A FORMULA FOR THE RADIAL PART OF THE LAPLACE-BELTRAMI OPERATOR

SIGURDUR HELGASON

Let V be a manifold and H a Lie transformation group of V. Suppose $D u=0$ is a differential equation on V, both the differential operator D and the function u assumed invariant under H. Then the differential equation will involve several inessential variables, a fact which may render general results about differential operators rather ineffective for the differential equation at hand. Thus although D may not be an elliptic operator it might become one after the inessential variables are eliminated (cf. [3, p. 99]).

This viewpoint leads to the general definition (cf. [7]) of the transversal part and radial part of a differential operator on V given in $\S \S 2$ and 3. The radial part has been constructed for many special differential operators in the literature; see for example [1], [3], [4], [5], [8] for Lie groups, Lie algebras and symmetric spaces, [9], [6] for some Lorentzian manifolds. Our main result, formula (3.3) in Theorem 3.2, includes various known examples worked out by computations suited for each individual case. See Harish-Chandra [4, p. 99] for the Laplacian on a semisimple Lie algebra, Berezin [1] and Harish-Chandra [3, § 8] for the Laplacian on a semisimple Lie group, and Harish-Chandra [$5, \S 7$] and Karpelevič [8, §15] for the Laplacian on a symmetric space. The author is indebted to J. Lepowsky for useful critical remarks.

Notation. If V is a manifold and $v \in V$, then the tangent space to V at v will be denoted V_{v}; the differential of a differentiable mapping φ of one manifold into another is denoted $d \varphi$. We shall use Schwartz' notation $\mathscr{E}(V)$ (resp. $\mathscr{D}(V)$) for the space of complex-valued C^{∞} functions (resp. C^{∞} functions of compact support) on V. Composition of differential operators D_{1}, D_{2} is denoted $D_{1} \circ D_{2}$.

2. The transversal part of a differential operator

Let V be a manifold satisfying the second axiom of countability, and H a Lie transformation group of V. If $h \in H, v \in V$, let $h \cdot v$ denote the image of v under H and let H^{v} denote the isotropy subgroup of H at v. Let \mathfrak{h} denote the Lie algebra of H. If $X \in \mathfrak{h}$, let X^{+}denote the vector field on V induced by X, i.e.,

[^0]\[

$$
\begin{equation*}
\left(X^{+} f\right)(v)=\left\{\frac{d}{d t} f(\exp t X \cdot v)\right\}_{t=0}, \quad f \in \mathscr{D}(V), \quad v \in V \tag{2.1}
\end{equation*}
$$

\]

A C^{∞} function f on an open subset of V is said to be locally invariant if $X^{+} f=0$.

Lemma 2.1. Suppose $W \subset V$ is a submanifold such that for each $w \in W$ the tangent spaces at w satisfy the condition:

$$
\begin{equation*}
V_{w}=W_{w}+(H \cdot w)_{w} \quad(\text { direct sum }) \tag{2.2}
\end{equation*}
$$

Let $w_{0} \in W$. Then there exists an open relatively compact neighborhood W_{0} of w_{0} in W and a relatively compact submanifold $B \subset H, e \in B$ such that the natural projection $\pi: H \rightarrow H / H^{w_{0}}$ is a diffeomorphism of B onto an open neighborhood U_{0} of $\pi(e)$ in $H / H^{w_{0}}$ and such that the mapping $\eta:(b, w) \rightarrow b \cdot w$ is a diffeomorphism of $B \times W_{0}$ onto an open neighborhood V_{0} of w_{0} in V.

Proof. Let \mathfrak{h}^{0} denote the Lie algebra of $H^{w_{0}}$, and $\mathfrak{n} \subset \mathfrak{G}$ any subspace complementary to \mathfrak{b}^{0}. Then the mapping $\varphi:(X, w) \rightarrow \exp X \cdot w$ of $\mathfrak{n} \times W$ into V is regular at $\left(0, w_{0}\right)$. In fact, since $(d \varphi)_{\left(0, w_{0}\right)}$ fixes $W_{w_{0}}$, it suffices to prove

$$
\begin{equation*}
(d \varphi)_{\left(0, w_{0}\right)}(\mathfrak{n} \times 0)=\left(H \cdot w_{0}\right)_{w_{0}} \tag{2.3}
\end{equation*}
$$

This however is clear from dimensionality considerations. Now the lemma follows from the standard fact that if \mathfrak{n}_{0} is a sufficiently small neighborhood of 0 in \mathfrak{n}, then \exp is a diffeomorphism of \mathfrak{n}_{0} onto a submanifold $B \subset H$ diffeomorphic under π to an open neighborhood of w_{0} in $H / H^{w_{0}}$.

