it acts freely and properly discontinuously on M^{\prime}.
(iii) The normal pseudo-riemannian coverings $\pi:\left(M^{\prime}, d \sigma^{2}\right) \rightarrow\left(M, d s^{2}\right)$ such that $\pi\left(\phi^{\prime}\right)$ is a well-defined absolute parallelism on M are just the coverings $M^{\prime} \rightarrow D \backslash M^{\prime}$ where D is a discrete subgroup of Z.

Proof. Let $g \in Z$ have a fixed point $x \in M^{\prime}$. The tangent space M_{x}^{\prime} consists of all ξ_{x}^{\prime} with ξ^{\prime} a ϕ^{\prime}-parallel vector field. As each $g_{*} \xi^{\prime}=\xi^{\prime}$ now $g_{*}: M_{x}^{\prime} \rightarrow M_{x}^{\prime}$ identity map. Since g is an isometry and M^{\prime} is connected, this shows $g=1$, and hence (i) is proved.

Choose a basis $\left\{\xi_{1}^{\prime}, \cdots, \xi_{n}^{\prime}\right\}$ of the space \mathfrak{p}^{\prime} of parallel fields. Let $\left\{\theta^{i}\right\}$ be the dual 1-forms. If $g \in Z$ each $g^{*} \theta^{i}=\theta^{i}$, so g is an isometry of the riemannian metric $d \rho^{2}=\Sigma\left(\theta^{i}\right)^{2}$. The topology on Z is the compact-open topology from its action on M^{\prime}. Thus a subgroup $D \subset Z$ is discrete if and only if it acts properly discontinuously on M^{\prime}; it acts freely by (i). Hence (ii) is proved.

If $\pi\left(\phi^{\prime}\right)=\phi$ absolute parallelism on M, then ϕ is consistent with $d s^{2}$ and we are in the situation of Lemma 9.4. The covering being normal, $M=D \backslash M^{\prime}$ where D is a group of homeomorphisms acting freely and properly discontinuously on M^{\prime}. The elements of D are isometries of $\left(M^{\prime}, d \sigma^{2}\right)$ because π is pseudoriemannian. Now $D \subset Z$ by Lemma 9.4 , and D is discrete there by (ii). Conversely let $D \subset Z$ discrete subgroup. Then D acts freely and properly
discontinuously on M^{\prime} by (ii), so $\pi: M^{\prime} \rightarrow D \backslash M^{\prime}=M$ is a normal covering. Since D acts by isometries, π is pseudo-riemannian and $\pi\left(\phi^{\prime}\right)$ is a well-defined parallelism by definition of Z. Hence (iii) is proved. q.e.d.

We collect the specific information needed to apply Proposition 9.5 in the complete reductive case.
9.6. Lemma. Let $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ be a simply connected manifold with complete absolute parallelism of reductive type and consistent pseudo-riemannian metric. Let $Z\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ denote the Lie group of all isometries of $\left(\tilde{M}, d \sigma^{2}\right)$ which preserve every $\tilde{\phi}$-parallel vector field. Decompose $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ as the product of the ($M_{i}, \phi_{i}, d s_{i}^{2}$), as in Theorem 9.1.
(i) $Z\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ is the product of the $Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$.
(ii) If M_{i} is a group manifold (i.e., $\left.-1 \leq i \leq u\right)$, then $Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$ is its group of left translations.
(iii) If M_{i} is a quadric (i.e., $\left.u+1 \leq i \leq t\right)$, then $Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)=\left\{ \pm I_{8}\right\}$.

Proof. Let $g \in Z\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$. Then g acts trivially on $\tilde{p}=\mathfrak{p}_{-1} \oplus \mathfrak{p}_{0} \oplus \mathfrak{p}_{1} \oplus$ $\cdots \oplus \mathfrak{p}_{t}$, so it preserves each ideal \mathfrak{p}_{i}. Thus $g=g_{-1} \times g_{0} \times \cdots \times g_{t}$ where $g_{i} \in Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$, and (i) is proved.

Let M_{i} be a group manifold, and L_{i} the group of its left translations. Then $L_{i} \subset Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$. If $g \in Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$, we have $h \in L_{i}$ such that $h g(1)=1$. Since $h g$ is an isometry and acts trivially on $\mathfrak{p}_{i}, h g=1$, and thus $g=h^{-1} \in L_{i}$, proving (ii).

Let M_{i} be a quadric. Then the group G_{i} of all isometries of $\left(M_{i}, d s_{i}^{2}\right)$ has Lie algebra $\mathfrak{g}_{i}=\left[\mathfrak{p}_{i}, \mathfrak{p}_{i}\right]+\mathfrak{p}_{i}$. Let $g \in Z\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$ and $\gamma=\operatorname{ad}(g) \in \operatorname{Aut}_{R}\left(\mathfrak{g}_{i}\right)$. Then γ is trivial on \mathfrak{p}_{i}, and hence also trivial on [$\mathfrak{p}_{i}, \mathfrak{p}_{i}$], so $\gamma=1$. Now g centralizes the identity component of G_{i}. A glance at Theorem 8.16 shows that this forces $g= \pm I_{8}$, proving (iii). q.e.d.

Now we combine Theorem 9.1, Proposition 9.5 and Lemma 9.6, obtaining the classification of complete parallelisms of reductive type.
9.7. Theorem. The complete connected pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the $\left(M, \phi, d s^{2}\right)$ constructed as follows.

Step 1. $\left(M_{-1}, \phi_{-1}, d s_{-1}^{2}\right)$. Choose an integer $r \geq 0$, a real vector space $\mathfrak{t w}$ of dimension r, and an alternating trilinear form $\tau \in \underset{\Lambda^{3}\left(\mathfrak{w}^{*}\right) \text { which is nondegenerate }}{ }$ on \mathfrak{w} in the sense that if $0 \neq w \in \mathfrak{w}$, then $\tau(w, \mathfrak{w}, \mathfrak{w}) \neq 0$. Let $\mathfrak{p}_{-1}=\mathfrak{g}(\tau, \mathfrak{w})$ as in construction (7.2). Let b_{-1} be the nondegenerate invariant bilinear form (7.4a) on $\mathfrak{p}_{-1} . M_{-1}$ is the simply connected Lie group for $\mathfrak{p}_{-1}, \phi_{-1}$ is its parallelism of left translation, and $d s_{-1}^{2}$ is the bi-invariant metric induced by b_{-1}. Note that ds s_{-1}^{2} has signature $\left(p_{-1}, q_{-1}\right)=(r, r)$. Let Z_{-1} denote the group of left translations on M_{-1}.

