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SINGULAR MANIFOLDS

MICHAEL MENN

1. Introduction

If φ: X —> Y is a map of topological spaces and x e X, then 0^ will denote
the germ of φ at x. Let g(p, q) = {φ: Rp ^ Rq\φis tf°° and 0(0) = 0} and let
J(P, q) = {φo IΦ £ %(P, Φ}> If Φ 6 δ(p, q) oτ φe J(p, q), then [0]w will denote
the set of germs at the origin of elements of $(p, q), which agree with φ up to
and including order n at the origin. [φ]n will occasionally be abbreviated to φ.
Let J»(p,q) = {[φ]n\φ β J(p,q)}.

Whenever m is an integer, Jδfm will denote the set of invertible germs in
J(m, m). S£m is a group. Furthermore, there is a group action of i f p x jSf β on
7n(p, ^r): (α, β)([φ]n) = [jS^α"1]11. Suppose 0: t/ -^ Λ9 is °̂° where U is an open
subset of Rp. Define tφ: U —• /(p, ̂ ) by tφ(x) is the germ at the origin of y —>
(̂•^ + y) — φ(x). In the following all manifolds are ^°° and paracompact, and

all maps are ^°°.
Let &m be a subgroup of Jδf m . Suppose M is an m-dimensional manifold and

j / is an atlas of coordinate functions for M. The pair (M, s/) will be called a
manifold of type <^m if for all x € M and coordinate functions αx, a2 e ^ whose
domains contain x, ίβ βΓi(αi(jc)) € <=̂ m. The atlas s/ will be suppressed from the
notation.

Let Z b e a p-manifold and Y a g-manifold. Jn(X, Y) will be the bundle
with base X x Y, fiber /n(p, g), and group «5f p x if q. Let ^ ^ be a subgroup
of J?p and ^ g a subgroup of i f 9. Suppose X is a manifold of type Sv and
Y is a manifold of type if Q. Then the group of Jn(X, Y) is reducible to Sv X
J^α. J n ( Z , Y) may be looked at as the set of equivalence classes of germs of
maps of X into Y where two germs are equivalent if they agree up to order n.

If /: X -> Y and x e X, then fn(x) will denote the equivalence class contain-
ing the germ of / at x. Thus a map /: X —• Y induces a commutative triangle:
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Let A C Jn(p9 q) and let A be invariant under &v x <£q. Then J%X, Y)
will denote the bundle with base X x Y, fiber A, and group &v x & q.
Suppose A is as above and /: X —> Y. Define A(f), the singular set of / of type
A, to be the set (fO"1 Jn

A(X, Y). If A is a manifold, then so is Jn

A{X, Y). If A
is a manifold and / is such that fn is transversal to J^X, Y), then / will be
called A -transversal. If / is ,4-transversal, then A(f) is a submanifold of X and,
furthermore, the codimension of A(f) in X is the codimension of A in Jn(p, q).

Let ^n+1(X, Y) denote the set of °̂° maps of Z into Y, provided with the
topology of compact convergence of all partials of order less than or equal to
n+1.

The Thorn transversality theorem states that if B ia a submanifold of
Jn(X, Y), then the set of maps /: X —> Y such that fn is transversal to B is a
Baire set in tfn+ι(X, Y). lί X is compact, then this set is open and dense. (See
[3] for a proof of the transversality theorem.) Thus, if A c Jn(p, q) is a mani-
fold and is invariant under J?p x £?q,X is a manifold of type J?p and Y is
a manifold of type J&q, then ^4(/) is a manifold for a large class of functions
f:X-+Y.

One thing which makes this interesting is that, in general, for A -transversal
/ there are connections between A(f) and global properties of X and Y. For
example, if A = {[0]1} C Jι(p, 1), X is a compact p-manifold, Y = R and / is
/I-transversal, then the Morse theory tells us how to predict global properties
of X from the behavior of / in a neighborhood of A(f). Other results in this
direction are proven in [2], [4], and [5]. Further (rather incomplete) results
will be presented here but the main result of this paper is the construction of
submanifolds of Jn(p, q) which are invariant under various subgroups Sv X ££\

of sev x seq.

2. Grassmann bundles

If E is a bundle over X and x e X, then Ex will denote the fiber of E over
x. If A C X, then the restriction of E to A will also be written E. If F is a
bundle over Y and h: E -» F, then hx\Ex^F will denote the restriction of &
to Ex. If /: X -• Y is a map of manifolds, then Γ/: ΓÂ  -• ΓY will denote the
corresponding map of tangent bundles. If A is a submanifold of X, then
Γ(Z, /I) will denote the normal bundle of A in X. Finally, if E is a vector
bundle over X, then Z will be identified with the image of the zero section of
E. Propositions 2.1 and 2.2 are written up similarly in [5].

Proposition 2.1. Let f: X —> Y and let N be a submanifold of Y. If f is
transversal to N, then Tf induces a map T(X, /"W) —> Γ(Y, N) which restricts
to isomorphisms of fibers.

Proof. The desired mapping is given in the following exact commutative
diagram:
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0 -> T(f~ιN) ^TX-> T(X, f~ιN) -> 0 over /"W

I I 1
0-+ TN ^TY^ T(Y9N) -^0 overN

That the mapping induces epimorphisms of fibers is a restatement of the
transversality of /, and that it is 1 : 1 on fibers follows from dimensional con-
siderations, q.e.d.

Suppose E is a vector bundle over X and σ: X —• E is a section. Then a
will be called a transversal section of E if it is transversal to X (the image of
the zero section of E).

Let E be a vector bundle over f̂. Then T(E, X) is equivalent to E over A".
Thus, if σ: X —> £ is a transversal section of 2s, then Γ(A", o " 1 ^ ) is equivalent
to E over Z .

Let E be an m-dimensional vector bundle over X and let a < m. Define
Ga(E) = {p\p is an α-dimensional subspace of some fiber of E). Structure for
Ga(E) as a bundle over X is induced by that of E. Let π: Ga(E) —> X be the
bundle projection.

Define a vector bundle Lα over Ga(E) by L α = {(p, v) \ v € p}. Define Mα,
an (m — a)-dimensional bundle over Gα(2s), by the exactness of 0 —»Lα —>
ττ*£ — M α -> 0.

Proposition 2.2. Let Z be a submanijold of X and let s: Z —> Gα(£^) foe α
section. Then over sZ, T(τt~ιZ, sZ) « L* (x) M α , w/zere L* denotes the dual of
La.

Proof. Define a vector bundle F over π~ιZ (and a morphism ψ) by the

exactness of 0 —> ττ*^*Lα -> τr*£ • F —• 0. Over π~ιZ there is a bunble mor-
phism La—>F given by the composition Lα —> ττ*F —> F. This morphism
induces a section η oί L*®F over ίf^Z. Furthermore, .s Z is the zero set of η.
If Ύ] is a transversal section of L*®F then, by Proposition 2.1, T(π~ιZ,sZ)
& L* <S) F over sZ. Since F = M α over sZ, it suffices to demonstrate the
transversality of η.