It was pointed out to me by R. Palais that the local integration of involutive distributions (Chevalley [3, p. 89]) shows that a submanifold W satisfying (2.2) always exists.

Now let us assume that V has a Riemannian structure g invariant under the action of H. Assuming furthermore that all the orbits of H have the same dimension, we shall with each differential operator D on V associate a new differential operator D_{T} on V which acts "transversally to the orbits".

Fix $s_{0} \in V$ and let S denote the orbit $H \cdot s_{0}$. For each $s \in S$ consider the geodesics in V starting at s, perpendicular to S. If we take sufficiently short pieces of these geodesics, their union is a submanifold S_{s}^{\perp} of V. Shrinking $S_{s_{0}}^{\perp}$ if necessary we may assume that it satisfies transversality condition (2.2) for W. Take w_{0} as s_{0}, and let W_{0}, B and V_{0} be as in the lemma. For $f \in \mathscr{E}(V)$ (or even for functions defined on V_{0}) we define a new function $f_{s_{0}}$ on V_{0} by

$$
f_{s_{0}}(b \cdot w)=f(w), \quad b \in B, \quad w \in W_{0} .
$$

We then define D_{T} by

$$
\begin{equation*}
\left(D_{T} f\right)\left(s_{0}\right)=\left(D f_{s_{0}}\right)\left(s_{0}\right), \quad s_{0} \in V . \tag{2.4}
\end{equation*}
$$

Since $B \cdot w$ is a neighborhood of w in the orbit $H \cdot w$, and since D decreases supports, the choice of B above is immaterial, and (2.4) is indeed a valid defini tion; the operator D_{T} decreases supports and is therefore a differential operator, which we call the transversal part of D.

Theorem 2.2. Let V be a Riemannian manifold, H a Lie transformation group of isometries of V, all orbits assumed to have the same dimension. Let S be any H-orbit and let \bar{f} denote restriction of a function f to S. Then the Laplace-Beltrami operators $L=L_{V}$ and L_{S} on V and S, respectively, satisfy

$$
\begin{equation*}
(L f)^{-}=L_{S} \bar{f}+\left(L_{T} f\right)^{-} \quad f \in \mathscr{E}(V) \tag{2.5}
\end{equation*}
$$

Proof. Let $\left(y_{1}, \cdots, y_{r}\right)$ be any coordinate system on B such that $y_{1}(e)=$ $\cdots=y_{r}(e)=0$, and let $w \rightarrow\left(z_{r+1}(w), \cdots, z_{n}(w)\right)$ be a coordinate system on W_{0} such that the geodesics forming $S_{s_{0}}^{\perp}$ correspond to the straight lines through 0 . Then we define a coordinate system $\left(x_{1}, \cdots, x_{n}\right)$ on V_{0} by

$$
\begin{aligned}
& \left(x_{1}(b \cdot w), \cdots, x_{r}(b \cdot w), x_{r+1}(b \cdot w), \cdots, x_{n}(b \cdot w)\right) \\
& \quad=\left(y_{1}(b), \cdots, y_{r}(b), z_{r+1}(w), \cdots, z_{n}(w)\right)
\end{aligned}
$$

The Laplace-Beltrami operator is given by

$$
L=\sum_{p, q=1}^{n} g^{p q}\left(\partial_{p q}-\sum_{t} \Gamma_{p q}^{t} \partial_{t}\right),
$$

where $\partial_{p}=\partial / \partial x_{p}, \partial_{p q}=\partial^{2} / \partial x_{p} \partial x_{q}, g^{p q}$ is the inverse of the matrix $g_{p q}=$ $g\left(\partial_{p}, \partial_{q}\right)$, and $\Gamma_{p q}^{t}$ is the Christoffel symbol

$$
\Gamma_{p q}^{r}=\frac{1}{2} \sum_{s} g^{r s}\left(\partial_{q} g_{p s}+\partial_{p} g_{q s}-\partial_{s} g_{p q}\right)
$$

