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G-STRUCTURES OF ORDER TWO AND TRANSGRESSION
OPERATORS

SHOSHICHI KOBAYASHI & TAKUSHIRO OCHIAI

1. Introduction

This paper is an addendum to a recent paper by Chern and Simons [1] on
curvature forms and conformal transformations. Our purpose is to give a G-
structure theoretic interpretation to their results and to obtain similar results for
projective and other second order G-structures in a unified manner.

Let P be a differentiate principal bundle over M with group G. Let ω be a
connection form and Ω its curvature form on P. Let P(G) denote the set of
G-invariant symmetric multilinear forms of degree k on the Lie algebra g of G.
If / € P(G), then /(β, , Ω) can be pulled down to a closed 2&-form on the
base M to give an element of H2k(M;R), called the characteristic class defined
by /. This class is transgressive. In fact, if we set

Ωt = tdω + it2[ω, ω] , Tf(ω) = kΓf(ω, Ωt, , Ωt)dt ,
0

then

The problem we discuss here is to find out how Tf(ώ) depends on the connec-
tion ω. Let ω(s), 0 < s < 1, be a 1-parameter family of connections in P and
Ω(s) the corresponding family of curvature forms. Let A(s) = dω(s)/ds. A for-
mula of Chern and Simons states:

- Γ/(ω(0)) = k(k - \)d jV(s)ds + k J'/WW, Ω(s), , Ω(s))ds
0 0

V(s) = /(JO), tω(s), Ω(s)t, , Ω(s)t)dt .
0

where
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The formula above becomes useful if f(A(s), Ω(s), , Ω(s)) is exact so that
T/(ω(l)) — Tf(ω(0)) is exact. According to a theorem of Chern and Simons,
that is the case when ω(0) and ω(l) are the Riemannian connections of two
conformally equivalent Riemannian metrics.

We may interpret their theorem. Let P be the CO(π)-structure on M
defined by two conformally equivalent Riemannian metrics where CO{ή) =
{aA A € O(ή) and a e 2?*}, and L be the group of conformal transformations
of an ^-sphere. Then the Lie algebra ί of L has a natural graded Lie algebra
structure ΐ = g_x + g0 + flu where dim g_x = Rn, g0 = co(π) and & is the so-
called first prolongation of g0. The canonical form θ on P is a g_rvalued 1-
form on P whereas the connections forms ω(s) are go-valued on P. The fact
that ω(0) and ω(l) are conformally equivalent can be expressed by a simple
formula;

where p is a grvalued function on P. Let P(L) be the set of L-invariant sym-
metric multilinear forms of degree k on ϊ, and /|(G) the image of the restric-
tion map Ik(L)-+Ik(G). For fePL(G), k>2, it is easy to see that
f(J(s),Ω(s), . . ,β(») is not only exact but also identically zero. All these
hold for any second order G-structure.

For projective and conformal structures, we can easily find explict expressions
for the restriction maps: P(L) —• P(G) and prove that f(Δ(s), Ω(s), , Ω(s))
is exact for fεP(G), k>2.

In this theory, only torsionfree connections can be used. On the other hand,
from a theorem of Weyl and Cartan we know that the conformal and projective
structures are the only G-structures of second order which admit torsionfree
affine connections without any additional condition on M, [3]. For other G-
structures of second order, a torsionfree connection exists only when certain
integrability conditions are satisfied. In that sense, the projective and conformal
structures are more privileged than the others, although our theory applies to
all second order G-structures.

2. Invariant functions

Let G be a Lie group with Lie algebra g, and P(G) be the set of all sym-
metric multilinear mappings /: g X X g -* R such that f((ads)X1, - ,
(ad s)Xk) = f(X19 > -,Xk)ioτseG and Xt e g.