Let x € Z and let α?!, , am be a vector space basis for Ex such that s(x) is
the span of a19 , aa. Any α-plane g in Ga(E)x near £(*) is uniquely express-
ible as the span of a vectors, aλ + vltl(p)aa+i + + vι>m_a(p)am, ,
(xa + vaΛ(p)aa+1 + + va>m_a(p)am. Thus coordinates {vitJ} ίoτ~Ga(E)x at
s(x) have been fixed.

f((id ® 0)(JW, αf

S i n c e {(id (g) 0 ) ( J ( Λ ) , α f ® α α + j ) 11 < i < Λ a n d 1 <j<m- a} is a b a s i s for
( L * (x) 2 0 β u ) , t h e r e s u l t fo l lows .
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3. Fixing the rank of vector bundle morphisms

Let A be a manifold, Eι a bundle over A, E2 and E3 be vector bundles over
A, and γ: Eλ —• £2* ® E3 a morphism of fiber bundles over A, which induces
the identity on A. Suppose π: Ex—>A is the bundle projection. Whenever
e e El9 γ(e) e (E* ® E3)π{e) and therefore there is a linear map (E2)π{e) -+ (E2)πie)

which corresponds to γ(e). Suppose a is not greater than the fiber dimension
of E2 and let Aa(γ) = {e e E11 kernel p(e) has dimension a}. In this section we
will study the set Aa(γ).

Let TΓ: Ga(π*E2) —> Z^ be the bundle projection. Over Ga(π*E2) there is an
exact sequence 0 -> La —> π*π*E2 —> Ma —> 0 as in § 2. We define a section
Γα Ga(π*E2) -> L* (g) π*π*E3 as follows: An element of Ga(π*E2) is a pair
(£, /?) where £ € 2^ and /? is an α-dimensional subspace of (E2)π{e). Let fα(e, p)
= (e,p,η(e,p)) where 37^, p) is the restriction of p(e) to g. f α 0,g) may be
viewed as an element of (L* (8) 7r*7r*E3)(e>2)).

Definition 3.1. Suppose that there are a vector space V and for each xe A
a diίfeomorphism θx: V —> (.EΊ)̂  such that ^^ o ^ τ is linear, f will be called
^-uniform if for all choices of xt£ A and pt € Ga(E2)xi9 i e {1,2}, dimension
{η(e,pλ)\e e (Eλ)Xl} = dimension {η(e,p2\e e (Eι)X2\.

γ: Ex -^Ef ® E3 induces γa: π*π*Eι —»L* ® π*π*E3 as follows: An element
of τr*π:*£'1 is a triple (^, p, e) where e and e are elements of Ex with π{e) = π(e)
and p is an α-plane in (E2)π{ey Define γa by ^α(^, p, e) = (e, p, η(e, p)).

Let Sa = γa(π^π^E1), and note that the image of the section γa is contained
in Sa. If γ is α-uniform, then Sa is a vector sub-bundle of L* (8) ^*7r*£>

3.
If F is a vector space, JC, j e F, and g: R-+V is defined by g(t) = x + ty,

then we define yx <= TVx by y^ = g'(0). Γ F = {j^ | JC, y ε V}.
Let F and θx be as in Definition 3.1. Since γx o θx is linear, T(γx o #J(;y2)

= (r^ ° ^Cy)) r a..^ ( β ). Now, if p e Ga(E£x, then (5α)£ is the set of all restric-
tions to p of maps of the form γx o ^^(j) where y e V. It follows that if ^ is a-
uniform, then γa is a transversal section of Sa.

Define a vector bundle Ka over ^4α(f) by the exactness of 0 -* Ka —> 7r*£Ί

— -̂> π*E3 where f is defined in the obvious way. (An element of π*E2 is a
pair (e19 e2) where ^x <= ^ and e2 e (E2)πieiy Define f by f (e19 e2) = (e19 γ(e^)e2),

an element of TΓ*E3.) Define a bundle N α over ^α(τ-) by the exactness of 0 —>
Xα -^ τr*E2 -> Na -> 0. Finally, define a section j a : /4a( r) -> Ga(π*E2) by ja(β)
= 0 , kernel r θ ) ) .

Theorem 3.2. Lei γ\ Eι->E*® E3 be a-unijorm. Then Aa(γ) is a submani-
fold of E19 and furthermore over Aa(γ) there is an exact sequence

0^Kt®Na-* s*Sa -> T(E19 Aa(γ)) -> 0 .

Proof. The first statement is straightforward and will be treated first. Let
W be the zero set of the section γa. Since γa is a transversal section of Sa9 W
is a submanifold of Ga(π*E2). It is easily seen that saAa(γ) is an open subset
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of W. (0, p)eWit and only if p c ker (γ(e), Thus saAa(γ) (ZW.lϊee Aa(γ)
and if e is sufficiently close to e, then dimension ker f(e) is not larger than a.
That saAa(γ) is open in W follows.) Thus saAa(γ) and therefore Aa(γ) is a
manifold. We now prove the second statement.

Since γa is transversal and saAa(γ) is open in W, Proposition 2.1 shows that
there is an equivalence Γ(Gα(τr*£2), saAa(γ)) —> 5 α over ^α^4α(^) induced by
Tγa9 and also that over saAa(γ) we have an exact sequence 0 -> La -» ff*7r*E2

—> π*π*Ez which determines a monomorphism M α —> π*π*E3 and hence a
monomorphism L* (x) M α —• L* (x) τt*π*E3 over jα>4α(τ ).

It is not hard to show that the following diagram is communative:

T(π-ιAa(γ), saAa(γ)) _> T(Ga(π*E2), saAa(γ))

II I
L* (x) M α » L* (x) 7r*τr*E3 over j α ^ α ( r ) .

Since the image of T(Ga(π*E2), saAa(γ)) —> L* ® π*π*E3 is contained in the
sub-bundle 5 α of L* (g) 7f*7τ*E3, the image of L* (x) M α is contained in Sa.

Thus over saA

U —> 1 \K

r\

[a(γ) we have an exact commutat

0

1
1Aa(γ),saAa\

ϊ

ϊ
0

0

1
ίr))->πGa(fi*Eύ,saAa(r))

ϊ

1
0

and hence an exact sequence 0->L* <g) M α ->5 α -^ T(Ga(π*E2), 7t~lAa(r)) -> 0.
Since * ίL α = ^ α , ^ M α = N α and J*Γ(Gα(π*E 2),ίr-Mα( r)) = Γ ( E 1 ? ^ α ( r ) ) ?

the result follows, q.e.d.
Suppose that X and Y are topological spaces and that a group H acts on

both X and Y. Let /: X —> Y. Then / will be called equivariant if for each
heH,hf = fh.

Definition 3.3. Suppose U is a vector bundle over X and there is a group
H which acts on U and X in such a way that the bundle projection of U is
equivariant. Suppose also that for each h e H and Λ: € X, /v . C/x —> ί/Λ(ar) is a
vector space isomorphism. Then £/ will be called an //-bundle.