Step 2. $\left(M_{0}, \phi_{0}, d s_{0}^{2}\right)$. Choose integers $p_{0}, q_{0} \geq 0 . M_{0}$ is the real vector group of dimension $p_{0}+q_{0}, \phi_{0}$ is its (euclidean) parallelism of (left) translation, and $d s_{0}^{2}$ is a translation-invariant metric of signature $\left(p_{0}, q_{0}\right)$. Let Z_{0} denote the group of all translations.

Step 3. The $\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$ for $1 \leq i \leq u$. Choose an integer $u \geq 0$. If $1 \leq$ $i \leq u$, let \mathfrak{p}_{i} be a simple real Lie algebra, M_{i} the simply connected group for $\mathfrak{p}_{i}, \phi_{i}$ its parallelism of left translation, and ds s_{i}^{2} the bi-invariant metric induced by a nonzero real multiple of the Killing form of \mathfrak{p}_{i}. Let $\left(p_{i}, q_{i}\right)$ denote the signature of $d s_{i}^{2}$, and Z_{i} the group of left translations of M_{i}.

Step 4. The $\left(M_{i}, \phi_{i}, d s_{i}^{2}\right)$ for $u+1 \leq i \leq t$. Choose an integer $t \geq u$. If $u+1 \leq i \leq t$, let $M_{i}=G_{i}^{0} / K_{i}^{0}$ be one of

$$
S O(8) / S O(7), \quad S O(4,4) / S O(3,4), \quad S O(8, C) / S O(7, C)
$$

$d s_{i}^{2}$ is the invariant metric induced by a nonzero real multiple of the real Killing form of the Lie algebra g_{i} of G_{i}^{0}. Let σ be the conjugation of g_{i} by the symmetry at $1 \cdot K_{i}^{0}, \theta$ a Cartan involution of g_{i} which commutes with σ, and εa triality automorphism of order 3 on \mathfrak{g}_{i} which commutes with θ and has a fixed point set of type G_{2}. Then ϕ_{i} is the absolute parallelism on M_{i} whose LTS is $\mathfrak{p}_{i}=\left\{\varepsilon^{-1}(v): v \in \mathfrak{g}_{i}\right.$ and $\left.\sigma(v)=-v\right\}$. Let $\left(p_{i}, q_{i}\right)$ denote the signature of $d s_{i}^{2}$, and Z_{i} the center $\left\{ \pm I_{8}\right\}$ of the isometry group of $\left(M_{i}, d s_{i}^{2}\right)$.

Step 5. $\quad\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$. Define $\tilde{M}=M_{-1} \times M_{0} \times \cdots \times M_{t}, \tilde{\phi}=\phi_{-1} \times \phi_{0}$ $\times \cdots \times \phi_{t}$ and $d \sigma^{2}=d s_{-1}^{2} \times d s_{0}^{2} \times \cdots \times d s_{t}^{2}$. Let $p=\sum p_{i}$ and $q=\sum q_{i}$; then $d \sigma^{2}$ has signature (p, q). Denote $Z=Z_{-1} \times Z_{0} \times \cdots \times Z_{t}$.
Step 6. $\left(M, \phi, d s^{2}\right)=D \backslash\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$. Let $D \subset Z$ be a discrete subgroup, $M=D \backslash \tilde{M}$ quotient manifold, ϕ parallelism on M induced by $\tilde{\phi}$, and $d s^{2}$ the consistent pseudo-riemannian metric of signature (p, q) on M induced by $d \sigma^{2}$.

We close by examining the conditions on ($M, \phi, d s^{2}$) under which ($M, d s^{2}$) may be globally symmetric, compact, riemannian, etc. Note that homogeneity is automatic: if $\left(M, \phi, d s^{2}\right)$ is complete and connected, then every ϕ-parallel vector field integrates to a 1-parameter group of isometries, and those isometries generate a transitive group.
9.8. Corollary. The connected globally symmetric pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the $\left(M, \phi, d s^{2}\right)$ constructed in Theorem 9.7 with the additional condition: for -1 $\leq i \leq u$ the projection of D to Z_{i} consists of translations by elements of the center of the group M_{i}.

Remark. Here note that M_{-1} has center $\exp \left(\mathfrak{w}^{*}\right)$, that M_{0} is commutative, and that M_{i} has discrete center for $1 \leq i \leq u$.

Proof. Let $\left(M, \phi, d s^{2}\right)=D \backslash\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ in the notation of Theorem 9.7. Then $\left(M, d s^{2}\right)$ is symmetric if, and only if, every symmetry s_{x} of ($\left.\tilde{M}, d \sigma^{2}\right)$ induces a transformation of M. Thus the symmetry condition for ($M, d s^{2}$) is that every s_{x} permute the D-orbits, i.e., that every s_{x} normalize D in the isometry group of ($\tilde{M}, d \sigma^{2}$). Let D_{i} be the projection of $D \subset Z=Z_{-1} \times \cdots \times Z_{t}$ to Z_{i}. Then ($M, d s^{2}$) is symmetric if, and only if, each D_{i} is normalized by every symmetry of ($M_{i}, d s_{i}^{2}$).

If $u+1 \leq i \leq t$, then $Z_{i}=\left\{ \pm I_{8}\right\}$, center of the isometry group of $\left(M_{i}, d s_{i}^{2}\right)$, so D_{i} is centralized by every symmetry.

