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A FORMULA FOR THE RADIAL PART OF THE
LAPLACE-BELTRAMI OPERATOR

SIGURDUR HELGASON

Let V be a manifold and H a Lie transformation group of V. Suppose
Du = 0 is a differential equation on V, both the differential operator D and
the function u assumed invariant under H. Then the differential equation will
involve several inessential variables, a fact which may render general results
about differential operators rather ineffective for the differential equation at
hand. Thus although D may not be an elliptic operator it might become one
after the inessential variables are eliminated (cf. [3, p. 99]).

This viewpoint leads to the general definition (cf. [7]) of the transversal part
and radial part of a differential operator on V given in §§ 2 and 3. The radial
part has been constructed for many special differential operators in the litera-
ture; see for example [1], [3], [4], [5], [8] for Lie groups, Lie algebras and
symmetric spaces, [9], [6] for some Lorentzian manifolds. Our main result,
formula (3.3) in Theorem 3.2, includes various known examples worked out by
computations suited for each individual case. See Harish-Chandra [4, p. 99]
for the Laplacian on a semisimple Lie algebra, Berezin [1] and Harish-Chandra
[3, § 8] for the Laplacian on a semisimple Lie group, and Harish-Chandra
[5, § 7] and Karpeleviό [8, § 15] for the Laplacian on a symmetric space. The
author is indebted to J. Lepowsky for useful critical remarks.

Notation. If V is a manifold and v e F, then the tangent space to V at v
will be denoted Vυ the differential of a differentiate mapping φ of one mani-
fold into another is denoted dφ. We shall use Schwartz' notation SiV) (resp.
£)(V)) for the space of complex-valued C°° functions (resp. C°° functions of
compact support) on V. Composition of differential operators D19 D2 is denoted

2. The transversal part of a differential operator

Let V be a manifold satisfying the second axiom of countability, and H a

Lie transformation group of V. If h e H, v e F, let h - v denote the image of v
under H and let Hv denote the isotropy subgroup of H at v. Let ϊ) denote the

Lie algebra of H. If X e ζ, let X+ denote the vector field on V induced by X,

i.e.,
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(2.1) (X+f)(v) = \
{ at

A C°° function / on an open subset of V is said to be locally invariant if
X+f = 0.

Lemma 2 .1 . Suppose W C K i s o submanifold such that for each weW
the tangent spaces at w satisfy the condition:

(2.2) vw = ww + (H w)w (direct sum).

Let w0 € W. Then there exists an open relatively compact neighborhood Wo of
w0 in W and a relatively compact submanifold B C H,eeB such that the
natural projection π: H —• H/HWo is a diffeomorphism of B onto an open
neighborhood Uo of π(e) in H/HWQ and such that the mapping η\ (b,w) —• b w
is a diffeomorphism of B X Wo onto an open neighborhood Vo of w0 in V.

Proof. Let ψ denote the Lie algebra of HWo, and n c ζ any subspace com-
plementary to ψ. Then the mapping φ: (X, w) —> exp X w of n X W into V is
regular at (0, w 0). In fact, since (dφ)(QtWo) fixes WWQ, it suffices to prove

(2.3) (dφ)(0,Wo)(n X 0) - (H-wX0 .

This however is clear from dimensionality considerations. Now the lemma
follows from the standard fact that if n0 is a sufficiently small neighborhood of
0 in n, then exp is a diffeomorphism of n0 onto a submanifold B c H difϊeo-
morphic under π to an open neighborhood of w0 in H/HWo.

It was pointed out to me by R. Palais that the local integration of involutive
distributions (Chevalley [3, p. 89]) shows that a submanifold W satisfying (2.2)
always exists.

Now let us assume that V has a Riemannian structure g invariant under the
action of H. Assuming furthermore that all the orbits of H have the same
dimension, we shall with each differential operator D on V associate a new
differential operator Dτ on V which acts "transversally to the orbits".

