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ON THE COINCIDENCE SET IN VARIATIONAL
INEQUALITIES

HANS LEWY

Variational inequalities, i.e., problems of the calculus of variations where in-
equalities limit the space of competing functions, have received much attention
in recent years. A large literature, too numerous to be listed in this note, deals
with existence and smoothness of solutions in their dependence on the smooth-
ness of the bounding inequalities. An attractive feature of these problems lies in
that the set of points where these inequalities become essential for the solution
is not known a priori. The skill of the workers provides a setting of function
spaces such that the distinction between points, where the competing function
is "free" and its variation is encumbered, does not affect its smoothness shows
existence of a solution in this space and then proceeds to prove a higher degree
of smoothness, again by arguments which do not necessitate a precise know-
ledge of the nature of the set S where the bounding inequalities become effec-
tive. Very little indeed is known about this set S: it does in general not depend
continuously on the data of the problem in a few cases under strong convexity
assumptions a certain simplicity of S has been ascertained.

The elusiveness of the nature of S is the challenge which motivated the present
paper, to be considered a sequal to [1]. We are concerned with only the simplest
nontrivial problem of variational inequalities, but succeed in clarifying the
topological character of S in this case.

For the sake of brevity and self-sufficiency we have chosen to speak here
only of properties of certain superharmonics without elaborating their well-
known connection with the Dirichlet integral which actually provides the vari-
ational background described in the foregoing introduction.

1. Lemma 1.1. Let (A,B) be an open interval of R1 and contain the com-

pact support S of a measure μ with μ(S) > 0. Let u(x) = I — log \x — y\dμ(y),
s

x e R\ and suppose the existence of a Gι[A,B] function f(x) such that

Kx) < u(x), x e (A, B) f(x) = u(x\ x e S .

Then μ is absolutely continuous in (A,B).
Proof. It was shown in [1] that u(x) e C\A, B). Extend u(x) continuously

into the upper half of a z-plane as harmonic function by
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u(z) = \ -\og\z -y\dμ(y).

s

A conjugate harmonic is

= J-θ(z-y)dμ(y) ,

where θ(z — y) is the angle of the vector z — y with the positive direction of

R1. As z tends to a point x of R\ v(z) tends to — π I dμ(y), which is a con-

X

tinuous function of x since the continuity of u(x) forces μ(x), the measure of
any single point x, to vanish. u(z) + iv(z) = F(z) is holomorphic for z in the
upper half plane, continuous on its closure, with boundary values on R1 which
are of bounded variation on every compact portion of R1 such as [A, B]. A vari-
ant of F. andM. Riesz' theorem applies: these boundary values are absolutely
continuous on every compact portion of R\ In fact, take a Q°G4, B) function

p(x) of compact support with p(x) > 0 and p(y)dy = μ(S) and set

~ l o g

The difference F(z) — Fλ(z) is holormorphic in the upper half plane and as-
sumes continuous boundary values on R}. Integration by parts yields that F(z)
_ F,(Z) -> 0 as z -> oo and, if Re z < A or Re z > B, that \F'(z) - F[(z)\ <

μ(S) \\z - B\~2 - \ z - A\~2\. Hence Γ \d(F(x) - F^x))] < oo, so that F(z)

— Fi(z) may be regarded, through a conformal map of the upper half z-plane
on the unit disc of a ζ-plane, as holomorphic function of ζ with boundary
values of bounded variation. By F. and M. Riesz these are absolutely con-
tinuous. Hence F(x) — Fλ(x) is absolutely continuous as function of x on any
bounded portion of R1 in view of the boundednes of \dz/dζ\ on that portion.

Moreover, F[(x) is continuous, hence F(x), in particular ImF(i) = — π I dμ(y),
X

is absolutely continuous.
We write F\z) = U(z) + iV(z). Re F;(z) = U(z) is continuous on Imz > 0

by the quoted theorem of [1], and tends to zero as z —> oo. Therefore there is
an M with M > | U(z)\. Put, with the above meaning of ζ,

F'(z) = &(ζ) = Uiζ) + iViζ) .

F'(z)(dζ/dz) is holomorphic in Im z > 0; the primitive function
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dz dz J dz2

is readily seen to be bounded and continuous in Im z > 0. This means that

Gλ(ζ) = J(G(ζ) - G(0))dζ/ζ is continuous in [ζ| < 1, and G,(ζ) = PGl(ζ),

the Poisson integral of the boundary values of Gx consequently G(ζ) = PG(ζ)
if ICI < 1. Hence G(ζ) is a holomorphic function of ζ in |ζ | < 1, representable
asPoisson integral of its almost everywhere existing (normal) boundary values.
Such a function is said to belong to the Hardy class H1.

2. Lemma 2.1. G2(ζ) belongs to H\
Proof. For 0 < r < 1,

ΓπG\re^)dψ = 2ττG2(0) = Γ\ϋ2 - V2 + 2ίUV)(re^)dφ =
0 0

with real cs. Since \U\< M,

ic

Γ -cλ + 2πM2

Thus I G2(ζ)dζ is bounded in |ζ | < 1 and of uniformly bounded variation on

all circles |ζ | = r. Therefore G2(ζ) - J(G\ζ) - G2(0))Jζ/ζ = PG2(Q, G2(ζ) =

PG?UQI by F. and M. Riesz. The boundary values of G2 exist almost every-
where and thus are given by those of U2 — V2 + 2ϊUV.