Let $-1 \leq i \leq u$. If $x, g \in M_{i}$, then the symmetry of $\left(M_{i}, d s_{i}^{2}\right)$ at x conjugates left translation by g to right translation by $x^{-1} g x$. Thus D_{i} is normalized by the symmetries if, and only if, it consists of translation by central elements.
9.9. Corollary. The compact connected pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the $\left(M, \phi, d s^{2}\right)$ of Theorem 9.7 such the both Z / D and $Z \backslash \tilde{M}$ are compact. $Z \backslash \tilde{M}$ is compact if, and only if, each quadric $M_{i}(u+1 \leq i \leq t)$ is an ordinary 7-sphere $S O(8) / S O(7) . Z$ has a discrete subgroup D such that Z / D is compact if, and only if, the 3 -form τ of the construction of the Lie algebra $\mathfrak{p}_{-1}=\mathrm{g}(\tau, \mathfrak{w})$ of M_{-1} can be chosen with rational coefficients.

Proof. We have a fibration $M=D \backslash \tilde{M} \rightarrow Z \backslash \tilde{M}$ with fibre Z / D. The total space M is compact if, and only if, both fibre Z / D and base $Z \backslash \tilde{M}$ are compact.
$Z \backslash \tilde{M}$ is the product of the $Z_{i} \backslash M_{i}$, hence is compact if and only if each $Z_{i} \backslash M_{i}$ is compact. If $-1 \leq i \leq u$, then $Z_{i} \backslash M_{i}$ is reduced to a point, hence is compact. If $u+1 \leq i \leq t$, then Z_{i} is finite, so $Z_{i} \backslash M_{i}$ is compact if and only if M_{i} is compact; the latter occurs only for $M_{i}=S O(8) / S O(7)$.
$\mathfrak{p}_{-1}=\mathfrak{g}(\tau, \mathfrak{w})$ is a nilpotent Lie algebra, and has a basis with rational structure constants if and only if τ can be chosen with rational coefficients. The Lie algebra \mathfrak{p}_{0} of M_{0} is commutative. Now a theorem of Mal'cev [10] says that τ can be chosen rational if, and only if, $M_{-1} \times M_{0}$ has a discrete subgroup with compact quotient.

Suppose that τ can be chosen rational. Then $M_{-1} \times M_{0}$ has a discrete subgroup with compact quotient, and gives a left translation group E discrete in $Z_{-1} \times Z_{0}$ with compact quotient. If $1 \leq i \leq u$ with M_{i} noncompact, a theorem of Borel [2] provides a discrete subgroup of M_{i} with compact quotient, and its left translation group is a discrete subgroup $D_{i} \subset Z_{i}$ with Z_{i} / D_{i} compact. In the other cases Z_{i} is compact, and we take $D_{i}=\{1\}$. Then $D=E \times D_{1}$ $\times \cdots \times D_{t}$ is a discrete subgroup of Z with Z / D compact.

Conversely let $D \subset Z$ be a discrete subgroup with Z / D compact. Permute the $M_{i}, 1 \leq i \leq u$, so that M_{i} is noncompact for $1 \leq i \leq v$ and compact for $v+1 \leq i \leq u$. As $Z_{v+1} \times \cdots \times Z_{t}$ is compact, we replace D with its projection to $Z^{\prime}=Z_{-1} \times Z_{0} \times \cdots \times Z_{v}$. Now Z^{\prime} is a simply connected Lie group whose solvable radical is the nilpotent group $Z_{-1} \times Z_{0}$ and whose semisimple part $Z_{1} \times \cdots \times Z_{v}$ has no compact factor. Thus a theorem of L . Auslander [1] says that $\left(Z_{-1} \times Z_{0}\right) /\left\{D \cap\left(Z_{-1} \times Z_{0}\right)\right\}$ is compact, so τ may be chosen with rational coefficients.
9.10. Corollary. Let $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ be a complete simply connected pseudoriemannian manifold with consistent absolute parallelism. Then the following conditions are equivalent.
(i) $\tilde{\phi}$ is of reductive type relative to $d \sigma^{2}$, and $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$ has a compact globally symmetric quotient ($M, \phi, d s^{2}$).
(ii) $\tilde{\phi}$ is of reductive type relative to $d \sigma^{2}$ and, in the notation of Theorem 9.7,
(a) $\quad M_{-1}$ is reduced to a point,
(b) if $1 \leq i \leq u$, the group M_{i} is compact,
(c) if $u+1 \leq i \leq t$, the quadric M_{i} is a 7 -sphere.
(iii) There is a riemannian metric $d \rho^{2}$ on \tilde{M} consistent with $\tilde{\phi}$. Then, if $\left(M, \phi, d s^{2}\right)$ is a quotient of $\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right), d \rho^{2}$ induces a riemannian metric $d r^{2}$ on M consistent with ϕ.

Proof. Assume (i) and let $\left(M, \phi, d s^{2}\right)=D \backslash\left(\tilde{M}, \tilde{\phi}, d \sigma^{2}\right)$. Let D_{i} be the projection of D to Z_{i}. If $-1 \leq i \leq u$, then D_{i} is central in Z_{i} by Corollary 9.8, and Z_{i} / D_{i} is compact by Corollary 9.9. That proves (a) and (b) of (ii); (c) follows directly from Corollary 9.9. Thus (i) implies (ii). For the converse let D be a lattice in M_{0}.

Assume (ii). Let $d r_{0}^{2}$ be any translation-invariant riemannian metric on M_{0}. For $1 \leq i \leq u$ let $d r_{i}^{2}$ be the metric induced by the negative of the Killing form of \mathfrak{p}_{i}. For $u+1 \leq i \leq t$ let $d r_{i}^{2}$ be the usual riemannian metric of constant curvature. Now $d \rho^{2}=d r_{0}^{2} \times \cdots \times d r_{t}^{2}$ has the required properties. Thus (ii) implies (iii). Corollary 9.3 provides the converse.

10. Appendix: Lie triple systems

We collect the basic facts on Lie triple systems.