Suppose $\psi \in \mathscr{E}\left(V_{0}\right)$ satisfies the condition

$$
\begin{equation*}
\psi\left(x_{1}, \cdots, x_{n}\right) \equiv \psi\left(0, \cdots, 0, x_{r+1}, \cdots, x_{n}\right) \tag{2.6}
\end{equation*}
$$

or equivalently

$$
\psi(b \cdot w)=\psi(w), \quad b \in B, \quad w \in W_{0} .
$$

Then

$$
\begin{equation*}
\psi=\psi_{s_{0}}, \quad(L \psi)\left(s_{0}\right)=\left(L_{T} \psi\right)\left(s_{0}\right) \tag{2.7}
\end{equation*}
$$

On the other hand, suppose $\varphi \in \mathscr{E}\left(V_{0}\right)$ satisfies

$$
\begin{equation*}
\varphi\left(x_{1}, \cdots, x_{n}\right) \equiv \varphi\left(x_{1}, \cdots, x_{r}, 0, \cdots, 0\right) \tag{2.8}
\end{equation*}
$$

or equivalently

$$
\varphi(b \cdot w)=\varphi\left(b \cdot s_{0}\right), \quad b \in B, \quad w \in W_{0} .
$$

For each set of real numbers a_{r+1}, \cdots, a_{n}, not all 0 , the curve

$$
t \rightarrow\left(x_{1}\left(s_{0}\right), \cdots, x_{r}\left(s_{0}\right), a_{r+1} t, \cdots, a_{n} t\right)
$$

is a geodesic in V. The differential equation for geodesics

$$
\ddot{x}_{i}+\sum_{p, q} \Gamma_{p q}^{i} \dot{x}_{p} \dot{x}_{q}=0
$$

(dot denoting differentiation with respect to t) therefore shows that

$$
\Gamma_{\alpha \beta}^{i}\left(s_{0}\right)=0, \quad 1 \leq i \leq n, \quad r+1 \leq \alpha, \beta \leq n
$$

Since the geodesic is perpendicular to S at s_{0},

$$
\begin{equation*}
g_{i_{\alpha}}\left(s_{0}\right)=g^{i \alpha}\left(s_{0}\right)=0, \quad \text { for } \quad 1 \leq i \leq r, \quad r+1 \leq \alpha \leq n \tag{2.9}
\end{equation*}
$$

It follows that

$$
(L \varphi)\left(s_{0}\right)=\sum_{1 \leq i, j \leq r} g^{i j}\left(\partial_{i j} \varphi-\sum_{1 \leq k \leq r} \Gamma_{i j}^{k} \partial_{k} \varphi\right)\left(s_{0}\right) .
$$

But by (2.9), $\Gamma_{i j}^{k}\left(s_{0}\right)$ is the same for S and for V, so

$$
\begin{equation*}
(L \varphi)\left(s_{0}\right)=\left(L_{S} \bar{\varphi}\right)\left(s_{0}\right) . \tag{2.10}
\end{equation*}
$$

But

$$
L(\varphi \psi)=\varphi L \psi+2 g(\operatorname{grad} \varphi, \operatorname{grad} \psi)+\psi L \varphi
$$

where for any $f \in \mathscr{E}\left(V_{0}\right)$,

$$
\operatorname{grad} f=\sum_{p, q} g^{p q}\left(\partial_{p} f\right) \partial_{q}
$$

Hence (2.9) implies

$$
\begin{equation*}
L(\varphi \psi)\left(s_{0}\right)=\varphi\left(s_{0}\right)(L \psi)\left(s_{0}\right)+\psi\left(s_{0}\right)(L \varphi)\left(s_{0}\right) . \tag{2.11}
\end{equation*}
$$