Set /(G) = Σ Ik(G). In order to make /(G) into a graded commutative
fc = 0

algebra, for / <= P(G) and g e Iι(G) we define fg e Ik+ι(G) by
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where the summation is taken over all permutations σ of {1, , k + /}. An
element of Ik(G) will be called an invariant function of degree k on G. For
convenience we use the following notations. If / 6 P(G), then

f(X) = KX, . . . , * ) , KX; Y) = f(X, Y, , Y) ,

( ) / ( , Z , . . . , Z ) , etc.

Given g-valued differential forms ω and φ of degree p and q, respectively, on
a manifold, we define [ω, φ] as follows. Choose a basis e15 , er for q, let c}fc

be the structure constants of q with respect to e19 , er, and set

[ω, φ] = Σ c%ωi Λ 9fce* ,

where ω = 2 ω ^ and 9 = Σ Ψjeύ Then [α>, 9] is defined independently of
the choice of el9 , er. The following formulas are trivial:

(2.1) [ω,p]= - ( - l ) M [ p , ω ] ,

(2.2) d[o),9] = [Λ»,p] + (-l)p[ω,dφ\ ,

(2.3) [ω,[ω,ω]] = 0 .

If ω15 , ωk are g-valued differential forms of degree (fa, , <?* respectively
and if / € Ik(G), then a differential ((fa + + gfc)-form /(ω1? , ωk) is defin-
ed by

x A Λ ω£* ,

ω^^ . Thus we have the following

,dωj9

(2.5) Σ (-l)β l + '"+ β J/(ωi, ,ω,-1, K,9],coJ + 1, ,ωfc) = 0 ,

where 9 is a g-valued 1-form. (Formula (2.5) is a consequence of the G-invar-
iant property of /).

Lemma 2.1. Let feIk(G), geIι(G) and h = /g. For Q-valued 1-form ax

and 2-forms oc2, -,ak+ι, we have

where aJlm

formulas:

(2.4) ,df(a

Kω19

?ω f c)

5ω f c) = Σ «Λ...

and (Oj =

(_l )β.+ -

= — Σ %(ff)/(a,<i),
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where the summation is taken over all permutations σ of {1, ,k + 1} and

Proof. Put

CJi 'JJc + l —

If we put at = Σ (Xieji

(k + I) \h(a19 '•-, ak+ι) = (A + 0 ! Σ Cj,-^M1 Λ Λ a{%γ

= Σ ( Σ ^(x, ..^(*) *Λ(t+1)...y#<*+ϊ))αίI Λ Λ αftί' .

Replacing αί1 Λ Λ aik

+f by —χ(σ)a

J

σ'M Λ Λ αί'ί+t)0 > w e obtain

= — Σ

3. Transgression operator

Let P be a G-principal bundle and ω a connection form on P. Thus ω is a
g-valued 1-form satisfying

(3.1)

(3.2) ω ( Z * ) = X forJfe-B,

where Z * is the fundamental vector field corresponding to X e g.
The curvature form β of ω is given by

(3.3) Ω = dω + \[ω,ώ\ .

We put ωt — tω {0 < t < 1), and define

(3.4) Ωt = dωt

Lemam 3.1. For f e /fc(G), /(fl) = /(fl, , Ω) is exact as a form on P.
More precisely, we have

(3.5) f(Ω) = kd J)(ω; Ωt)dt .
0

Proof. We have
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df(Ωt)/dt = kf(dΩt/dt; Ωt) = kf(dω + t[ω,ω]; Ωt)

= kf(dω; Ωt) + kf([ω,ωt]; Ωt) .

On the other hand, we have

f([ω, ωt] Ωt) = -(k - l)f(ω, [Ωt, ωt] Ωt) (from (2.5)) ,

dΩt = ^[dωt,ωt] — ^[ωt,dωt] = [dωt, ωt]

= —i[[ωt9ωt]9ωt] + [Ωt,ωt] = [ β £ ? ω j (from (2.3)) ,

so that

f([ω,ωt]; Ωt) = -(k - l)f(ω,dΩt; Ωt) .

Hence

df(Ωt)/dt = kf(dω; Ωt) - k(k - l)f(ω,dΩt; Ωt) = kdf(ω; Ωt) .