A. Foundations: N. Jacobson's work ([7], or [8])

A Lie triple system (LTS) is a vector space \mathfrak{m} with a trilinear "multiplication" map

$$
\mathfrak{m} \times \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m} \quad \text { denoted } \quad(x, y, z) \mapsto[x y z]
$$

such that

$$
[x x z]=0=[x y z]+\left[\begin{array}{ll}
z x y \tag{10.1a}
\end{array}\right]+[y z x]
$$

$(10,1 \mathrm{~b}) \quad[a b[x y z]]=\left[\left[\begin{array}{lll}a & b & x] y z]+\left[\left[\begin{array}{ll}b & a\end{array}\right] x z\right]+\left[x y\left[\begin{array}{ll}a & b \\ z\end{array}\right]\right] .\end{array}\right.\right.$
If \mathfrak{l} is a Lie algebra and $\mathfrak{m} \subset \mathfrak{l}$ is a subspace such that $[[\mathfrak{m}, \mathfrak{m}], \mathfrak{m}] \subset \mathfrak{m}$, then \mathfrak{m} is a LTS under the composition $[x y z]=[[x, y], z]$; for then (10.1a) is anticommutative and the Jacobi identity, and (10.1b) follows by iteration of the Jacobi identity.

Let \mathfrak{m} be a LTS. By derivation of \mathfrak{m} we mean a linear map $\delta: \mathfrak{m} \rightarrow \mathfrak{m}$ such that

$$
\begin{equation*}
\delta([x y z])=[\delta(x) y z]+[x \delta(y) z]+[x y \delta(z)] \tag{10.2a}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\mathfrak{d}(\mathfrak{m}): \text { the Lie algebra of derivations of } \mathfrak{m} \tag{10.2b}
\end{equation*}
$$

If $\left\{a_{i}\right\},\left\{b_{i}\right\} \subset \mathfrak{m}$, we have the derivations $\sum \delta_{a_{i}, b_{i}}$ where $\delta_{a, b}(x)=[a b x]$ for $a, b, x \in \mathfrak{m}$. Derivations of that sort are inner derivations. Denote
(10.2c) $\quad \mathfrak{D}_{0}(\mathfrak{m})$: ideal in $\mathfrak{D}(\mathfrak{m})$ consisting of inner derivations.

Now consider the vector space

$$
\begin{equation*}
\mathfrak{h}(\mathfrak{m})=\mathfrak{d}(\mathfrak{m})+\mathfrak{m} \quad \text { vector space direct sum } \tag{10.3a}
\end{equation*}
$$

with the algebra structure

$$
\begin{equation*}
[D+x, E+y]=\left([D, E]+\delta_{x, y}\right)+(D(y)-E(x)) \tag{10.3b}
\end{equation*}
$$

Then $\mathfrak{h}(\mathfrak{m})$ is a Lie algebra, called the holomorph of \mathfrak{m} because every derivation of \mathfrak{m} is the restriction of an inner derivation of $\mathfrak{h}(\mathfrak{m})$. Also, $\mathfrak{b}_{0}(\mathfrak{m})=[\mathfrak{m}, \mathfrak{m}]$ inside $\mathfrak{h}(\mathfrak{m})$, so the Lie subalgebra of $\mathfrak{h}(\mathfrak{m})$ generated by \mathfrak{m} is the standard Lie enveloping algebra of \mathfrak{m} :

$$
\begin{equation*}
\mathfrak{r}_{s}(\mathfrak{m})=\mathfrak{d}_{0}(\mathfrak{m})+\mathfrak{m} \quad \text { vector space direct sum } \tag{10.3c}
\end{equation*}
$$

Let \mathfrak{m} and \mathfrak{n} be LTS. If $f: \mathfrak{m} \rightarrow \mathfrak{n}$ is a linear map such that

$$
f[x y z]=[f(x) f(x) f(z)],
$$

then f is a homomorphism. If f is one-one and onto, i.e., if $f^{-1}: \mathfrak{n} \rightarrow \mathfrak{m}$ exists, then f^{-1} is a homomorphism and f is an isomorphism. If \mathfrak{l} is a Lie algebra and $f: \mathfrak{m} \rightarrow \mathfrak{l}$ is an injective LTS homomorphism such that $f(\mathfrak{m})$ generates \mathfrak{l}, then we say that \mathfrak{l} or (\mathfrak{l}, f) is a Lie enveloping algebra of \mathfrak{m}. Those always exist, for one has $\mathfrak{l}_{s}(\mathfrak{m})$.

The usual tensor algebra method provides a Lie enveloping algebra $\mathfrak{r}_{U}(\mathfrak{m})$ with the property: if (\mathfrak{l}, f) is any Lie enveloping algebra of \mathfrak{m}, then f extends to a Lie algebra homomorphism of $\mathfrak{Y}_{U}(\mathfrak{m})$ onto \mathfrak{l}. Thus $\mathfrak{r}_{U}(\mathfrak{m})$ is called the universal Lie enveloping algebra of \mathfrak{m}. The case $\mathfrak{l}=\mathfrak{l}_{s}(\mathfrak{m})$ shows

$$
\mathfrak{l}_{U}(\mathfrak{m})=[\mathfrak{m}, \mathfrak{m}]+\mathfrak{m} \quad \text { vector space direct sum } .
$$

Also, if $n=\operatorname{dim} \mathfrak{m}$ then $\operatorname{dim} \mathfrak{l}_{U}(\mathfrak{m})<n(n+1) / 2$.
Let \mathfrak{m} be a LTS. By subsystem of \mathfrak{m} we mean a subspace $\mathfrak{f} \subset \mathfrak{m}$ such that $[\mathfrak{f} \mathfrak{f} \mathfrak{f}] \subset \mathfrak{f}$. By ideal in \mathfrak{m} we mean a subspace $\mathfrak{i} \subset \mathfrak{m}$ such that $[\mathfrak{i} \mathfrak{m} \mathfrak{m}] \subset \mathfrak{i}$ (and thus also [$\mathfrak{m ~ m i} \subset \mathfrak{i}$). The ideals of \mathfrak{m} are just the kernels $f^{-1}(0)$ of LTS homomorphisms $f: \mathfrak{m} \rightarrow \mathfrak{n}, \mathfrak{n}$ variable; if \mathfrak{i} is an ideal then $\mathfrak{m} / \mathfrak{i}$ inherits a LTS structure from \mathfrak{m}, the projection $p: \mathfrak{m} \rightarrow \mathfrak{m} / \mathfrak{i}$ is a homomorphism, and $\mathfrak{i}=$ $p^{-1}(0)$ kernel.