Proposition 3.4. Let U1 and U2 be H-bundles over X, and suppose H acts
on a space Y and f: Y —> X is equivariant.

a) Then there is a group action of H on Uf, which makes Uf an H-bundle
b) similarly with Uλ®U2\
c) similarly with ί*Uλ.
d) // U1 C U2 and the inclusion is equivariant, then the factor bundle of

U2 by U1 is an H-bundle.
e) // a is not greater than the fiber dimension of U19 then there is an action
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of H on GJJJ^ which makes the projection π: GJJU^) —> X equivariant.
f) The action of H on π^Uι restricts to an action on Lα, which makes La

an H-bundle over GJJJ^.
g) // H acts diβerentiably on X {assumed to be a manifold), then TX may

be given the structure of an H-bundle.
h) // H acts dίβerentiably on Y and X, then Tf: TY -> TX is equivariant.
Proof, a) The action of h on t/f is the dual of the action of h~ι on Uλ.

b) The action of h on Uι <8) U2 is the tensor product of the actions of h on
the Ut.

c) An element of f*U1 is a pair (y, ύ) where u e Ulf(y). Define the action
of h by h(y, ύ) = (Try, hύ).

e) Since h € H restricts to vector space isomorphisms of fibers, it takes a-
planes into α-planes.

g) The action of h on TX is the derivative of the action of h on X.

Corollary 3.5. Let E2 and E3 be H-bundles over A, and let H act on Eγ

in such a way that π: /^ —• A is equivariant. Suppose γ: Ex —> Ef (x) E3 is a-
uniform and equivariant. Then Aa(γ) is invariant under H. Furthermore the
bundles Ka, Na,s*Sa and TiE^Aaiγ)) are all H-bundles over Aa(γ), and the
sequence 0 —• K* ® Na -^ s*Sa -+ T(EX, Aa(γ)) -^ 0 is an exact sequence of
equivariant maps.

Proof. The equivalences T(π-ιAa(γ), saAa(γ)) -^L*®Ma and T(Ga(π*E2),
SaAa(γ)) —> Sa over saAa(γ) are induced by derivatives of equivariant maps.
The result is now trivial from Proposition 3.4 and the proof of Theorem 3.2.

4. Invariant submanifolds of Jn+1(P> Φ

Fix subgroups &v C Jδfp and i ? c &q, and let H = &v X <?q.
Let A be a submanifold of Jn(p, q) and suppose A is invariant under H.

Let Ex = {[φ]n+1\ [φ]n € A}. H acts on Ex in such a way that the projection
TΓ: Eλ —> A is equivariant.

If £/ is an open subset of Rp, f: U -+ Rq a n d i e U, then define a linear
map Df: Rp-> Rq by Γ/ίvJ = (Dfx(v))f(x). Df will abbreviate Df0.

H acts o n ^ x F ; (α, β)([φ]n, v) = ([βφa'ψ.Daiv)). Let E2 be a vector
sub-bundle of A x Λ^, invariant under H. E2 is an //-bundle over A.

Note that J\p, q) = {0}. Define J\p, q) = Λ^ and >(/?, ^) = {[^]w | [φ\m~ι

= 0} for m > 1. Define an action of H on y°(/?, (?) by (a, β)(w) = Dβ(w)
and an action of H on Jm(p, q), m > 1, by (α, ̂ ([^l771) = [^α:- 1]^.

Let B be a vector sub-bundle of A x / w (p, (?) which is invariant under H.
Define E3 by the exactness of 0 —• B —• 4̂ x / w (p, r̂) -* £ 3 —• 0. E3 is an //-
bundle over y4.

We now proceed to define a bundle morphism γ: Eλ —> Ef (g) £"3.
If m is an integer and 1 < v < m, let δ(v) = (0, , 0, 1, 0, , 0) € Rm

where the 1 occurs in the vth position. Let ω = (i19 , ip) be a tuple of non-
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negative integers. Define |ω| = iλ + + ip and ω! = iλ! ip !. If φ e $(/?, 1),
let Dωφ = (d^φ/dxί1- - -dx*pp) (0). If 1 < / < q, define u(ω, j) e g(p, q) by
u(ω,D(x19 '• ,xp) = 0/*>!)*?• 4 ^ ( / ) .

If n > 0, define # w + 1 : £\ -> Λ x (Rp* (x) > ( p , <?)) by

where ^^ denotes the j t h coordinate function of φ.
The injection E2-+ A X Rp and the epimorphism A x / w (p, q) —> J 3̂ together

induce an epimorphism ε : ^ X (J?p* (g) / n ( p , <?)) —• E2* <g) £ 3 . Define /: Ex —>
E* (g) £ 3 by γ = εHn + 1.

Motivational remarks. If 0 e g(p, ^), let uφ denote the projection of φn: Rp

-> /n(J?p, /?9) = Rp X Rq X Jn(p, q) onto /w(p, ^) . /w(p, ^) is a vector space,
so if ψ,ψ eJn(p,q) then ψφeTJn(p, q). Motivation for studying the map γ
comes from the fact that if (a19 , ap) e Rv then

Tuφ(a19 , ap\ = Σ aiPω+δMφju(ω9 /)
\l<|ω|<τι,p,y

Thus ^ is induced by Tuφ and hence Γ^w but somewhat artificially. Proper
selection ot A, E2 and E3 makes the correspondence Tφn —> ̂ ([0]w+1) "natural".
Theorem 4.3 and Proposition 4.4 establish criteria for this to be so. If φ is
A -transversal then Tφn determines TA(φ)0. Sometimes (see Proposition 4.5) γ
will carry enough information to determine whether ([φ]n, v) e E2 is such that
v0 ζ TA(φ)Q. This is central to much of what follows and is the main idea of
the proof of Boardman's result, Theorem 6.2.

If V is a vector space, then O V will denote the m-fold symmetric product

of V with itself, and (x) V denotes the appropriate tensor product so that O V
m m

c (x) V.
m - / \

If n > 0, there is a vector space isomorphism μn: Jn(p, q) —> O i?p* (x) i?Q

\ w /
determined by the equations

where / = {&: {1, , n} ^ {1, , p} | ft"1^} n a s ^ elements whenever 1 <

λ<p}
The notation in the following is as in § 3.

Let εα: Gα(π*E2) X (Λp* (g) > ( p , ^)) -> L* (g) ίr*π*E3 be the epimorphism.

Define Sa = εα(Gα(τr*E2) x (id ® μj-1 (lo^A ® R*\\.

Proposition 4.1. 5 α = Sα .
P r o o f . T h e r e s u l t f o U o w s if H n + Έ x = A x ( i d ® μ n ) ~ ι ί[θ Rp*\ ® R q ) .

\ \ w + 1 / /
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That H"*^ C A x (id <g) μnY
ι [ ( θ J?p*) <g> RQ) is apparent from the symme-

\\n + l I )

tries of (n + l ) s ί order derivatives. The opposite inclusion is equally simple.
q.e.d.

Thus there is a sense in which Sa is the "symmetric subset" of L* (g) π*π*E2.
The condition that f is 0-uniform is the condition that the symmetric subspace
of (L* (g) τr*7r*£3)p does not depend on the choice of p e Ga(π*E2).

If 1 < ra < n,"define C m : / n (p, 4) -> /m(/?, (?) by

Cm([φ]n) = Σ Dωφju(ω,j) .
•l=m,j

Recall that if φ e %{p, q), then tφ: Rp ^ J(p, q) is defined by: ^(x) is the germ
at the origin of φ(x + •) — φ{x). If ra > 1, then ί, induces ^m: Rp —> / m (p, <?).
Note that f([0]π+1)([0]TO> v), is the projection of ([φ]n, CnDtφn(v)) on E2.