Remark. The proof above can be simplified if one uses exterior covariant
differentiation as in the proof of Lemma 5 in [6, II, p. 297].

The transgression operator Tf is defined by

(3.6) Tf(ω) = k JV(ω; Ωt)dt ,

so that f(Ω) = dTf(ω). Let ω(s) be a family of connections on P depending on
a parameter s.

Define J(s) by A(s) = dω(s)/ds, and let Ω(s) be the curvature form of ω(s).
Then

Lemma 3.2 (Chern-Simons [1]). Lei / e P(G). // we pwί

(3.7) FW = JV(4ω,ω(s)t flίj),)* ,
0

then we have

(3.8) dTf(ω(.s))/ds - * ( * - I)d7(s) = kf(Δ(s)

Froo/. From (2.1), (2.2), (2.3), (2.4) and (2.5) we have the following
formulas:

J/(i(ί), a>(i) Ω{s\) = KdΔ(s), ω(s) Ω(s)t)

/ ( J ( ) Λ ( ) β(s) t ) + (fc

(3 10) / ( [ J ( s ) ' ω ( s ) ί ] ' ω ( 5 ) ; β ( s ) ί ) + / ( J ( ί ) ' [ α ) ( ί ) > ω ( ί ) ί ] ; Ωis)t)

+ {k 2)j{Δ{), ω{s), dΩ{s)t fl(s)t) = 0
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(3.11) dΩ(s)t = [Ω(s)t,ω(s)t];

(3.12) dΩ(s)t/ds = tdΔ{s) + f[Δ{s),ω{s)] .

Eliminating (k - 2)f(Δ(s), ω(s), dΩ(s)t: Ω(s)t) from (3.9) and (3.10), we
obtain

df(A(s),ω(s),Ω(s)t) =

— /(JO), dω(s) + t[ω(s),ω(s)]; Ω(s)t) ,

so that

Γ1

dV(s) = f(tdA(s) + t2[d(s),ω(s)],ω(s); Ω(s)t)dtJ
0

j1 ?[w(s),φ)h Ω(β\)dt .

On the other

dTf(ω(s))

ds

hand,

- d k
ds

= k ί

we

: Γ j

0

have

ι(ω(s) Ω(s)t)dt

i(s); Ω(s)t)dt Hh Λ ( A : -

= kp(Δ(s);Ω(s)t)dt
0

+ k(k - 1) Γ/(ωO),^JO) + t2[J(s),ω(s)]; Ω(s)t)dt .

o

Hence

d J / ( ω ( 5 ) ) - )t(yt - i)dFO)
ds

k(k - 1) Pf(Δ(s),tdω(s) + t2[ω(.s),ω(s)]; Ω(s\)dt
0

k I /(JO), ifcβ(j)ί + (k - l)—[ω(s),ω(s)]; Ω(s)t)dt
0
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= k I f(Δ(s), ktΩ(s) + [(i)(s), ω(s)]

0

tΩ{s) + i—liatβ), ω(s)])dt

; Ω(s))dt

•f(ά(s), Ω{s), •••, Ω(s), [ω(s),ω(s)],-y,[ω(s),ω(s)])dt ,

0 0

where

~~ \ r I \ 2 / \r — 1

From elementary calculus we know

(3.13) ( V ( l - ί)wΛ = m l n l

 N for m, n > 0 .
J (m + n + 1)!