B. Structure: W. G. Lister's work [9]

Let $\mathfrak{m} \subset \mathfrak{l}$ be a LTS in Lie enveloping algebra. Then $[\mathfrak{m}, \mathfrak{m}]$ and $[\mathfrak{m}, \mathfrak{m}]+\mathfrak{m}$ are subalgebras of \mathfrak{l}, so $\mathfrak{l}=[\mathfrak{m}, \mathfrak{m}]+\mathfrak{m}$. If $[\mathfrak{m}, \mathfrak{m}] \cap \mathfrak{m}=0$, then one verifies that \mathfrak{l} has an automorphism σ whose +1 eigenspace is $[\mathfrak{m}, \mathfrak{m}$] and whose -1 eigenspace is \mathfrak{m}. This applies in particular to $\mathfrak{l}_{s}(\mathfrak{m})$ and to $\mathfrak{l}_{U}(\mathfrak{m})$, and it is the basic connection between LTS theory and symmetric space theory.

The derived series of a LTS \mathfrak{m} is the chain

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}^{(0)} \supset \mathfrak{m}^{(1)} \supset \cdots \supset \mathfrak{m}^{(k)} \supset \cdots \tag{10.4a}
\end{equation*}
$$

of ideals of \mathfrak{m} defined by

$$
\begin{equation*}
\mathfrak{m}^{(k+1)}=\left[\mathfrak{m} \mathfrak{m}^{(k)} \mathfrak{m}^{(k)}\right] \tag{10.4b}
\end{equation*}
$$

\mathfrak{m} is solvable if its derived series terminates in 0 , i.e., if some $\mathfrak{m}^{(k)}=0$. If \mathfrak{m} is solvable, then every Lie enveloping algebra of \mathfrak{m} is a solvable Lie algebra.

The radical of \mathfrak{m} is the span of the solvable ideals of \mathfrak{m}; it is the maximal solvable ideal in \mathfrak{m}, and we denote

$$
\begin{equation*}
\mathfrak{r}(\mathfrak{m}): \quad \text { radical of } \mathfrak{m} . \tag{10.5a}
\end{equation*}
$$

If $\mathfrak{r}(\mathfrak{m})=0$, then \mathfrak{m} is semisimple. In general there is a Levi decomposition

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{g}+\mathfrak{r}(\mathfrak{m}), \quad 弓 \text { semisimple }, \quad \zeta \cap \mathfrak{r}(\mathfrak{m})=0 \tag{10.5b}
\end{equation*}
$$

The projection $\mathfrak{m} \rightarrow \mathfrak{m} / \mathfrak{r}(\mathfrak{m})$ maps $\mathfrak{ß} \cong \mathfrak{m} / \mathfrak{r}(\mathfrak{m})$.
If \mathfrak{m} has no proper ideals, then \mathfrak{m} is simple. If $[\mathfrak{m ~ m ~ m}]=0$, then \mathfrak{m} is commutative. If \mathfrak{m} is simple, then either it is semisimple and noncommutative, or it is 1 -dimensional and commutative.

If \mathfrak{m}_{1} and \mathfrak{m}_{2} are LTS, then their direct sum is the LTS $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ given by

$$
\left[\begin{array}{lll}
x_{1}+x_{2} & y_{1}+y_{2} & \left.z_{1}+z_{2}\right]=\left[x_{1} y_{1} z_{1}\right]+\left[x_{2} y_{2} z_{2}\right] ; x_{i}, y_{i}, z_{i} \in \mathfrak{m}_{i} .
\end{array}\right.
$$

Note that \mathfrak{m}_{1} and \mathfrak{m}_{2} are complementary ideals in \mathfrak{m}. Conversely, if \mathfrak{m} is a LTS with complementary ideals \mathfrak{m}_{1} and \mathfrak{m}_{2}, then $\mathfrak{m} \cong \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$.

If \mathfrak{m} is semisimple, then $\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{t}$ where the \mathfrak{m}_{i} are its distinct simple ideals; thus $\mathfrak{m}^{(1)}=\mathfrak{m}$, every derivation of \mathfrak{m} is inner, and every linear representation of \mathfrak{m} is completely reducible. Conversely, if $\left\{\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{t}\right\}$ are noncommutative simple LTS, then $\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{t}$ is semisimple.

The structure of semisimple LTS was just reduced to that of simple LTS. For the latter, let $\mathfrak{m} \subset \mathfrak{l}_{U}(\mathfrak{m})$ be a noncommutative simple LTS in its universal Lie enveloping algebra. Then there are just two cases, as follows.
(10.6) If \mathfrak{m} is the LTS of a (necessarily simple) Lie algebra \mathfrak{f}, then $\mathfrak{C}_{U}(\mathfrak{m})=$ $\mathfrak{f} \oplus \mathfrak{f}$ in such a manner that

$$
\mathfrak{m}=\{(x,-x): x \in \mathfrak{f}\} \quad \text { and } \quad[\mathfrak{m}, \mathfrak{m}]=\{(x, x): x \in \mathfrak{f}\} .
$$

Thus \mathfrak{m} is the -1 eigenspace of the involutive automorphism (x, y) $\mapsto(y, x)$ of $\mathfrak{Y}_{U}(\mathfrak{m})$.
(10.7) If \mathfrak{m} is not the LTS of a Lie algebra, then $\mathfrak{l}_{U}(\mathfrak{m})$ is simple, and \mathfrak{m} is the -1 eigenspace of an involutive automorphism of $\mathfrak{~}_{U}(\mathfrak{m})$.

Now the classification of simple LTS over an algebraically closed field is more or less identical to the classification of compact irreducible riemannian symmetric spaces.