Fix soeV and let S denote the orbit Hs0. For each s <= S consider the geo-
desies in V starting at s, perpendicular to S. If we take sufficiently short pieces
of these geodesies, their union is a submanifold Sj-ofV. Shrinking Sj-0 if neces-
sary we may assume that it satisfies transversality condition (2.2) for W. Take
wQ as s0, and let Wo, B and VQ be as in the lemma. For / e $(V) (or even for
functions defined on Vo) we define a new function fSQ on Vo by

We then define Dτ by

(2.4) (Dτf)(s0) = (Dfso)(s0) ,
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Since B w is a neighborhood of w in the orbit H w, and since D decreases
supports, the choice of B above is immaterial, and (2.4) is indeed a valid defini
tion; the operator Dτ decreases supports and is therefore a differential
operator, which we call the transversal part of D.

Theorem 2.2. Let V be a Riemannian manifold, H a Lie transformation
group of isometries of V, all orbits assumed to have the same dimension. Let
S be any H-orbit and let f denote restriction of a function f to S. Then the
Laplace-Beltramί operators L = Lv and Ls on V and S, respectively, satisfy

(2.5) (L/)- = Lsf + (Lτf)~ f e £(V) .

Proof. Let (vl5 , yr) be any coordinate system on B such that yx(e) —
. . . = yr(e) = 0, and let w —> (zr+ι(w), , zn(w)) be a coordinate system on
WQ such that the geodesies forming 5^ correspond to the straight lines through
0. Then we define a coordinate system (x19 , xn) on F o by

(x^b-w), >,xr(b-w),xr+1(b>w), ,xn(b-w))

= G Ί ( W , ? yr(b)9 zr+ι(w), ., Zn(w)) .

The Laplace-Beltrami operator is given by

L = Σ 8pq(dpq ~ Σ Γ%J3t) ,

where dp = d/dxp, dvq = d2/dxpdxq, gpq is the inverse of the matrix gp(? =
g(3p,3β), and Γ ^ is the Christoffel symbol

r ; = I Σ 8r'(dqgpt + dpgqs - dsgpq).
s

Suppose ψ e #(VQ) satisfies the condition

(2.6) ψ(x19 "',xn) = ψ(0, , 0 , xr+19 ., x n ) ,

or equivalently

ψ(b w) = ψ(w) , Z ? e 5 , w e ^ 0 .

Then

(2.7) ψ = f so , (Lψ)(ί0) = (LΓψ)(5o) .

On the other hand, suppose φ € £(V0) satisfies

(2.8) φ(x19 , xn) = ^ x , , * r , 0, , 0) ,

or equivalently
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φ(b-w) = φ(b-s0) , bzB , wzWQ.

For each set of real numbers ar+1, , an, not all 0, the curve

t -> (x^), , xr(s0), ar+1t, , ani)

is a geodesic in V. The differential equation for geodesies

Xi + Σ Γpqipiq = 0

(dot denoting differentiation with respect to i) therefore shows that

Γ^Oo) - 0 , 1 <i<n , r + 1 < a, β < n .

Since the geodesic is perpendicular to S at s09

(2.9) gia(sQ) = g ί α(s0) - 0 , for 1 < ί < r , r + 1 < α < n .

It follows that

(LφXs0) - Σ ^ O i i P ~ Σ ΠjdtφXsJ .

But by (2.9), Γ^(5 0) is the same for S and for V, so

(2.10) (LpXso) = (Lsφ)(s0) .

But

L(yyψ ) = φLψ + 2^ (grad φ, grad ψ) +

where for any / e <?(K0),

Hence (2.9) implies

(2.11) L(pψ)(jo) = φ(so)(Lψ)(So) + ψ

But φSQ is a constant function, so by (2.4) and (2.7)

Similarly, since ψ is a constant function, (2.10) implies

= Ls(φψ)(sQ) .

This gives formula (2.5) for the function / = φψ, and since the linear com-
binations of such products form a dense subspace of ^ ( F o ) the theorem follows
by approximation.
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Remark. The theorem remains true with the same proof if V is a mani-
fold with a pseudo-Riemannian structure g provided g is nonsingular on S.

3. The radial part of a differential operator

Again let V be a manifold satisfying the second axiom of countability, and
H a Lie transformation group of V. Suppose W C V is a submanifold satisfy-
ing transversality condition (2.2) in Lemma 2.1.

Lemma 3.1. Let D be a differential operator on V. Then there exists a
unique differential operator Δ(D) on W such that

(3.1) (Df)~ = Δ(D)f

for each locally invariant function f on an open subset of V, the bar denoting
restriction to W.