Definition 4.2. Let C C J(p, q)(oτ C c / m (p, <?)). C will be called transla-
tion invariant if, for all φ e γ$(p, q), tφ\C) (or tφm(C)) is an open subset of Rp.

Whenever ra > 1, there is a linear map inj (ra) = inj: Jm(p, q) —> Jm+1(p, p)
determined by the equations inj (u(ω, /)) = u(ω, /).

Theorem 4.3. Let J?p9 &q, A, B, E19 E2, E3 and γ\Ex-^Ef® E2 be as
above, and suppose, in addition, that &p and &\ are translation invariant.
Then γ is equίvarίant if the following two conditions are met:

i) n = 0, n = 1 or (inj (Dtφn-ι(v))ίΦ1n 6 TA, whenever ([φ]n, v) e E2.
ii) n = 0 or ([φ]n, Cn[φ]n) e B, whenever {[φ\n\ΦΛn e TA.
Proof. It suffices to show that whenever a e ££v and β ε &\ the following

two squares are commutative:

γ γ
F ί y E^ &) E E * E^ (x) E

[a-\iά) kα-Sid) I(id,i3) I (id, ^
•i ψ v

We show that the first of these is commutative, the other demonstration being
similar.

The commutativity of the square will follow if we can show that if [φ]n+ι e Eγ

and v = (aλ, , ap) is such that ([φ]n, v) e E2, then

[[φa\n, Σ Dω+δ

(*)
Σ

where Ra denotes right composition with a left composition will be written in
the obvious way.
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If η = (/19 . . ., ip) and 1 < / < p, define v(η, /): Rp — Rv by v(η, /)(*) =

x*1- —xίpδ(j), so v(η,j)<εJ(p,p). If l<j<q and ω is a p-tuple of
n\

integers, define P(ω,j):J(p,q) X J(p,p) -> R by P(ω,j)(ψ,p) = Dω{.ψόp).

, j) ^. ̂  . a n d dPM)_(ψ9 ) denote the appropriate partial derivatives
Λ) 5^( Λ)

^ ^ a n d

evaluated at (ψ, p). It follows from the chain rule that

Σ
\>?\<\o>\,»

Thus

Σ

ΣΣ ^ φ
| = w,Ul^n,i,j,*,v OU(7],])

= (1)/?. Σ Dv+sa)φjaiU(vJ)

A Σ Dv+mφjaiU(v,j)

Now (2) = CnΛβ(inj)Dί,n_i(i;) and (3) = CnD(Lφ)aDtaDa-ιv. Thus to dem-
onstrate (*) it must be shown that

-ι(v) + CnD(Lφ)aDtaDa-ιv) εB .

But, by i), (inj {ptφn-i(v))χ^n eTA, so (RXmjXD^n-^v)))^^ e TA.
Thus, by ii), ([φa]n, CnRXirtyDt^-xiv)) € B. Since &p is translation
invariant, ία(x) e ^ p for small xεRp. Since >4 is invariant under J%,
L^ o ta(χ) eA for small x. It follows that {D(L^,ptaDa-ιv\φaΊΛ eTA. By ii),
([0α]w, CnD(Lφ)aDtaDa-ιv) e B, and hence the result.

Proposition 4.4. Theorem 4.3 remains valid ifn—l,^q = {id}, αnd condi-
tion ii) w replaced by ii) r: B Z) {([0]1, [0]1) 11^]1 € A and image Dψ C image Dφ).

Proof. A mild modification of the proof of Theorem 4.3.
Proposition 4.5. Let n>\ and let γ: Ex —> E* (g) E3 Z?̂  β5 m Theorem 4.3.

Suppose, in addition, that B = {([φ]n, [ψ]n)\ [φ]n e A, [ψ]neJn(p, q) and
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([φ]n)ίΦ1neTA}. If[φ]n<cA, let U(φ) = {v€Rp\([φ]n,v)εE2 andTtφn(v0)<εTA}.
Then Aa(γ) = {[φ]n+ι \ [φ]n e A and U(φ) is an a-dimensional vector space}.

Proof. Trivial.
Let γ be α-uniform. It follows from Proposition 4.1 that

X (id ® μnY
ι [ O Rv*\ ® Rq

Thus Sa is a factor bundle of Ga(π*E2)χJn+\p, q) and s*Sa is a factor bundle
of Aa(γ) x Jn+1(p, q). It follows from Theorem 3.2 that there is an exact se-
quence 0 -* K* ® Na -> s*Sa -> T(E19 Aa(r)) -> 0. Thus T(Eί9 Aa(γ)) is a factor
bundle of Aa(γ) x Jn+I(p,q). In fact, if f is equivariant, there is an exact
sequence of //-bundles and equivariant maps 0 —> B —> ^ ( p ) X Jn+ί(p, q) —•
T(Eλ, Aa(γ))->0 over ^ α ( r ) , where 5 = {(φ, φ)eAa(γ) X > + 1 ( p , (?) | φφ e Γ^α(^)}.

Note. Let γ: Eλ -+ E* ® E3 be as in Theorem 4.3 with n = 0 or B =
{(φ, φ)εAχ Hp, q)\φφe TA}. Let E = {[φ]n+2 \ [φ]n+ι e Aa(γ)} and let
f: E -+ K* ® Γ(£Ί, Aa(γ)) be the map induced by Hn+2: E^ Aa(γ) X
(Rp* (8) Jn+1(p, Φ)- Then γ' obeys the conditions of Theorem 4.3.

Suppose V and W are vector spaces and η: V —>W. Then η will be called a
polynomial function if, relative to some choice of bases, each coordinate func-
tion of η is a polynomial in the coordinate functions of V. This condition does
not depend on the choice of bases.

Let V and W be vector spaces, X a subset of V9 and C a vector subbundle
of X X W. Suppose X is determined by polynomial equalities and inequalities.
C will be called polynomially determined if there are an integer b and a poly-
nomial η: V —> Lin (W, Rb) such that (JC, w) <εC tor xεX it and only if ^(JC)(W)
= 0.

Proposition 4.6. Lei all notation be as in Theorem 4.3. Suppose E2 C
Jn(P, Φ X ^ p tfwd B C 7w(p, <?) X Jn(p, q) are both polynomially determined.
Then Aa(γ) is determined by polynomial equalities and inequalities.

Proof. Let σ: Jn(p, q) —> Lin (Rp, Rb) be a polynomial such that
([φ]n,v)εE2 if and only if [φ]n<εA and σ([φ]n)(v) = 0. Let r : Jn(p,q)-^
lAn(Jn(p,q),Rc) be a polynomial such that ([^]w, [0]71) e # if and only if
[φ]n e ̂ 4 and τ([φ]n)([ψ]n) — 0. Let [0]w eA. Then [0] n + 1 6 ̂ 4α(r) ^ a n <^ o n l y ^

(fli, , ap) = 0 and τ([0?) ( Σ «Λ+ ί W^M(ω)) = θ
\\ω\=n,v,j I

is an α-dimensional vector space. Thus there is a polynomial η: Jn+1(p, q) —>
Lin (RP, Rb+C) such that [φ]n+ι e /4α(r) if and only if [φ] e A and η([φ]n+ι) has
rank p — a. Since determinant functions are polynomials, the result follows.