Let \mathfrak{m} be a LTS. Then the center of \mathfrak{m} is

$$
\begin{equation*}
\mathfrak{z}(\mathfrak{m})=\{x \in \mathfrak{m}:[x \mathfrak{m} \mathfrak{m}]=0\} . \tag{10.8}
\end{equation*}
$$

The representation theory of \mathfrak{m} coincides with that of $\mathfrak{l}_{U}(\mathfrak{m})$. Thus the following conditions are equivalent.
(10.9a) \mathfrak{m} has a faithful completely reducible linear representation.
(10.9b) $\mathfrak{l}_{U}(\mathfrak{m})$ has a faithful completely reducible linear representation, i.e., $\mathfrak{r}_{U}(\mathfrak{m})$ is "reductive".
(10.9c) $\mathfrak{r}_{U}(\mathfrak{m})=\mathfrak{z} \oplus \mathfrak{z}$ where \mathfrak{z} is its center, \mathfrak{z} is semisimple, and $\mathfrak{z}=$ $\left[\mathfrak{l}_{U}(\mathfrak{m}), \mathfrak{l}_{U}(\mathfrak{m})\right]$ derived algebra.
(10.9d) $\mathfrak{m}=\mathfrak{z}(\mathfrak{m}) \oplus \mathfrak{m}^{(1)}$, and the derived LTS $\mathfrak{m}^{(1)}=[\mathfrak{m} \mathfrak{m} \mathfrak{m}]$ is semisimple.

Under the equivalent conditions (10.9) we say that \mathfrak{m} is reductive. From the corresponding Lie algebra situation, we say that a subsystem $\mathfrak{n} \subset \mathfrak{m}$ is reductive in \mathfrak{m} if the adjoint representation of $\mathfrak{l}_{U}(\mathfrak{m})$ restricts to a completely reducible representation of \mathfrak{n}. Thus
(10,10a) $\quad \mathfrak{m}$ is reductive $\Leftrightarrow \mathfrak{m}$ is reductive in \mathfrak{m},
(10.10b) if \mathfrak{m} is reductive, and \mathfrak{n} is reductive in \mathfrak{m}, then $\{x \in \mathfrak{m}:[x \mathfrak{n n}]=0\}$ is reductive in \mathfrak{m}.

C. Invariant bilinear forms

Now we introduce a notion of invariant bilinear form for LTS. That is the key to application of the theory of reductive LTS to the theory of pseudoriemannian symmetric spaces.

Let \mathfrak{l} be a Lie algebra. Recall that invariant bilinear form on \mathfrak{l} means a symmetric bilinear form b on \mathfrak{l} such that $b([x, y], z)=b(x,[y, z])$. It then follows that

$$
b(z,[[y, x], w])=b([[x, y], z], w)=b(x,[[w, z], y]) .
$$

The main example is the trace form

$$
b_{\pi}(x, y)=\operatorname{trace} \pi(x) \pi(y)
$$

of a linear representation π of \mathfrak{l}. The algebra \mathfrak{l} is reductive if, and only if, it has a nondegenerate trace form. However (3.7) shows that a non-reductive algebra might carry a nondegenerate invariant bilinear form.

Let \mathfrak{m} be a LTS. By invariant bilinear form on \mathfrak{m} we mean a symmetric bilinear form b such that

$$
\begin{equation*}
b(z,[y x w])=b([x y z], w)=b(x,[w z y]) . \tag{10.11}
\end{equation*}
$$

The preceding discussion shows that the restriction of an invariant bilinear form on a Lie enveloping algebra of \mathfrak{m} is an invariant bilinear form on \mathfrak{m}.
10.12. Lemma. Let \mathfrak{m} be a LTS, and b an invariant bilinear form on m.
(i) The center $\mathfrak{z}=\{x \in \mathfrak{m}:[x \mathfrak{m} \mathfrak{m}]=0\}$ and the derived system $\mathfrak{m}^{(1)}=$ $[\mathfrak{m} \mathfrak{m ~} \mathfrak{m}]$ satisfy $b\left({ }_{z}, \mathfrak{m}^{(1)}\right)=0$.
(ii) If \mathfrak{i} is an ideal in \mathfrak{m}, then $\{x \in \mathfrak{m}: b(x, \mathfrak{i})=0\}$ is an ideal in \mathfrak{m}.
(iii) If \mathfrak{l} is a Lie enveloping algebra of \mathfrak{m} in which $[\mathfrak{m}, \mathfrak{m}] \cap \mathfrak{m}=0$, then \mathfrak{l} carries an invariant bilinear form b^{\prime} (in the sense of Lie algebras) such that $b=\left.b^{\prime}\right|_{\mathfrak{m}}$.

Proof. For (i) note $b\left(\mathfrak{z}, \mathfrak{m}^{(1)}\right)=b(\mathfrak{z},[\mathfrak{m ~ m ~ m}])=b([\mathfrak{z} \mathfrak{m ~ m}], \mathfrak{m})=b(0, \mathfrak{m})$ $=\{0\}$.
For (ii) let $\mathfrak{j}=\{x \in \mathfrak{m}: b(x, \mathfrak{i})=0\}$. It is a linear subspace of \mathfrak{m}. If $i \in \mathfrak{i}$, $j \in \mathfrak{j}$ and $x, y \in \mathfrak{m}$, then

$$
b([j x y], i)=b(j,[i y x]) \in b(\mathfrak{i}, \mathfrak{i})=\{0\},
$$

so $[j x y] \in \dot{j}$.
For (iii) we define b^{\prime} on $\mathfrak{m} \times \mathfrak{m}$ to agree with b; we define $b^{\prime}([\mathfrak{m}, \mathfrak{m}], \mathfrak{m})=0$; and we define b^{\prime} on $[\mathfrak{m}, \mathfrak{m}] \times[\mathfrak{m}, \mathfrak{m}]$ by

$$
b^{\prime}([x, y],[z, w])=b([x y z], w) \quad \text { for } x, y, z, w \in \mathfrak{m}
$$

That gives us a symmetric bilinear form b^{\prime} on \mathfrak{l} such that $b=\left.b^{\prime}\right|_{\mathfrak{m}}$. Now we check that b^{\prime} is invariant, i.e., that $b^{\prime}([p, q], r)=b^{\prime}(p,[q, r])$ for all $p, q, r \in \mathfrak{l}$. It suffices to assume that each of p, q, r is in $[\mathfrak{m}, \mathfrak{m}] \cup \mathfrak{m}$ and go by cases.