From (3.1) it is seen that

(3.14) Γtk~ιh(r, t)dt = 0 for 1 < r < k - 1 ,

0

which completes the proof of Lemma 3.2. q.e.d.
Lemmas 3.1 and 3.2 will be used in the following manner. Suppose / is an

element of P(G), and ω(0) is a connection form on P such that f(Ω(O)) = 0.
(In other words, we assume that not only the characteristic class defined by /
but also the form f(Ω(O)) itself vanishes). Then, by Lemma 3.1, the (2k — 1)-
form Tf(ω(0)) on P is closed. Suppose we have another connection ω(l) on P
such that f(Ω(l)) = 0. Then we have another closed (2k - l)-form Tf(ω(l)) on
P. Join ω(0) and ω(l) by a one-parameter family of connections ω(s), e.g.,

ω(s) = ω(0) + s(ω(l) — ω(0)). Under certain conditions, we shall prove that
f(Δ(s)\ Ω(s)) is exact. Integrating the formula in Lemma 3.2 with respect to s
from 0 to 1, we can conclude that Γ/(ω(0)) and Γ/(ω(l)) are cohomologous to
each other so that they define the same cohomology class in P.

4. Graded Lie algebras of order 2

By a graded Lie algebra (or more precisely, a transitive graded Lie algebra),

we mean a Lie algebra ϊ = Σ Qp, dim gp < oo, such that [QP, g j d Qp+q for

all p, q > —1 and [x, g_J Φ 0 for each nonzero x € gp, p > 0; see, for in-
stance, [4], [7]. We are interested in graded Lie algebras of order 2, that is,
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those with & Φ 0 and qp = 0 for p > 2. The graded Lie algebras t = 9_i
of order 2 with semi-simple I have been classified in [4].

Example 1. ί = g[(n + 1; R).

• - o - r . 3"—+~°i --{Co
where f is a column π-vector, w is a row n-vector, A e gί(«, R) and α e I?.

Example 2. I = 3o(tf + 1,1) = {X € fll(/i + 2 I?) *XS + SZ = 0}, where

where ξ is a column n-vector, u is a row π-vector, A e 3o(n) and ^ e R.
Many other examples can be found in [4].
Let L/Lo be a connected homogeneous space on which a (not necessarily

connected) Lie group L acts effectively and transitively. Since Lo is the isotropy
subgroup of L at the origin 0 of L/Lo, there is a natural representation of Lo,
called the linear isotropy representation of Lo, on the tangent space of L/Lo at
the origin. Let Lγ be the kernel of the linear isotropy representation. We say
that L/Lo is a flat homogeneous space of order 2 if the Lie algebra I of L has
a graded Lie algebra structure ί = g_x + g0 + & of order 2 such that & is the
Lie algebra of Lx and g0 + & is the Lie algebra of Lo so that g0 is the Lie algebra
of the linear isotropy subgroup LJL^ Corresponding to Examples 1 and 2
above, we have the following examples of flat homogeneous spaces of order 2.

Example 1'. Real projective space of dimension n.

L = SL{n + 1 R) modulo its center Lo = {[Λ °)e SL(n + 1 R)\ ,
IV w al J

where A e GL{n R), azR and u is a row π-vector.
Example 2'. Mobius space of dimension n, (n-sphere).
L = 0(n+ l,l) = {Xe GL(n + 2; R) 'XSJT = S}, where 5 is defined in

Example 2

*\ 1
* € 0(A? + 1,1) L where y4 e 0(π), α e 7? and w is a row

a π-vector.
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We can interpret Example 2/ geometrically as follows. Let xeRn+2 be a
nonzero column vector, considered as a point in Pn+ι(R). Then the quadric
ιxSx — 0 in Pn+1(jR) is an ^-dimensional sphere. The group 0(n + 1 , 1 ) acts
transitively on this quadric with isotropy subgroup Lo as described above. The
group 0(n + 1 , 1 ) may be considered also as the group of conformal transfor-
mations on an n-sphere.

5. (L/Inequivalence of connections

Let L/Lo be a flat homogeneous space of order 2 as in § 4, and G be the
linear isotropy subgroup at the origin so that G — LQJL1C1 GL(n; R), where
n = dim L/Lo.