Proof. Let w0 e W and select WQ9 B and Vo as in Lemma 2.1. If φ e &(W0),
we define / on Vo by

beB, wtW0.

The mapping φ —> (Df)~ gives an operator DWθtWo>B of $(W0) into itself. It is
now an easy matter to verify that the linear transformation Δ(D) given by

(J(D)ψ)(Wo) = (DWo>Wo>Bψ)(w0)

is a well-defined differential operator on S(W), with the properties stated in
the lemma.

The operator Δ(D) is called the radial part of D. We shall now give a formula
for the radial part of the Laplace-Beltrami operator on V under a strengthen-
ing of transversality assumption (2.2); in fact we assume that each //-orbit
intersects W just once and orthogonally.

Theorem 3.2. Suppose V is a Riemannian manifold, H a closed unimodular
subgroup of the Lie group of all isometries of V (with the compact open
topology). Let W C V be a submanifold satisfying the condition: For each
wzW,

(3.2) (H'W) ΠW = {w};Vw = (Jϊ w)w Θ Ww ,

where 0 denotes orthogonal direct sum. Let Lv and Lw denote the Laplace-
Beltrami operators on V and W, respectively. Then

(3.3) Δ(LV) = δ-^Lw o $ - δ-*LwW) ,

where the function δ is the volume element ratio in (3.8) below.
Proof. Let F* denote the subset H W of V. Since the mapping (A, w) —•

h-w of H x W into V has (by (3.2)) a surjective differential at each point, F*
is an open subset of V. Since H is closed, the isotropy subgroup Hw at each
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point w g W is compact and the orbit H w is closed if we fix a left invariant
Haar measure on H and a Haar measure on Hw (with total measure 1), we
obtain in a standard way an //-invariant measure dh on each orbit Hw =
H/Hw. Denoting by ίfo and dw the Riemannian measures on V and Jf, respec-
tively, we shall prove that there exists a function δ e $(W) such that

(3.4) JF(v)dv = fδ(w) ( C F(h w)dh)dw , F
V* W H'W

Let wQζW. Because of the second part of (3.2) there exist a coordinate
neighborhood Wo of w0 in W, a vector subspace m C ϊ) of dimension dim K —
dim P^ and a neighborhood m0 of 0 in m such that the map

Ύ] : (X, w) —> exp f̂ >v

is a difϊeomorphism of m0 X Wo onto an open neighborhood VQ of w0 in F.
Let (*!, , xr) be a Cartesian coordinate system on m, and (xr+1, , xn) an
arbitrary coordinate system on Wo. In the formulas below let 1 < /, / < r, r +
1 < oί, β < n. Let the coordinate system (JC1? , xn) on F o be determined by

xt (exp Z w) = ^ ( Z ) , * α (exp Z w) = xa(w) .

Let ^ denote the Riemannian structure of V, and put gpq = g(dp, dq) as usual,
so that

dv = fW^i -dxn , ί/w = f*dxr+1 "dxn ,

where

(3.5) g = |det i(gpq\<P,q<n)\ , f = l d e t fe^)l

Because of the orthogonality in (3.2) we have

(3.6) gίa(w) = 0, wεWo.

But if /z = exp X (X e m0) then our choice of coordinates implies for the dif-
ferential dh,

dh[lΛ= f
dxa

where atjeR. Hence gaβ(h-w) == gaβ(w) and using (6), gίa(h>w) = 0;

consequently

(3.7) gih w) = det (gίj)(h

However
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\{det(giJ)}Kh-w)\dxι...dxt(h.w)

is just the Riemannian volume element dσm on the orbit Hw. Thus, if
F e 3>(y<) we obtain from the Fubini theorem and (3.7) that

JF(v)dv = JV(HO ( J F{p)dσw{p))dxr,ι • -dxn(w) .
V W H-w

But dσw is invariant under H, so it must be a scalar multiple of dh,

(3.8) dσw = <5(w)dή .

This proves (3.4) for all F e @(V0); then it holds also if F has support inside
h F o for some hζH. But as w0 runs through W, the sets h F o form a covering
of V*. Passing to a locally finite refinement and a corresponding partition of
unity, (3.4) follows for all F <= &(V*).