If $p, q, r \in \mathfrak{m}$, then $[p, q],[q, r] \in[\mathfrak{m}, \mathfrak{m}]$ so $b^{\prime}([p, q], r)=0=b^{\prime}(p,[q, r])$.
If $p, q \in \mathfrak{m}$ and $r=[z, w]$ with $z, w \in \mathfrak{m}$, then $b^{\prime}([p, q], r)=b^{\prime}([p, q],[z, w])$ $=b([p q z], w)=b(p,[w z q])=b(p,[q,[z, w]])=b^{\prime}(p,[q, r])$, which takes care of the case $p, q \in \mathfrak{m}$ and $r \in[\mathfrak{m}, \mathfrak{m}]$, and the cases $p, r \in \mathfrak{m}$ and $q \in[\mathfrak{m}, \mathfrak{m}]$, and $q, r \in \mathfrak{m}$ and $p \in[\mathfrak{m}, \mathfrak{m}]$, follow immediately.

If $p \in \mathfrak{m}$ and $q, r \in[\mathfrak{m}, \mathfrak{m}]$, then $[p, q] \in \mathfrak{m}$ so $b^{\prime}([p, q], r)=0$, and $[q, r] \in$ $[\mathfrak{m}, \mathfrak{m}]$ so $b^{\prime}(p,[q, r])=0$. The cases $q \in \mathfrak{m}$ and $p, r \in[\mathfrak{m}, \mathfrak{m}]$, and $r \in \mathfrak{m}$ and $p, q \in[\mathfrak{m}, \mathfrak{m}]$, follow similarly.

Finally, let $p=[s, t], q=[x, y]$ and $r=[z, w]$ with $s, t, x, y, z, w \in \mathfrak{m}$. Note $[p, q]+[y,[p, x]]+[x,[y, p]]=0$ and $[q, r]+[[r, x], y]+[[y, r], x]=0$. Using the invariance already checked, now

$$
\begin{aligned}
b^{\prime}([p, q], r) & =b^{\prime}([[p, x], y], r)-b^{\prime}([[p, y], x], r) \\
& =b^{\prime}([p, x],[y, r])-b^{\prime}([p, y],[x, r]) \\
& =b^{\prime}(p,[x,[y, r]])-b^{\prime}(p,[y,[x, r]]) \\
& =b^{\prime}(p,[q, r]) .
\end{aligned}
$$

q.e.d.

Suppose that \mathfrak{m} is a LTS and b is a nondegenerate invariant bilinear form. Then $x \in \mathfrak{z} \Leftrightarrow b([x \mathfrak{m ~ m}], \mathfrak{m})=0 \Leftrightarrow b(x,[\mathfrak{m ~ m ~ m}])=0$. Thus

$$
\begin{gather*}
\mathfrak{z}^{\perp}=\mathfrak{m}^{(1)} \quad \text { relative to the form } b \text {, so } \tag{10.13a}\\
\quad \operatorname{dim} \mathfrak{m}=\operatorname{dim} \mathfrak{z}+\operatorname{dim} \mathfrak{m}^{(1)} .
\end{gather*}
$$

The analogous fact (that $\mathfrak{z}^{\perp}=[\mathfrak{l}, \mathfrak{l}]$) holds for nondegenerate invariant bilinear forms on Lie algebras.

We extend a theorem of Dieudonné from Lie algebras to LTS.
10.14. Proposition. Let \mathfrak{m} be a LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m}. If \mathfrak{m} has no nonzero ideal \mathfrak{i} such that $[\mathfrak{i} \mathfrak{m} \mathfrak{i}]=0$, then $\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{t}$ where the \mathfrak{m}_{j} are simple ideals, $b\left(\mathfrak{m}_{j}, \mathfrak{m}_{k}\right)=0$ for $j \neq k$, and each $b{\mid \mathfrak{m}_{j} \times \mathfrak{m}_{j}}$ is a nondegenerate invariant bilinear form.

Proof. Let \mathfrak{m}_{1} be a minimal ideal in \mathfrak{m}. From Lemma 10.12, $\mathfrak{m}_{1}^{\perp}=$ $\left\{x \in \mathfrak{m}: b\left(x, \mathfrak{m}_{1}\right)=0\right\}$ is an ideal, so also $\mathfrak{i}=\mathfrak{m}_{1} \cap \mathfrak{m}_{1}^{\perp}$ is an ideal. If $i, j \in \mathfrak{i}$ and $x, y \in \mathfrak{m}$, then

$$
b([i x j], y)=b(i,[y j x]) \in b(\mathfrak{i}, \mathfrak{i})=\{0\} ;
$$

so $[\mathfrak{i} \mathfrak{m} \mathfrak{i}]=0$ by nondegeneracy of b. Thus $\mathfrak{i}=0$ by hypothesis. Now $\mathfrak{m}=$ $\mathfrak{m}_{1} \oplus \mathfrak{m}_{1}^{\perp}$. The proposition holds for \mathfrak{m}_{1}^{\perp} by induction on $\operatorname{dim} \mathfrak{m}$. q.e.d.

Conversely, (10.6) and (10.7) show that every semisimple LTS carries a nondegenerate invariant bilinear form, in characteristic zero.

Now with (3.6) and (3.7) in mind, we introduce
10.15. Definition. Let \mathfrak{m} be a LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m}. Suppose
(i) b is nondegenerate on the center of \mathfrak{m}, and
(ii) if \mathfrak{i} is an ideal in \mathfrak{m} such that $[\mathfrak{i} \mathfrak{m} \mathfrak{i}]=0$, then \mathfrak{i} is central in \mathfrak{m}, i.e., $[\mathfrak{i} \mathfrak{m ~ m}]=0$.
Then we say that the pair (\mathfrak{m}, b) is of reductive type.
10.16. Theorem. Let \mathfrak{m} be a LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m} such that (\mathfrak{m}, b) is of reductive type. Then \mathfrak{m} is reductive. Moreover

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}_{0} \oplus \mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{t} \tag{10.17a}
\end{equation*}
$$

where
(10.17b) \mathfrak{m}_{0} is the center of \mathfrak{m} and the other \mathfrak{m}_{i} are simple ideals,

$$
\begin{equation*}
b\left(\mathfrak{m}_{i}, \mathfrak{m}_{j}\right)=0 \quad \text { for } \quad i \neq j, \quad \text { and } \tag{10.17c}
\end{equation*}
$$

each $b{\mid \mathfrak{m}_{i} \times \mathfrak{m}_{i}}$ is nondegenerate.
Conversely, if \mathfrak{m} is a reductive LTS over a field of characteristic zero, then it carries a nondegenerate invariant bilinear form b such that (\mathfrak{m}, b) is of reductive type.