But $\varphi_{s_{0}}$ is a constant function, so by (2.4) and (2.7)

$$
\varphi_{s_{0}}(L \psi)\left(s_{0}\right)=L\left((\varphi \psi)_{s_{0}}\right)\left(s_{0}\right)=\left(L_{T}(\varphi \psi)\right)\left(s_{0}\right) .
$$

Similarly, since $\bar{\psi}$ is a constant function, (2.10) implies

$$
\psi\left(s_{0}\right)(L \varphi)\left(s_{0}\right)=L_{S}(\bar{\varphi} \bar{\psi})\left(s_{0}\right)
$$

This gives formula (2.5) for the function $f=\varphi \psi$, and since the linear combinations of such products form a dense subspace of $\mathscr{D}\left(V_{0}\right)$ the theorem follows by approximation.

Remark. The theorem remains true with the same proof if V is a manifold with a pseudo-Riemannian structure g provided g is nonsingular on S.

3. The radial part of a differential operator

Again let V be a manifold satisfying the second axiom of countability, and H a Lie transformation group of V. Suppose $W \subset V$ is a submanifold satisfying transversality condition (2.2) in Lemma 2.1.

Lemma 3.1. Let D be a differential operator on V. Then there exists a unique differential operator $\Delta(D)$ on W such that

$$
\begin{equation*}
(D f)^{-}=\Delta(D) \bar{f} \tag{3.1}
\end{equation*}
$$

for each locally invariant function f on an open subset of V, the bar denoting restriction to W.

Proof. Let $w_{0} \in W$ and select W_{0}, \boldsymbol{B} and V_{0} as in Lemma 2.1. If $\varphi \in \mathscr{E}\left(W_{0}\right)$, we define f on V_{0} by

$$
f(b \cdot w)=\varphi(w), \quad b \in B, \quad w \in W_{0} .
$$

The mapping $\varphi \rightarrow(D f)^{-}$gives an operator $D_{w_{0}, W_{0}, B}$ of $\mathscr{E}\left(W_{0}\right)$ into itself. It is now an easy matter to verify that the linear transformation $\Delta(D)$ given by

$$
(\Delta(D) \psi)\left(w_{0}\right)=\left(D_{w_{0}, W_{0}, B} \psi\right)\left(w_{0}\right)
$$

is a well-defined differential operator on $\mathscr{E}(W)$, with the properties stated in the lemma.

The operator $\Delta(D)$ is called the radial part of D. We shall now give a formula for the radial part of the Laplace-Beltrami operator on V under a strengthening of transversality assumption (2.2); in fact we assume that each H-orbit intersects W just once and orthogonally.

Theorem 3.2. Suppose V is a Riemannian manifold, H a closed unimodular subgroup of the Lie group of all isometries of V (with the compact open topology). Let $W \subset V$ be a submanifold satisfying the condition: For each $w \in W$,

$$
\begin{equation*}
(H \cdot w) \cap W=\{w\} ; V_{w}=(H \cdot w)_{w} \oplus W_{w} \tag{3.2}
\end{equation*}
$$

where \oplus denotes orthogonal direct sum. Let L_{V} and L_{W} denote the LaplaceBeltrami operators on V and W, respectively. Then

$$
\begin{equation*}
\Delta\left(L_{V}\right)=\delta^{-\frac{1}{2}} L_{W} \circ \delta^{\frac{1}{2}}-\delta^{-\frac{1}{2}} L_{W}\left(\delta^{\frac{1}{2}}\right), \tag{3.3}
\end{equation*}
$$

where the function δ is the volume element ratio in (3.8) below.
Proof. Let V^{*} denote the subset $H \cdot W$ of V. Since the mapping $(h, w) \rightarrow$ $h \cdot w$ of $H \times W$ into V has (by (3.2)) a surjective differential at each point, V^{*} is an open subset of V. Since H is closed, the isotropy subgroup H^{w} at each
point $w \in W$ is compact and the orbit $H \cdot w$ is closed; if we fix a left invariant Haar measure on H and a Haar measure on H^{w} (with total measure 1), we obtain in a standard way an H-invariant measure $d \dot{h}$ on each orbit $H \cdot w=$ H / H^{w}. Denoting by $d v$ and $d w$ the Riemannian measures on V and W, respectively, we shall prove that there exists a function $\delta \in \mathscr{E}(W)$ such that

$$
\begin{equation*}
\int_{V^{*}} F(v) d v=\int_{W} \delta(w)\left(\int_{H \cdot w} F(h \cdot w) d \dot{h}\right) d w, \quad F \in \mathscr{D}\left(V^{*}\right) \tag{3.4}
\end{equation*}
$$