Let M be a differentiable manifold of dimension n, and P be a G-structure
on M, i.e., a principal G-subbundle of the bundle of linear frames on M. Let
θ be the canonical form on P ; it is an jRw-valued 1-form, [6]. Let ω be a con-
nection form on P; it is a go-valued 1-form, where g0 is the Lie algebra of G.
Taking a basis in g_15 we identify g_x with Rn and consider G (resp. g0) as a
subgroup of GL(n; i?)(resp. a subalgebra of gl(n; R)). We consider thereby
the canonical form θ as a g_Γvalued form. (In order to understand the true
reason why θ should be a g_rvalued form rather than an Λw-valued form, one
has to consider Cartan connections in second order G-structures, [5], [7].).

In terms of the Lie algebra structure on I = g_x + g0 + g1? the condition that
ω be torsionfree can be expressed by

(5.1) dθ= -[ω,θ] .

Let ω(0) and ω(l) be two torsionfree connections in P ; in general, there may
not be any. We say that ω(0) and ω(l) are (L/L^-equivalent1 if there exists a
gΓvalued function p on P such that

(5.2) ω(l) — ω(O) = [θ,p] .

(Note that the left hand side takes values in g0 and the right hand side in
[β_i,βj C g0.)

We shall now explain the concept of (L/L0)-equivalence with the two exam-
ples in § 4.

Example \". Projective equivalence.
Let L/LQ be as in Example Γ of § 4. The action of Lo on g_x is given by

A 0W0 ξψ o p /0 Aξa-Λ m o d

u a) VO 0/ \« al \0 0 / b 0 b l

1 This concept is due to Tanaka [10]; he uses the term "L-equivalent". See also [8], [9].
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It follows that the linear isotropy subgroup G coincides with GL(n\ R), and P
is the bundle of linear frames over M. A torsionfree connection in P is nothing
but a torsionfree afϊine connection of M. Since the bracket between an element
of g_! and an element of gx is given by

Γ/o ξ) 10 oyi _iξu o \
Llo oi Ί « oiJ ~ lo -uξl '-uξ

and since the linear isotropy representation

(A ^eLo^Aa-'eGUn; R)
\u a]

induces a Lie algebra representation

which maps

fo °
two torsionfree afϊine connections ω(0) and ω(l) of M are projectively equiva-
lent, i.e., (L/L0)-equivalent if and only if there exists a g rvalued function p on
P such that

(5.3) ω(l) - ω(0) = θp + (pθ)In ,

where the canonical form θ is considered as a 1-form whose values are n-
dimensional column vectors, and the function p takes values in the n-dimen-
sional row vectors. In terms of a natural basis, (5.3) may be written as fol-
lows:

(5.4) ωj(l) - ω)(0) = θ'pj + (Σkθ
kpk)δ) ,

which is a reformulation of the classical equation:

Γ)lc(D - Γ%(0) = δlφj + δ)φk .

Example 2". Conformal equivalence.
Let L/Lo be as in Example 2' of § 4. The action of Lo on g_x is given by
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mod βo + βi

It follows that the linear isotropy subgroup G coincides with CO(ή) —
{Aa A e0(ri) &aeR — (0)} and P is a COOO-structure on M. Since P con-
tains O(π)-structures (i.e., Riemannian structures) as subbundles, it admits a
torsionfree connection. Since the bracket between an element of g_x and an
element of Q1 is given by

0 u (^
0 0 «H|

0 0 0,

and since the linear isotropy representation

Aa 6

l-uξ
= 0

0
ξu

0
—

0

£ M ( f
0
0

ψu

induces a Lie algebra representation

l-a 0 0\
0 A θ U g 0

0 0 a
co(n)

which maps

ί-uξ

0

\ 0

0
ξu - ιuιξ

0

ξu - Wf + (ιιf)/. ,

two torsionfree connections ω(0) and ω(l) in P are conformally equivalent, i.e.,
(L/L0)-equivalent if and only if there exists a gΓvalued function p on P such
that

(5.5) - ω(0) = (pθ)In ,

where the canonical form θ is considered as a 1-form whose values are n-dimen-
sional column vectors and the function p takes values in the n-dimensional row
vectors. In terms of natural basis, (5.5) may be written as follows:
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(5.6) ω)(l) - ω}(0) = θi

Pj - θ^Pί + (Σkθ
kpk)δ)

which is a reformulation of the classical formula [2, p. 89]

Γ\j(X) - /I/O) = δfa - gijglmσm + δ\aj .