Proposition 4.7. Assume the hypothesis of Proposition 4.6. Then Ka and
B are polynomially determined.

Proof. Let η be the polynomial of the proof of Proposition 4.6. Then
(lφ]n+\ v) e Ka if and only if [φ]n+1 € Aa(γ) and J7([0]n+1)O) = 0. We now show
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that Bis polynomially determined. If φeAa(γ), let Bφ = {φe Jn(p,q) \ ([φ]n,φ) eB)
and Fφ = {w<ε Rp* | w(v) = 0 whenever (φ, v) <= Ka). Let

Cφ = μnU(((id ® μn)(Rp* ®Bφ + Fφ® Hp, q))) Π

Let C = {(φ,ψ)\φζAa(γ) and ψeCφ}. The bundle C is polynomially deter-
mined. It follows from Proposition 4.1 and the exactness of 0 -^ B —> A x
Jn(p, Φ —> ^3 —> 0 that there is an exact sequence 0 —> C —• ,4 x Jn+ι(p, q) —>

If ^€^ t α ( r ) ? let

|ω|=W,ι>,./

Each F^ may be described in terms of polynomials in the coordinates of φ.
Since 0 -* K* (x) Na -* s%Sa -> Γ(E1? ^ α ( r ) ) -^ 0 is exact, so is K* <g> j * S α ->

/4α(^)) -> 0. It follows that

5 = j(0,0) I φ e Aa(r), ψeCφ + μϊlJ^id <8> ^ J(i?p* ® ̂ ) ) Π

and is therefore polynomially determined.

5. Singularities of mappings

Let V be a manifold of type G, and suppose G acts on F. F will denote the
bundle with base V, fiber F and group G. If ί/ is a subset of F, which is
invariant under G, then C/ is a sub-bundle of F. Let P^ be a bundle over U,
and suppose G acts on W in such a way that the bundle projection FF —> C/ is
equivariant. Then W induces a bundle W over C/ with group G and fiber that
of W. Suppose G acts on bundles Wλ and W2 over £/ in such a way that the
bundle projections are equivariant. If φ: Wι—>W2 is an invariant bundle
morphism, then φ induces a morphism φ: Wι—>W2. If Wι and W2 are G-
bundles and φ: Wγ-*W2 is an equivariant morphism of vector bundles, then
φ is a morphism of vector bundles. Furthermore, — takes commutative dia-
grams into commutative diagrams and exact sequences into exact sequences.

Let all notation be as in § 4, and 3?v and Sq translation invariant subgroups
of Jδfp and i f q respectively. Suppose γ: Eλ -^ Ef ® E3 is α-uniform and satisfies
the hypotheses of either Theorem 4.3 or Proposition 4.4 (so γ is equivariant).
Let X be a manifold of type &v and Y a manifold of type £&q. It follows from
Corollary 3.5 that over J%+lr)(X, Y) there is an exact sequence

o -+ κ%®Na ^s*sa -+ wrAx*y)' JTaU
x> 10) ̂  o
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Note also that K*(g)Na& (Ka)* ® Na. In the furture, underlines will be

dropped, s ^ wϊϊΓ be abbreviated toΊ^" , and T(Jn

E\\X, Y),J%+Jr)(X, Y)) to

Ra. Thus the above sequence becomes 0 —> K* (x) Na —> Fa —• 7?α —> 0 over

Let rw: /»(*, Y) — / ^ ( Z , Y), r": 7W(Z, Y) ^ X x Y for n > 1, and
ελ: X X Y —> X and ε2 : X X Y —> Y be the projections. For n > 1, define
> ( Z , Y) = {0 e / W (X Y) 10 is (n — l)-equivalent to a constant germ}. Jn(X, Y)

is a vector bundle over X X Y and, in fact, Jn(X, Y) « ( θ efTX*\ (g) ε2*ΓY
\ n I

« {0} X /w(/?, #).
E3 is a factor bundle of rn*Jn(X, Y) over JA(X, Y) because of the exactness

of 0 —> 5 —> 4̂ x /n(/?, g) -+ E3 -+ 0 over v4. Thus if n = 1, then E3 is a factor
bundle of TJ\X, Y) = Tr^TrxJ\(X, Y) over 7i(Z, Y). Note that for n > 1
there is an exact sequence 0 -> r w */ n (Z, Y) -• Γ/W(Z, Y) -> r*TJn-\X, Y) -> 0,
so 5 is a sub-bundle of Γ/n(X, Y) over /2(X, Y). If n > 2, it follows from
the hypotheses of Theorem 4.3 that there is an exact sequence 0 —> TJ%X, Y)
+ B^>Tr~1TrnTJ%(X, Y)—>£ 3 ^0. Therefore for ra > 1 there is an epimorphism
ε: Tr-λTrnTJn

A(X, Y) -> E3. It n = 0, then E3 is a factor bundle of ΓY over Y.
The epimorphism ΓY —> £ 3 will also be denoted ε.

Let /: X ^ Y. Λα(7θ(/) will be abbreviated to Aa(f). Note finally that if
n > 1, then /^Z^ is a sub-bundle of TX over ;4(/). In the case n = 0, E2 is a
subbundle of TZ.

Proposition 5.1. Let n = 0and f:X-+Y. Then Aa(f) = {xeX\dimension
kernel (eoTf)\(E2)x = a}.

Proof. Trivial.

Proposition 5.2. Letn>\ andf: X-^Y. Then Aa(f) = {xεA(f)\dimension
kernel (εoTfn)\(fn*E2)x = a}.

Proof. This is a local question. Assume X = Rp, Y = RQ,x = 0, /(0) = 0,
and 0 6 ^(/) . 7 % ^ , 1^) = Rn X Rq X Jn(p, q). Let / w be the projection of fn

on Jn(p,q). Tfn(v0) = ( D ί / w ( ^ ) ) [ / p . Let vo<εfn*E2, implying ([/]w, v) e E2 so
((inj)Dί/w-i(?;))[/p 6 T^4. It follows that for v = (a19 , αp), (ε o Tfn)(v0) = 0

if and only if ([f]n, Σ avDω+δiJjU(ω, j)) <z B. Thus 0 e ^ α (/) if and only if

kernel (ε o Tfn) /(fn*E2)0 has dimension a. q.e.d.

Ra is a factor bundle of rn+1*Jn+1(X, Y) over Jϋ+lτ)(X, Y). Thus, if /: ΛΓ-* Y,

then /w+1*JRα is a factor bundle of ( O TX*) ® f*TY.
\n + l /

Suppose / is ,4-transversal; so A(f) is a manifold. Tfn(TA(f)) C TJ%X, Y)
so Tfn+ί(TA(f)) C TV ̂ TVSCX', Y) = TJE

+

x

l(X, Y). Since there is a map
TV^CXΓ, Y) —> Ra over Aa(γ), Tfn+ι induces a map 7M(/) —> 7?α over AJj)
and hence a map ψ: TA(f) -+ fn+ι*Ra over Aa(f).