Let $w_{0} \in W$. Because of the second part of (3.2) there exist a coordinate neighborhood W_{0} of w_{0} in W, a vector subspace $\mathfrak{m} \subset \mathfrak{G}$ of dimension $\operatorname{dim} V-$ $\operatorname{dim} W$ and a neighborhood \mathfrak{m}_{0} of 0 in \mathfrak{m} such that the map

$$
\eta:(X, w) \rightarrow \exp X \cdot w
$$

is a diffeomorphism of $\mathfrak{m}_{0} \times W_{0}$ onto an open neighborhood V_{0} of w_{0} in V. Let $\left(x_{1}, \cdots, x_{r}\right)$ be a Cartesian coordinate system on \mathfrak{m}, and $\left(x_{r+1}, \cdots, x_{n}\right)$ an arbitrary coordinate system on W_{0}. In the formulas below let $1 \leq i, j \leq r, r+$ $1 \leq \alpha, \beta \leq n$. Let the coordinate system (x_{1}, \cdots, x_{n}) on V_{0} be determined by

$$
x_{i}(\exp X \cdot w)=x_{i}(X), \quad x_{\alpha}(\exp X \cdot w)=x_{\alpha}(w) .
$$

Let g denote the Riemannian structure of V, and put $g_{p q}=g\left(\partial_{p}, \partial_{q}\right)$ as usual, so that

$$
d v=\bar{g}^{\frac{1}{2}} d x_{1} \cdots d x_{n}, \quad d w=\bar{\gamma}^{\frac{1}{2}} d x_{r+1} \cdots d x_{n}
$$

where

$$
\begin{equation*}
\bar{g}=\left|\operatorname{det}\left(\left(g_{p q}\right)_{1 \leq p, q \leq n}\right)\right|, \quad \bar{\gamma}=\left|\operatorname{det}\left(g_{\alpha \beta}\right)\right| . \tag{3.5}
\end{equation*}
$$

Because of the orthogonality in (3.2) we have

$$
\begin{equation*}
g_{i a}(w)=0, \quad w \in W_{0} . \tag{3.6}
\end{equation*}
$$

But if $h=\exp X\left(X \in \mathfrak{m}_{0}\right)$ then our choice of coordinates implies for the differential $d h$,

$$
d h\left(\frac{\partial}{\partial x_{\alpha}}\right)_{w}=\left(\frac{\partial}{\partial x_{\alpha}}\right)_{h \cdot w}, \quad d h\left(\frac{\partial}{\partial x_{i}}\right)_{w}=\sum_{j=1}^{r} a_{i j}\left(\frac{\partial}{\partial x_{j}}\right)_{h \cdot w},
$$

where $a_{i j} \in \boldsymbol{R}$. Hence $g_{\alpha \beta}(h \cdot w)=g_{\alpha \beta}(w)$ and using (6), $g_{i \alpha}(h \cdot w)=0$; consequently

$$
\begin{equation*}
\bar{g}(h \cdot w)=\operatorname{det}\left(g_{i j}\right)(h \cdot w) \bar{\gamma}(w) . \tag{3.7}
\end{equation*}
$$

However

$$
\left|\left\{\operatorname{det}\left(g_{i j}\right)\right\}^{\frac{1}{2}}(h \cdot w)\right| d x_{1} \cdots d x_{r}(h \cdot w)
$$

is just the Riemannian volume element $d \sigma_{w}$ on the orbit $H \cdot w$. Thus, if $F \in \mathscr{D}\left(V_{0}\right)$ we obtain from the Fubini theorem and (3.7) that

$$
\int_{V} F(v) d v=\int_{W} \bar{\gamma}^{\frac{1}{2}}(w)\left(\int_{H \cdot w} F(p) d \sigma_{w}(p)\right) d x_{r+1} \cdots d x_{n}(w) .
$$