6. Invariance of transgressed classes

Let L/LQ be a flat homogeneous space of order 2 with linear isotropy sub-
group G C GL(n R) as in § 5, P be a G-structure over M, and ω(0) and ω(l) be
two torsionfree connections which are (L/L0)-equivalent to each other so that

ω ( l ) - ω ( 0 ) = [Θ,p] ,

where p is a gΓvalued function on P. Consider a one-parameter family of tor-
sionfree connections α>(s) defined by

ω(s) = ω(0) + s(ω(ί) - ω(0)) = ω(0) + s[θ, p] .

Then

Let / e Ik(L). If we restrict the invariant function / to the subalgebra g0 of
I = g_! + g0 + g1? then we obtain an element of P(G). Thus we have an algebra
homomorphism P(L) —>/fc(G). Denote the image of this homomorphism by
PL(G) it consists of elements of Ik(G) which can be extended to L-invariant
functions of degree k on I.

Lemma 6.1. // / 6 / |(G) <md k > 2, *Ae« / ( J ( J ) fl(j)) = 0.
Proof. Let ω be any connection form on P. From the Jacobi identity for

the Lie algebra ϊ = g_x + g0 + g1? it follows that

[ω, [ω, θ]] + [ω, [θ, ώ\] + [θ, [ω, ω]] = 0 ,

or

(6.1) 2[ω,[ω,fl] + [ί, [ω, ω]] = 0 .

Suppose ω is torsionfree so that

dθ = -[ω,θ] .

Then we obtain

0 = - [dω, θ] + [ω, dω] = J[[ω, ω], θ] - [Ω, θ] - [ω, [ω, θ]]

by exterior differentiation, and obtain the so-called Bianchi identity
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(6.2) [Ω,Θ] = O

by means of (6.1), Denote by the same letter / an element of P(L) which gives
rise to / e / |(G). Since / <ε lk(L) is invariant by L, we have

f([Y, XJ, X2, , Xk) + f(Xl9 [Y, X2], . , Xk)

+ . . . + / ( Z 1 , Z 2 , . . . , [ Y , ^ 4 ] ) = 0

for Y, Z 1 ? , Xk e I. Hence, writing Ω for Ω(s),

Using (6.2), we obtain

Klθ,p\,Ω9 . . . , β ) = 0 . q.e.d.

From Lemmas 3.2 and 6.1, we obtain
Theorem 1. Lei L/LQ be a flat homogeneous space of order 2 with linear

isotropy subgroup G C GL(n\ R), P be a G-structure over an n-dimensional
monifold M, and ω and ω' be two torsionjree connections in P which are
(LILQ)-equivalent to each other. Let f e /|(G) with k>2. Then there is
a (2k — 2)-form W on P such that

Tj(ω

f) - Tf(ω) = dW .

Corollary 1. In Theorem 1, let Ω and Ωf be the curvature forms of ω and
ω', respectively. Then, for f e PL(G), (k > 2), we have

/(β') = f(Ω) .

Proof. This follows from Lemma 3.1 and Theorem 1.
Corollary 2. In Corollary 1, assume f(Ω) = 0 so that f(Ω') = 0. Then the

closed forms Tf{ω) and Tf(ωf) on P define the same element of H2k~ι(P; R).

7. Projective equivalence and transgressed classes

We shall apply Theorem 1 in § 6 to projectively equivalent torsionfree affine
connections.