Since / is A -transversal, Tfn+1 induces an exact commutative diagram
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0 -> TA(f) > TX > T(X, A(f)) > 0

\φ \v xx

o - fn+ι*Ra - fn+1*T(Jn+\x, Y), JZUX, Y)) -> m n x , Y), Jn

A(x, 10) - o

over Aa(f). f is ^(^-transversal if and only if η is an epimorphism if and only
if ψ is an epimorphism. Hence we have shown

Proposition 5.3. Let f:X->Y. Then fn+1*Ra is a factor bundle of

( O TX*) ® f*TY over Aa(f). If f is A-transversal, then Tfn+1 induces a map
\n + l I

TA(f) -+ fn+ι*Ra over Aa(f). f is Aa(γ)-transversal if and only if this map is an
epimorphism.

Let / be ^(^-transversal, xeA(f) and veTXx. Then V€TAa(f) if and
only if Tfn+\v) e TJn

A
+Jr)(X, Y). Thus

Proposition 5.4. Let f be Aa(γ)-transversal. Then, over Aa(f), TAa(f) is

the kernel of TA(f) -* n+ι*Ra-

6. Examples and applications

Let V be a vector bundle over X, and suppose Wλ is a factor bundle of O V

and W2 is a factor bundle of O F . Then Wx ®W2 is a. factor bundle of
n

O v) ® ί o v) ^Wλ® W2. Define Wλ o ψ 2 to be the image of O K. Since
m J \n I m+n

the fiber dimension of Wx o P 2̂ may vary from point to point of X, W1 o ψ 2 is
not necessarily a bundle.

If Wλ is a factor bundle of X x ί θ Λp*) and W2 is a factor bundle of

X x >(/?, q), then ^ (x) P 2̂ is a factor bundle of X X ί ί θ /?p*] <g> Jn(p, q)\

= X X ( ( o Λp*) ® ( o Λp*) ® Λ 9 ). Define Wx o P 2̂ toWbe the image of
\ \ m / \n } I

X X [ίo Rp*) ®RQ) = X X Jm+n(p, q). Once again, ^ o W2 need not be
\\m+n J I

a bundle.
Consideration of the special case, where X is a point, yields similar defini-

tions for the symmetric product of appropriate vector spaces.

Let W19 W2 and W3 be factor bundles of X x ( θ v), X X ( θ v), and
/ \ \* I \m I

X X O F respectively, and suppose W1 o JF2 and ίF2 o H 3̂ are bundles. Then
\n I

Wx o (W2 o W3) = (W1 o W2) o W39 so parentheses may be removed without intro-
ducing ambiguity. Similarly, if Wu W2 and Wz are factor bundles of
X X ( o Rv*\ J x ( θ RΛ , and ^ x Jn(p, q) respectively.

\k J \m I

If 0 < p < q, there is an epimorphism Rq —• jRp defined by (JC1? , xq) —>
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(*ί, , Xp). Suppose Im = (a19 , am) is such that each at is a non-negative
integer and aλ > - > am. Since each of the vector spaces Raί is a factor space
of Ra\ Ra™ o . . . o IT 1 is denned. Define P(/m) = dimension (Ra™ o . o Λα i).

Lemma 6.1. Let W19 , PPm fce vector bundles over X, and suppose that
for each ί there is an epimorphism Wt^WUι. Then Wm o . o Wι is a vector
bundle. If, for each i, dim Wt = aί9 then dim (Wm o . . . o WJ = P(ax, , am).

Proof. Straightforward.
Let p and q be given. Define an admissible sequence of length n to be a

tuple (a19 , α j of non-negative integers such that aλ> p — q and p > ax

> * > an- If I71 = (βi, - - -, an) is a n admissible sequence of length n and
0 < m < n, then Im = (al9 , am) is an admissible sequence of length m.

Fix an admissible sequence In = (aλ, , an). If 0 < i < /, let r{: 7̂ (/?, ^)
—> ̂ (P* <?) be the projection.

Define Z(φ) = {0} = 7°(p, ^) . Let E§ = Z(φ) x Λ^ and E\ = Z(^) x Λ^.
Now suppose that whenever 1 < m < n — 1, Z(/m) is a submanifold of Jm(p, q).
If 1 < m < n, let E? = {φ € /m(p, (?) 11^]771"1 e ZU^"1)}. If 1 < m < n - 1, let
5 m = {(0, 0) € Z(/m) x > O , ^) I ^ € TZ(/m)} and assume it to be a bundle over
Z(/m). If 1 < m < n - 1, define E£* over Z(/m) by the exactness of 0 -> Bm

-^ Z(/m) x 7m(/7, ^) -^ EJ1 -> 0. If 0 < m < n - 1, let ££* be a vector sub-
bundle of Z(Im)χRP. lίθ<m<n-l, Hm+1: E?+ι^Z(Im)χ(RP*<g)Jm(p,q))
induces γm+ι: E?+ι -+Ef®Eψ. If 0 < m < n - 2, suppose fm+1 is am+ι-
uniform and Z(/m + 1) = Z(Im)am+ί(γm+1). Define Z(/w) = z y - O α n ί Γ ) - I f

0 < m < n - 1, r

m + 1 induces a™ map C + 1 Έ 2

m -^ rS+1*£? over Eψ+\ If 0 <
m < n — 2, suppose this map induces an exact sequence 0 —> E™+1 —> r ^ + 1 Έ ^
-> C+ 1*^Γ -> β m + 1 -^ 0 over Z(/m + 1) defining β m + 1 . (Note that the bundles
Ef and the sets Z(/m) are defined inductively.) Define bundles El and β7 2 over
Z(In) by the exactness of 0 -> £:2

n -> r ^ . ! * ^ " 1 -^ r . ^ E ? " 1 -> Q n -• 0. If
1 < m < n, define a bundle Nm over Z(/m) by the exactness of 0 -* Ef ->
d * -> E^" 1 -^ N m -^ 0.

Let TΓ: Gan(rl_*E%-1) -* Ef be the bundle projection, and 0 -• Lα?ι -^
π * ^ . ! * ^ - 1 -> M α n -^ 0 the usual sequence as in §2. If sn:Z(In)^
G f l J ^ . i ^ ? " 1 ) is the standard section, then sn*Lan = El and sn*Man = Nn.