Let F(w) denote the inner integral in (3.4), so that

(3.9) F(w) = J F(h-w)dh .
H w

It is a routine matter to verify that the mapping F —> F is surjective, i.e.,

(3.10) S(F*) = ^ ( » 0

For the determination of Δ(LV) we first observe that

(3.11) Δ(LV) — Lw + lower order terms.

This is clear from the coordinate expression for Lv together with (3.6) if we
also note that the vector fields d/dXi are tangential to the H-orbits. Next we
recall that Lv is symmetric with respect to dv, i.e.,

(3.12) J\LvMv)t2(v)dv = §U{v){Lvf2){v)dv
V V

for all fl9 f2 e 2(V*). But then this relation holds for all f2 € &(V*). In particular
we can use it on f2 invariant under H. Applying (3.4) to the left hand side of
(3.12) we obtain

(3.13) fδ(w)fz(w) i f (L7f0 (h w)dh\ dw .
W H w

But for each v € V the isotropy subgroup Hv is compact, so by invariance of Lv

= j(Lvfι)(h v)dh .
H
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Now putting here v = w we get the inner integral in (3.13) equal to

/i)(w) thus the left hand side of (3.12) is

J(Δ(Lv)fι)(w)f2(w)δ(w)dw ,
w

the bar denoting restriction to W. But using the //-invariance of Lvf29 formula

(3.4) and the definition of radial part, the right hand side of (3.12) reduces to

J fι(w)(Δ(Lv)f2)(w)δ(w)dw .
w

But in view of (3.10) the functions f1 (and of course the/ 2) fill up @(W), so
the equality of the two last expressions implies that Δ(LV) is symmetric with
respect to δ(w)dw. Now since Lw is symmetric with respect to dw, a simple
computation shows that the composition δ~?Lw o δ? is symmetric with respect
to δ(w)dw and it clearly agrees with Lw up to lower order terms. Thus by
(3.11) the symmetric operators Δ(LV) and δ~^Lwoδ^ agree up to an operator
of order < 1. But this operator, being symmetric, must be a function, and
now (3.3) follows by applying the operators to the function 1.

It is of interest to generalize Theorem 3.2 to pseudo-Riemannian manifolds
V. If V has a pseudo-Riemannian structure g, which for each w e W is non-
degenerate on the closed orbit Hw, and if each Hw (w e W) is compact, then
Theorem 3.2 remains valid. In fact, the isotropy group Hv is then compact for
each v e F*, so no change is necessary in the proof.

When a semisimple Lie group H acts on its Lie algebra by the adjoint
representation, the regular elements of a Cartan subalgebra constitute a trans-
versal submanifold W where the isotropy subgroup Hw is the same for all
w eW. This then provides an example for the following variation of Theorem
3.2.

Theorem 3.3. Let the assumptions be as in Theorem 3.2 except that V has
only a pseudo-Riemannian structure g. Then formula (3.3) remains valid if we
further assume that

(i) for each w eW the orbit Hw is closed and g is non-degenerate on it,
(ii) Hw is the same for all w εW, and its Lie algebra is its own normalizer

in the Lie algebra of H.
Proof. Put H° = Hw (we W) and h =hH\ and fix an //-invariant measure

dh on the coset space H/H°. Such a measure exists since each orbit H-w has
an //-invariant measure dσw defined as above. If γ is a geodesic in V tangential
to W at w then γ is left fixed by each hzH0. Thus (ii) implies γ C W so W is
a totally geodesic submanifold of V. Defining δ by (3.8) the only part of the
proof above which requires change is the justification of the formula

(3.14) J (LvfiXh w)dh = (Δ(Lv)fλ)iw) .
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For this we use Theorem 2.2 and the subsequent remark to split Lv into its
"orbital part" and transversal part. The orbital part gives integral 0 over H w,
so in the integral (3.14) we can replace Lv by its transversal part LVtT. Putting
ff(w) = f^h-w) for heH, we have, by the H-invariance of LVtT,

which, by the definition of transversal part and radial part, equals
W being totally geodesic. But then the left hand side of (3.14) equals

j
H/HO

which equals (zl(LF)/1)(w) because now h and w are independent variables.
This proves (3.14) and therefore also Theorem 3.3.
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