Proof. Let (\mathfrak{m}, b) be of reductive type, \mathfrak{m}_{0} be the center of \mathfrak{m}, and $\mathfrak{m}^{\prime}=$ $\left\{x \in \mathfrak{m}: b\left(x, \mathfrak{m}_{0}\right)=0\right\}$. As b is nondegenerate on \mathfrak{m}_{0}, now $\mathfrak{m}=\mathfrak{m}_{0} \oplus \mathfrak{m}^{\prime}$ and $b=b_{0} \oplus b^{\prime}$. Let $\mathfrak{i} \subset \mathfrak{m}^{\prime}$ be an ideal such that $\left[\mathfrak{i} \mathfrak{m}^{\prime} \mathfrak{i}\right]=0$. As $\left[\mathfrak{i} \mathfrak{m}_{0} \mathfrak{i}\right] \subset$ $\left[\mathfrak{m}_{0} \mathfrak{m} \mathfrak{m}\right.$] $=0$, now $[\mathfrak{i} \mathfrak{m} \mathfrak{i}]=0$. Thus $\mathfrak{i} \subset \mathfrak{m}_{0}$, so $\mathfrak{i}=0$. Now Proposition 10.14 says $\mathfrak{m}^{\prime}=\mathfrak{m}_{1} \oplus \cdots \mathfrak{m}_{t}$ with $b^{\prime}=b_{1} \oplus \cdots \oplus b_{t}$. That proves (10.17).

Conversely let \mathfrak{m} be reductive. Then $\mathfrak{m}=\mathfrak{z} \oplus \mathfrak{z}$ where \mathfrak{z} is its center and \mathfrak{z} is semisimple. Let $b^{\prime \prime}$ be any nondegenerate bilinear form on $\frac{3}{3}$, and choose a nondegenerate invariant bilinear form b^{\prime} on $\mathfrak{\xi}$; then $b=b^{\prime \prime} \oplus b^{\prime}$ is a nondegenerate invariant bilinear form on $\mathfrak{z} \oplus \mathfrak{g}=\mathfrak{m}$ and is nondegenerate on \mathfrak{z}. If $\mathfrak{i} \subset \mathfrak{m}$ is an ideal with $[\mathfrak{i} \mathfrak{m} \mathfrak{i}]=0$, then $[\mathfrak{i} \mathfrak{i}]=0$, so \mathfrak{i} is solvable, whence $\mathfrak{i} \subset \mathfrak{b}$.
10.18. Corollary. Let \mathfrak{m} be a reductive LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m}. Then (\mathfrak{m}, b) is of reductive type, the center \mathfrak{m}_{0} of \mathfrak{m} is b-orthogonal to the derived system $\mathfrak{m}^{(1)}$, and the distinct simple ideals of $\mathfrak{m}^{(1)}$ are mutually b-orthogonal.

Proof. As \mathfrak{m} is reductive, $\mathfrak{m}=\mathfrak{m}_{0} \oplus \mathfrak{m}^{(1)}$, and (10.13a) says $b\left(\mathfrak{m}_{0}, \mathfrak{m}^{(1)}\right)=$ 0 . Now apply Proposition 10.14 to the semisimple system $\mathfrak{m}^{(1)}$.
10.19. Corollary. Let \mathfrak{l} be a Lie algebra over a field of characteristic zero. Then \mathfrak{l} is reductive if, and only if,
(i) every abelian ideal of \mathfrak{L} is central, and
(ii) \mathfrak{l} has a nondegenerate invariant bilinear form which is nondegenerate on the center of \mathfrak{l}.

If \mathfrak{l} is reductive and b is a nondegenerate invariant bilinear form, then the center z of \mathfrak{Y} is b-orthogonal to the derived algebra \mathfrak{Y}^{\prime}, and the distinct simple ideals of \mathfrak{l}^{\prime} are mutually b-orthogonal.

Conditions (i) and (ii) both fail for the algebra (3.7).
Condition (i) does not imply (ii), as seen from the Lie algebra \mathfrak{l} of $S p(n, R) \cdot H_{n}$ where H_{n} is the $(2 n+1)$-dimensional Heisenberg group, $S p(n, R)$ acts irreducibly on a ($2 n$-dimensional) complement to the center Z of H_{n}, and $S p(n, R)$ acts trivially on Z. Here z is the only abelian ideal in \mathfrak{l}.

References

[1] L. Auslander, On radicals of discrete subgroups of Lie groups, Amer. J. Math. 85 (1963) 145-150.
[2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111-122.
[3] É. Cartan \& J. A. Schouten, On the geometry of the group manifold of simple and semisimple groups, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 803-815.
[4] -_, On Riemannian geometries admitting an absolute parallelism, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 933-946.
[5] J. E. D'Atri \& H. K. Nickerson, The existence of special orthonormal frames, J. Differential Geometry 2 (1968) 393-409.
[6] N. J. Hicks, A theorem on affine connexions, Illinois J. Math. 3 (1959) 242-254.
[7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951) 509-530.
[8] --, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. Vol. 39, 1968.
[9] W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952) 217-242.
[10] A. I. Mal'cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 13 (1949) 9-32.
[11] J. A. Wolf, Spaces of constant curvature, Second edition, Berkeley, 1972.
[12] J. A. Wolf \& A. Gray, Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968) 115-159.

University of California, Berkeley

[^0]: Received March 8, 1971. Research partially supported by National Science Foundation Grand GP-16651; continuation of Part I, J. Differential Geometry 6 (1972) 317-342.

[^1]: ${ }^{4}$ The parameters are real in cases 1 and 2 , and complex in case 3 .