Let L = SL(n + 1 R) modulo its center as in Example I7 of § 4, define

/ t 6/*(L)by

fk(X) = trace (Xk) for X e Sl(n + 1 R) ,

and let 5 e gί(n R). From Example 1" in § 5 it is seen that the corresponding

element in g0 is given by
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A °) , where A = S - — — (trace S)In , α = - — — (trace 5) .
0 al n + 1 rt+1

If we restrict fk to g0 and identify g0 with gί(w; 7?), i.e., if we consider /fc as an
element of /£(G), then

(7.1) fk(S) = trace j (s - _ J _ (trace5)/w) *| + f - - i _ ) * (trace 5)fc .
l\ π + 1 / J \ n + 1/

From Theorem 1 follows immediately the following result:
// M is an n-dimensional manifold, and ω and ωr are two torsionjree affine

connections of M which are projectively equivalent to each other, then there is
a (2k — 2)-form W on the bundle P of linear frames such that

Tfk(ω') - Tfk(ω) = dW ,

provided k > 2.
As a function on gl(w R), fk is rather complicated. However, more interest-

ing results can be obtained by imposing a mild condition on ω and ω'. To this
end define qk e P(G) by

qk(S) = trace (Sk) for S <= gί(n R) .

From (7.1), we obtain

fk(S, S',..., 50 = qk(S, S', , 50 - -J—• (trace S)qk_1(S\ . . ., 50
(7.2) w + 1

for 5 <= gl(π i?), 5' € 3l(rc i?) and k > 2 .

Let α>(0) and ω(l) be two torsionfree affine connections such that

trace (β(0)) = trace (fl(l)) = 0 .
(Geometrically, this means that the restricted linear holonomy groups of these
connections are contained in SL(n; R). In particular, if ω(O) and ω(l) are
Riemannian connections, these conditions on curvature are automatically satis-
fied.) If we set

ω(s) = ω(0) + s(ω(l) - ω(0)) ,

then the curvature form Ω(s) of the connection ω(s) is given by

Ω(s) = fl(0) + J(fl(l) - β(0)) + K^2 - J)[ω(l)

Hence

(7.3) trace (β(j)) = 0 .
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Assume now that ω(l) is projectively equivalent to ω(0) so that

ω(l) - ω(0) = θp + (pθ)In = Δ(s)

as in Example 1" of § 5.
From Lemma 6.1, (7.2) and (7.3), we obtain

(7.4) 0 = qk(Δ(s) Ω(s)) - (pθ) A qk.^(s)) for k > 2 .

On the other hand, from

it follows that

0 = trace (β(l) - β(0)) - d{trace (ω(l) - ω(0))} = (n +

which proves

(7.5) d(pθ) = 0 .

Since qk_λ(Ω(s)) is exact by Lemma 3.1 and (pθ) is closed by (7.5), we may
conclude that qk(Δ(s) Ω{s)) is exact for k > 2 by (7.4). Using Lemma 3.2, we
thus obtain

Theorem 2. Let ω and ω' be two torsionjree affίne connections on an n-
dimenional manifold M. Assume that ωf is projectively equivalent to ω and that
both ω and ω' have curvature with vanishing trace. Then

(i) Γ/(ωO - Tf(ω) = dW for f e I*(GL(n Λ)) , k > 2 ,

W being a (2k — 2)-form on the bundle P of linear frames over M, and

(ii) Γ/(α/) - Tf(ω) is a closed 1-form if f β lι(GL(n R)) .

Proof. For / = qk, Theorem 2 follows from Lemma 3.2 and the facts that
qk(Δ(s) Ω(s)) is exact for k > 2 and qλ(Δ(s)) = (n + l)(ρθ) is closed. The
general case follows from the fact that qt(Ω(s)) is exact by Lemma 3.1 and from
a theorem of Weyl [11] that every f eIk(GL(n; R)) is a polynomial of
<?i><?2> * ><7n q e.d.

From Lemma 3.1 and Theorem 2, we obtain
Corollary 1. In Theorem 2, let Ω and Ω' be the curvature forms of ω and

ω', respectively. Then

f(Ω') = f(Ω) for f e P(GL(n;/?)), k > 1 .