But $d \sigma_{w}$ is invariant under H, so it must be a scalar multiple of $d \dot{h}$,

$$
\begin{equation*}
d \sigma_{w}=\delta(w) d \dot{h} \tag{3.8}
\end{equation*}
$$

This proves (3.4) for all $F \in \mathscr{D}\left(V_{0}\right)$; then it holds also if F has support inside $h \cdot V_{0}$ for some $h \in H$. But as w_{0} runs through W, the sets $h \cdot V_{0}$ form a covering of V^{*}. Passing to a locally finite refinement and a corresponding partition of unity, (3.4) follows for all $F \in \mathscr{D}\left(V^{*}\right)$.

Let $\dot{F}(w)$ denote the inner integral in (3.4), so that

$$
\begin{equation*}
\dot{F}(w)=\int_{H \cdot w} F(h \cdot w) d \dot{h} . \tag{3.9}
\end{equation*}
$$

It is a routine matter to verify that the mapping $F \rightarrow \dot{F}$ is surjective, i.e.,

$$
\begin{equation*}
\mathscr{D}\left(V^{*}\right)^{\cdot}=\mathscr{D}(W) . \tag{3.10}
\end{equation*}
$$

For the determination of $\Delta\left(L_{V}\right)$ we first observe that

$$
\begin{equation*}
\Delta\left(L_{V}\right)=L_{W}+\text { lower order terms. } \tag{3.11}
\end{equation*}
$$

This is clear from the coordinate expression for L_{V} together with (3.6) if we also note that the vector fields $\partial / \partial x_{i}$ are tangential to the H-orbits. Next we recall that L_{V} is symmetric with respect to $d v$, i.e.,

$$
\begin{equation*}
\int_{V}\left(L_{V} f_{1}\right)(v) f_{2}(v) d v=\int_{V} f_{1}(v)\left(L_{V} f_{2}\right)(v) d v \tag{3.12}
\end{equation*}
$$

for all $f_{1}, f_{2} \in \mathscr{D}\left(V^{*}\right)$. But then this relation holds for all $f_{2} \in \mathscr{E}\left(V^{*}\right)$. In particular we can use it on f_{2} invariant under H. Applying (3.4) to the left hand side of (3.12) we obtain

$$
\begin{equation*}
\int_{W} \delta(w) f_{2}(w)\left(\int_{H \cdot w}\left(L_{V} f_{1}\right)(h \cdot w) d \dot{h}\right) d w . \tag{3.13}
\end{equation*}
$$

But for each $v \in V$ the isotropy subgroup H^{v} is compact, so by invariance of L_{V}

$$
\left(L_{V}\right)_{v}\left(\int_{H} f_{1}(h \cdot v) d h\right)=\int_{H}\left(L_{V} f_{1}\right)(h \cdot v) d h .
$$

Now putting here $v=w$ we get the inner integral in (3.13) equal to $\left(\Delta\left(L_{V}\right) \dot{f}_{1}\right)(w)$; thus the left hand side of (3.12) is

$$
\int_{W}\left(\Delta\left(L_{V}\right) \dot{f_{1}}\right)(w) \bar{f}_{2}(w) \delta(w) d w
$$

the bar denoting restriction to W. But using the H-invariance of $L_{V} f_{2}$, formula (3.4) and the definition of radial part, the right hand side of (3.12) reduces to

$$
\int_{W} \dot{f}_{1}(w)\left(\Delta\left(L_{V}\right) \bar{f}_{2}\right)(w) \delta(w) d w
$$

But in view of (3.10) the functions \dot{f}_{1} (and of course the \bar{f}_{2}) fill up $\mathscr{D}(W)$, so the equality of the two last expressions implies that $\Delta\left(L_{V}\right)$ is symmetric with respect to $\delta(w) d w$. Now since L_{W} is symmetric with respect to $d w$, a simple computation shows that the composition $\delta^{-\frac{1}{2}} L_{W} \circ \delta^{\frac{1}{2}}$ is symmetric with respect to $\delta(w) d w$ and it clearly agrees with L_{W} up to lower order terms. Thus by (3.11) the symmetric operators $\Delta\left(L_{V}\right)$ and $\delta^{-\frac{1}{2}} L_{W} \circ \delta^{\frac{1}{2}}$ agree up to an operator of order ≤ 1. But this operator, being symmetric, must be a function, and now (3.3) follows by applying the operators to the function 1.