If 1 < / < n — 1, f: E[ -^E\~ι* ® El~λ over Z(P~l) induces a monomorphism
N* —> r^.!*^" 1 and hence, over Gan(rl_λ*El~ι), a monomorphism

It is annoying but straightforward to show that the image of this map is con-
tained in the symmetric subset L*n o π*{rl_*EΓι* o . . . o rfE\* o r^E\~ι).
O-tW-*rί

i_*El-1 -^Qi^0 and 0->Ei*® W-+Ei* or\_^E\-1 ->£**og* -> 0
are exact. But for 1 < / < n — 1, EζoQ1 « E^ by Proposition 4.1 and Theo-
rem 3.2. Thus over each point of Gαn(rl_*El-χ) there are exact sequences:
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0 —* T * o τf*rn *Fn~1* 6d ψ*rn *Nn-1

0 -> L*n o T Γ * ^ . * ^ - 1 * o n*rl_*EΓ2* ® **r;_*iVn-2

f*rn Fn~2 0

-> L*n o **,.»_*£»-1 o . . . o ίc*rΓ ^ ® **r? ({0} x Λ^)

Note that the fiber dimension of N1 is p — a19 and the fiber dimension of Nι

is ai_ί — ai for / > 1. Thus from Lemma 6.1 and the exactness of the
above sequences, the fiber dimension of L*w o τr*r£_fE%~1 at each point of

Gan(rn

nJEΓι) is P(a19 , αn)(^ - p + fll) - "ff P(α,, , α j ^ . , - a,).
ί = 2

Consequently, γn is α^-uniform and therefore Z(In) is a manifold. Furthermore,
0 - > £ f (g) Nn -^Ef o r . fE?- 1 -> T(Eΐ, Z(ln)) ->0 is exact. Thus Γ(£f, Z(/w))

« EJ* o Qn and has dimension P(aλ, , αrz)(<gr - p + a,) - f] F(α i ? , an)
ίί = 2

That Z(In) is invariant under Jδfp x <£q is immediate from Theorem 4.3.
If U and V are manifolds and 0: U-+V, let Zα(0) = Z(ά)(φ) = {Λ: e t/1 dimen-
sion kernel T^ .̂ = α}. Let ^ be a p-manifold, Y a ^r-manifold, and let /: Γ̂—> Y
be Z(/m)-transversal for each m < π — 1. It follows from Proposition 5.4 that,
for each m, Z(/™+1)(/) = Zα m + 1(//Z(/-)(/)).

We now summarize:
Theorem 6.2 (Boardmari). Let X be a (compact) p-manίfold, Y a q-mani-

foldandln = (a19 ,an) an admissible sequence. If f: X —> Y, define Z(φ)(f)
= X, and if Z(/m)(/) C X is defined and is a manifold, define Z(/m+1)(/) =
Zα m + 1(//Z(/m)(/)). Then for a (open and dense) dense set of functions f in
tfn+ι(X, Y), Z(Im)(f) is a manifold for l<m<n, and furthermore, for such f,

dimension T(Z(In~ι)(f), Z(In(f)))

= P(In)(q -p + aJ-Σ P(«t> > *»)(*t-i ~ «*)
i = l

Proposition 6.3. Let &v — {aQ \ a e $(p, p), a0 e S£v and, for sufficiently
small x, Dax preserves perpendicularity). Let a> p — q and max (0, a(q — p
+ a) + a — p) < b < a, then there is a submanifold Z(a J_ b) of (rξ)~ιZ(ά),
invariant under S£v X «Sf9, such that'.

i) dimension T((r^~ιZ(a), Z(a J_ b)) = b(p - a(q - p + a) — (a - b)),
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ii) if X is a manifold of type 2? p, Y is a q-manifold and f: X —• Y is Z(a)-
transversal, then Z(a __[_ b)(f) = {x e Z(a)(f) \ the intersection of the vector space
normal to TZ(ά)(f)x with kernel Tfx is b-dimensional).

Proof. Over Z(a), Hι induces an exact sequence 0 —> Ka —> Z{a) X Rv —•
Z(a) χ ^ - ^ β α - > 0 . Furthermore, T(J\p, q), Z(a)) « X*(x)βα. DefineEover
Z(β) by £ = {(0, v) € Z(Λ) X l ϊ p | v is perpendicular to w whenever (φ, w) e Ka},
E is an <£v X SPq bundle over Z(a) with fiber dimension p — a. H2 induces
f: (rl)-'Z(a) -* E* ® K* (x) β β . Define Z(fl J . 6) = Z(α) p _ α ( ,_ p + α ) _ ( α _ 6 ) ( r

2 ).
γ2 is p — a(q — p + a) — (a — b) uniform sice E Π Ka is the zero section of
Z(α) X i?p. Over Z(a ±b),γ2 induces and exact sequence 0 -> Ka±b -> rfE ~>
rΐ(K* (8) β α ) where dimension (XαJ_6) = p - a(q - p + a) - (a - b). If N α ± δ

is defined by the exactness of 0 —> X α l δ —> rfE —> N α ± δ —> 0, there is an exact
sequence 0^K*±h®Na^K*Lh®$(K*®Qa) - Π ί ^ ^ Z ^ ) , Z(β JL »)->0.
That Z(α _L 6) is invariant under &v x &q is immediate from Theorem 4.3.
It remains to show ii).

Let X be a manifold of type ^ and Y a ^-manifold. Let /: X-> Y be Z(α)-
transversal and let x e Z(a)(f). By Proposition 5.4, x e Z(α J^ Z?) if and only if
(f*E)x Π (ΓZίαX/)),. has dimension p - a( q -p + a) - (a - b). But

Thus JC e Z(α J_ 6) if and only if

a(q - p + a) + (a - b)

- dim ((Γ£), Π TZ(a)(f)xy = dim ( ( / % ) , +

= dim Γ«α + dim ΓZCflX/)1 - d im((/%) β Π TZ(a)(f)i)

= a + a(q-p + a)-dim {{fKa)x Π

if and only if dim ( ( f X ) , Π TZ(a)(f)i) = ft. q.e.d.
Obviously Proposition 6.3 is not the most general result possible. One can

construct invariant manifolds by combining perpendicularity considerations with
the constructions of Theorem 6.2.

Proposition 6.4. Let &v C £?p be translation invariant, S£q = {id}, and
Qa be as in the proof of Proposition 6.3. Let E be a vector sub-bundle of
Z(a) X Rp invariant under the action of S£'p, and f: {r§~ιZ(ά) -> £ * ®
(Z(a) x i?^*) (8) Qa be the map induced by H2. If b < dim E, then Z(ά)b(f) is
a manifold and is invariant under <gp.

Proof, f is ft-uniform by Lemma 6.1, so Z(a)b(γ2) is a manifold, γ2 is
equivariant by Proposition 4.4. so Z{a)h(f) is invariant under ί£p. q.e.d.

We conclude this section with an application of Proposition 6.4.
Let X be a p-manifold, and /: X —• Rq an immersion. / induces a map

/ : X-+Gp(Rq) defined by Tf(TXx) = (J(x))f(x). According to Proposition 2.2,
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f*TGp(Rq) « Γ Z * (x) f*Q0. Thus Γ / induces a map 0: T Z -> ΓX* (x) f *β 0 .
If, in Proposition 6.4, α = 0 and E = Z(0) x Rp, then a straightforward local
analysis shows that ψ = f*γ2. It follows from Proposition 6.4 that for b < p
and / suitably transversal, Z δ (/) is a submanifold of X. Define bundles XJ and
Nl over Z δ (/) by the exactness of the sequences 0 -»K\ -> TX -> Γ Z * <g) f g 0

and 0 —> X^ —» TX —> N2

b —> 0. For Z(0)δ(^2)-transversal immersions / there is
an exact sequence 0 -> £ f (x) N2

6 -> £ f O ΓX* ® f β 0 -> Π * \ Z δ (/)) -> 0 over
Z δ ( / ) . Thus Γ(X,Z δ (/)) has dimension (£6(6 + 1) + 60? - b))(q - p) -
b(p -b) = \b{b + l)(q -p) + b(p - b)(q - p - 1).