Corollary 2. Let f e lk(GL(n j?)), k>2. In Corollary 1, assume /(fl) = 0

so that f(Ω') = 0. Then the closed forms Tf(ω) and Γ/(a/) on P define the same
element of H2k~\P;R).
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8. Conformal equivalence and transgressed classes

To apply Theorem 1 of § 6 to conformally equivalent torsionfree connections
in a C<9(n)-structure over M, let L = O(n + 1,1) as in Example 2' of § 4.
Define fk e P(L) by

UiX) = trace (Xk) for I e o ( n + 1,1),

and let S e coin). From Example 2" of § 5, it is seen that the corresponding
element in g0 is given by

/-« 0 0\

0 ^ 0 , where A = S -— trace (S)/n, a = — trace (S) .

\ 0 0 a] H U

If we restrict fk to q0 and identify g0 with co(n), i.e., if we consider fk as an
element of /|(G), then

fk(S) = trace I (s — — trace (S)/n) *i + 2 (— trace (5))fc, for k even ,
(8.1) [\ n I ) \n I

— 0 , for & odd .

From Theorem 1, we obtain the following result:
// ω and α/ are two torsionfree affine connections of M which are conformally

equivalent to each other, i.e., if they are torsionfree connections in a CO(n)-
structure P over M, then there is a (4k — 2)-form W on the bundle P such
that

Tf2kW) - Tf2k(ω) = dW k > 1 .

The more interesting case is the one where ω and α/ are the Riemannian
connections of two conformally equivalent Riemannian metrics. Let ds2 and ds'2

be two Riemannian metrics on M such that ds'2 — hds2, where h is a positive
function. Then we say that these two metrics are conformally equivalent to
each other. Let ω and ωr be the Riemannian connections of ds2 and ds'2, re-
spectively.

Define qkεP(CO(n)) by

qk(S) = trace (Sk) for S <= coin) .

From (8.1), we obtain

fk(S, S',..., S') = qkiS, S', , S') - 1 (trace S). qk_xiS', . , S')
(8.2) n

for S € coin), S' e o(/ι) and k > 2 .

Let
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ω(s) = ω + s(ω' — ω) ,

and denote the curvature form of ω(s) by Ω(s). Since ω = ω(0) and ωr = ω(l)
are Riemannian and since co(π) = o(ri) + R, we have

trace (β(0)) = trace (β(l)) = 0 o n ? ,

where P is the CO(rc)-structure determined by ds2 (and dsn). As in §7, we
obtain

(8.3) trace (β(s)) = 0 .

Since ω(l) is conformally equivalent to ω(0), we have

ω ( l ) - ω(0) = ΘP- PΨ + (pθ)In = A(s)

as in Example 2" of § 5. From Lemma 6.1, (8.2) and (8.3), it follows that

(8.4) 0 = q k ( J ( s ) Ω(s)) - (pθ) A q k . λ { Ω { s ) ) f o τ k > 2 .

On the other hand, we obtain (as in § 7)

(8.5) d(pθ) = 0 .

Theorem 3. Let ω and ωf be the Riemannian connections of two conform-
ally equivalent Riemannian metrics on an n-dimensional manifold M, and P be
the CO(n)-structure on M determined by these metrics. Then

(i) Γ/(ωO - Tf(ω) = dW for f € P(CO(n)) , k > 2 .

W being a (2 k — 2)-form on P, and

(ii) TfW) - Tf(ω) is a closed 1-form if f e Γ{CO(n)) .

Proof. The proof is identical to that of Theorem 2.
Corollary 1. In Theorem 3, let Ω and Ωr be the curvature forms of ω and

ωf, respectively. Then

f(Ωf) = f(Ω) for f e P(CO(n)) , k > 1 .

Corollary 2. Let f e P(CO(n)), k > 2. In Corollary 1, assume f(Ω) = 0 so
that f(Ω') = 0. Then the closed forms Tf(ω) and Tf(ωf) on P define the same
element of H2k-\P\R).
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