3. Theorem 3.1. Let μ be a measure of compact support S contained in

an interval (A,B) of R\ μ(S) > 0, and u(x) = Γ — log |JC — y\dμ(y) its

s
logarithmic potential. Suppose there exists a real function f(x), analytic in [A,
B] and such that

u(x) > f(x), xe(A,B) u(x) = /(*), xeS .

Then S is the union of finitely many disjoint intervals.
Proof. There is a neighborhood N of (A, B) in the z-plane into which f(x)

can be extended as holomorphic function f(z). Consider

(F'(z) - f(z))2 = (U + iV - df/dz)2

which is holomorphic in N Γ\ {z: I m z > 0 } and assumes on (A,B) almost
everywhere the boundary values

(U(x) - df/dx)2 - V\x) + 2/(17 - df/dx)V .
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The primitive function ί (F'(z) — f(z))2dz has on (A,B) the continuous
A

boundary values

Γ((U - df/dxj - V2)dxf + 2ίΓ(U - df/dxf)Vdxf ,

on account of Lemma 2.1. Now the second integral vanishes on (A,B) since
C/(JCO = du/dx = df/dx for x'eS, and V(x') = dv/dx = 0 a.e. for JC'6 04,£) - S.
It follows that the first integral is analytically extensible into a plane neighbor-
hood of (A,B). In particular, it is analytic and has an analytic derivative
denoted by g(x), and

g(x) = (U- df/dx)2 - V\x)

almost everywhere on (A,B). Accordingly we may, if necessary, redefine V(x)
on a set of measure zero, so as to make — V(x) continuous and >0, since we
know that U(x),df/dx,g(x) are continuous. This improved V(x) has the same
integral v(x) as before and can be substituted in all relations involving inte-
gration.

g(x) is not identically zero, for on S we have g(x) = — V\x) and we know

7Γ Cv(x)dx = —μ(S) Φ 0. As — V(x) > 0 a.e. on S, we have g(x) < 0 on S
s

excepting finitely many points (g being analytic). Conversely, if g(x) < 0, then
certainly V\x) Φ 0, — V(x) >0,xeS. It follows that S is the union of disjoint
intervals at whose endpoints g(x) changes sign, and we have the formulas

(3 1) V(X) ^ g { x ) > X € S ; V(x) = ° > x e (A>B) ~ 5'
U(x) = df/dx,x€S U(x) = df/dx±Vg(x),xe(A,B)-S .

In the last equation a change of sign can occur only at a root of g(x) of even
multiplicity. More is true. Let (a, b) be a component of (A,B) — S, with a e S,
b eS. Then u(a) = f(ά), u{x) > f{x) if x > a and near a, so that du/dx > df/dx
for x near and > a; hence we have + in (3.1). Near b for x < b we have
similarly d//dx > du/dx, hence the sign — in (3.1). Hence there lies between
a and b a root of g(x) of even multiplicity. Moreover, the set {x: xe(A,B), u(x)
= f(x)} exceeds S by no more than finitely many points.

Remark. Theorem 3.1 remains true if the straight arc [A,B] is replaced
by any analytic Jordan arc /. To see this let ω: J —• [A, B] be an analytic dif-
feomorphism. Put for any Borel set E of /, μ(E) = v(ω(Ej). With SC.J, we
have
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ί — log \x — y\ dμ{y) = j — log \ω(x) — y\ dv{y)
S ω(S)

+ Γ-log }x~y\ dμ(y).
J \ω(x) - ω(y)\

It is readily verified that the second integral is an analytic function of x for
x<εJ, hence of ω{x) e [A,E\. Thus the first integral on the right satisfies the
conditions of the theorem as function of ω(x), and ω(S) is a union of finitely
many disjoint intervals. The same is then true for S C /.

4. A case where Theorem 3.1 applies is furnished by
Theorem 4.1. Let Ω be a smooth bounded domain of R2, and the interval

[A, B] of an Rι axis be C Ω. Let ψ (jc), xe[A,B], be real and analytic, and
denote by h(z) the smallest superharmonic in Ω, continuous in Ω U dΩ, > 0
on 3Ω and such that h(x) > ψ(x), if xe(A,B). Assume that ψ(x) < 0 outside
a compact subset of (A,B), but not identically < 0 on (A,B). Write h(z) =

I G(z, y)dμ(y), where G is Green's function of Ω and μ is a measure of com-

s
pact support S C(A,B). Then S is the union of finitely many disjoint intervals.

Proof. G(z, z') = — log \z — z'| + γ(z, z'), where γ is analytic for z9z' eΩ.
Therefore

u(z) = h(z) - jγ(z,y)dμ(y) = J - log \z - y\ dμ{y)
s s

has the property:

fx, y)dμ{y) = f(x) , xe(A,B),

u(x) = f{x) , x z S ,

with f(x) analytic in [A,B], and hence Theorem 3.1 applies.
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