It is of interest to generalize Theorem 3.2 to pseudo-Riemannian manifolds V. If V has a pseudo-Riemannian structure g, which for each $w \in W$ is nondegenerate on the closed orbit $H \cdot w$, and if each $H^{w}(w \in W)$ is compact, then Theorem 3.2 remains valid. In fact, the isotropy group H^{v} is then compact for each $v \in V^{*}$, so no change is necessary in the proof.

When a semisimple Lie group H acts on its Lie algebra by the adjoint representation, the regular elements of a Cartan subalgebra constitute a transversal submanifold W where the isotropy subgroup H^{w} is the same for all $w \in W$. This then provides an example for the following variation of Theorem 3.2.

Theorem 3.3. Let the assumptions be as in Theorem 3.2 except that V has only a pseudo-Riemannian structure g. Then formula (3.3) remains valid if we further assume that
(i) for each $w \in W$ the orbit $H \cdot w$ is closed and g is non-degenerate on it,
(ii) H^{w} is the same for all $w \in W$, and its Lie algebra is its own normalizer in the Lie algebra of H.

Proof. Put $H^{0}=H^{w}(w \in W)$ and $\dot{h}=h H^{0}$, and fix an H-invariant measure $d \dot{h}$ on the coset space H / H^{0}. Such a measure exists since each orbit $H \cdot w$ has an H-invariant measure $d \sigma_{w}$ defined as above. If γ is a geodesic in V tangential to W at w then γ is left fixed by each $h \in H_{0}$. Thus (ii) implies $\gamma \subset W$ so W is a totally geodesic submanifold of V. Defining δ by (3.8) the only part of the proof above which requires change is the justification of the formula

$$
\begin{equation*}
\int_{H \cdot w}\left(L_{V} f_{1}\right)(h \cdot w) d \dot{h}=\left(\Delta\left(L_{V}\right) \dot{f_{1}}\right)(w) . \tag{3.14}
\end{equation*}
$$

For this we use Theorem 2.2 and the subsequent remark to split L_{V} into its "orbital part" and transversal part. The orbital part gives integral 0 over $H \cdot w$, so in the integral (3.14) we can replace L_{V} by its transversal part $L_{V, T}$. Putting $f_{1}^{h}(w)=f_{1}(h \cdot w)$ for $h \in H$, we have, by the H-invariance of $L_{V, T}$,

$$
\left(L_{V, T} f_{1}\right)(h \cdot w)=\left(L_{V, T}\left(f_{1}^{h}\right)\right)(w),
$$

which, by the definition of transversal part and radial part, equals $\Delta\left(L_{V}\right)\left(\overline{f_{1}^{h}}\right)(w)$, W being totally geodesic. But then the left hand side of (3.14) equals

$$
\int_{H / H O} \Delta\left(L_{V}\right)_{w}\left(f_{1}(\dot{h} \cdot w)\right) d \dot{h}
$$

which equals $\left(\Delta\left(L_{V}\right) \dot{f}_{1}\right)(w)$ because now \dot{h} and w are independent variables. This proves (3.14) and therefore also Theorem 3.3.

References

[1] F. A. Berezin, Laplace operators on semisimple Lie groups, Trudy Moskov. Mat. Obšč. 6 (1957) 371-463.
[2] C. Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, 1946.
[3] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956) 98-163.
[4] -, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957) 87-120.
[5] -, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958) 241-310.
[6] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959) 239-299.
[7] -, Radon-Fourier transforms on symmetric spaces and related group representations, Bull. Amer. Math. Soc. 71 (1965) 757-763.
[8] F. I. Karpelevič, The Geometry of geodesics and the eigenfunctions of the Bel-trami-Laplace operator on symmetric spaces, Trudy Moskov. Mat. Obšč. 14 (1963) 48-185.
[9] P. D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954) 1-49.

Massachusetts Institute of Technology

[^0]: Received November 3, 1971. Supported in part by National Science Foundation Grant GP-22928.