Proposition 6.5. Let X be a compact p-manifold and let q > p + 2. Then
there is a set <9* of immersions of X into Rq, which is open and dense in the
set of all immersions of X into Rq (in ^\X, Rq)) such that f is an immersion
for each f 6 Sf.

Proof. Iίb> I and q>p + 2, then \b(b + l)(q — p) + b(p - b)(q - p
- 1) > b(b + 1) + b(p -b) = b(p +l)>p.

7. Characteristic classes

In this section it will be shown that there is a connection between certain
kinds of singularities of nice maps of manifolds and the Whitney classes of the
domain and target manifolds. Since the results are fragmentary, only a sketch
of the methodology will be given. The approach was outlined by Porteous in
[ 5 ]

Let &v (respectively J&q) be a subgroup of &p (respectively ϋ ^ ) , and

A C Jn(p, q) a manifold invariant under &v x <&q. Let Ex = {[φ]n+ί \ [φ]n e A},
and let π: £χ —> A be the bundle projection. Let E2 be a vector sub-bundle of
A X Rp, which is invariant under &v x <&q9 and let 0 -> B -> A x Jn(p, q)
—* Ez —> 0 be an exact sequence over A with B invariant under jί'p x &q. Let
γ: Eγ-* E* ® E3 be the map induced by Hn+\ and suppose that γ is equiva-
riant and α-uniform (α < fiber dimension E2). Let Z b e a manifold of type J&p,
and Y a manifold of type &q.

Then, as in § 5, J\(X, Y) and Jϋ+lr)(X, Y) are manifolds, and E2 and E,
determine bundles (also denoted E2 and E3) over / ^ ( ^ , ̂ ) . Also γ induces a
map γ: Jn

El(X, Y) -* Ef (8) E3 over /^(Z, Y), and we have a bundle Gα(τr*E2)
over / ^ ( Z , Y) and an exact sequence 0 —> Lα —> 7r*E2 —> M α —> 0 over
Gα(π*EJ where ^: Gα(π*E2) -> / ^ ' ( ^ ^) i s t n e bundle projection. Let
Γα: Gα(π*E2)^>L* ® π*π*Ez be the section induced by /\ Since ^ is α-uniform,
there is a symmetric sub-bundle 5 α of L* (g) 7f*π*E3, containing the image of
γα9 such that γα is a transversal section of Sα.

Let /: X - Y. /»+1 induces amap / : Gα(f**E2) -> Gα(π*EJ. If ft: Gα(f**£2)
-^ ^4(/) is the bundle projection, and 0-> Lα -> π*fn*E2 —> Mα -> 0 is the obvious
sequence over Gα(fn*E2), then Lα = / * L α and M α = / * M α . r : J^ -> E* <g> E3

induces a vector bundle morphism f:fn*E2 —> fn*E3 which, in turn, induces a
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section fa: Ga(fn*E2) -» L* (x) π*fn*E3. Since fα is the puUback f*γa of the
section fα, the image of fa is contained in the symmetric sub-bundle / * 5 α .
Note that ^4α(/) = {xeA(f)\ dimension kernel fx = a}. Define a section
sa: /4α(/) —> Ga(fn*E2) by 5α(jc) = kernel fx. Suppose / is ^4-transversal. It is not
difficult to show that / is A a(γ)-transversal if and only if fa is a transversal sec-
tion of f*Sa on SaAa(f).

If U is a topological space, then H^(U)(H*(U)) will denote the singular
homology (cohomology) of U with Z2-coefficients. Let U1 and U2 be compact
manifolds with U, C U2. If /: [^ -* U2 is the inclusion, /*: H^UJ — H*(U2)
is the group homomorphism induced by i, and w is the fundamental cycle of U19

then the dual to i^u in #*(£/2) will be called the dual to Uλ in t/2, and will be
denoted D(U2,UJ.

Let E be an ra-dimensional vector bundle over a compact manifold U.
W(E) = 1 + Wγ(E) + + WJE) will denote the Whitney class of E. If
σ: U —• £" is a transversal section and Z is the zero set of σ, then Wm(Zs) is the
dual to Z in U.

It Ab(f) = φ for each b > a, then saAa(f) is the zero set of fa. Hence the
following

Lemma 7.1. Suppose the fiber dimension of Sa is m. Let f: X -*Y be
Aa(γ)-transversal. suppose A(f) is compact and Ab(f) — φ for each fe > a. Then
the dual to SaAa(f) in Ga(fn*E2) is Wm(J*Sa).

If dimension E2=l9 then Gx{fn*E2) = A(f) and f*Sx = (fn*E2)* ® (fn*E2).
Thus

Proposition 7.2. Let d i m £ 2 = 1, d i m £ 3 = m and f: X —> Y be Afy)-
transversal. If A(f) is compact, then

Σ
i-0

Let Ux and U2 be compact manifolds and let φ\ Ux-* U2 be continuous, φ
induces a group (not ring) homomorphism φ$: H*(JJ^ —>H*(JJ2). φ% is defined
by composing φ^ with the appropriate duality isomorphisms.

If φ*: H*(U2) -^H*(Uλ) is the ring homomorphism induced by φ, ux e H*(Uχ)
and u2 e H*(U2), then φ$((φ*u2)'uλ) = u2-φ%uλ. If φ: Uλ-^U2 and ψ: U2 —> t/3,

then (0^)# = 0#^#. Note that if E^ C £/2, i: Uι—> U2 is the inclusion, and 1 is
the unit cohomology class of U19 then D(U2, Ux) = /#1.

For the remainder of this section, X will be compact.
Lemma 7.3. Let E be a vector bundle over X of fiber dimension m. Let

a<m and let π: Ga(E)^>X be the projection. Suppose 0—>Lα^'7r*JE—>Ma-+Q
is the usual sequence over Ga(E). Then π^Wm_a(Ma)

a) is the unit cohomology
class of X.

Proof. See [5].
If E is a vector bundle over X, then — E will denote the inverse bundle of E.
Porteous uses Lemma 7.3 to prove
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Theorem 7.4. Let X be a compact p-manifold, Y a q-manifold and a a
positive integer such that a < p and a > p — q. Let f: X —> Y be Z(ά)-trans-
versal and suppose Zb(f) = φ for b > a. Then D(X, Za(f)) is the determinant
of the a x a matrix whose i, j term is Wq_p+a+ί_1(f*TY — TX).

Proof. See [5].
(Actually, Porteous proves a somewhat stronger theorem.)
Lemma 7.5. Let E be a vector bundle over X of fiber dimension m, and

ft: Gλ(E) -• X be the bundle projection. Then n%(Wλ{L^) = Wj_m+l(—E) for
each j .

Proof (By induction on j). Let a = W^L,), 1 + bλ + . . + 6TO_1 = W(Mλ)
and 1 + cx + + cm = π*W(E). π$ lowers dimension by the fiber dimension
of Gλ{E), so the lemma is trivial for / < m — 1. By the Whitney duality theorem,

Σ cιίcm_ι_ί = bm_x, so ττ#fem_1 = Σ ^(al)Wr

m_ι_i(E) = π%(am~ι). But by
ί = 0 i=0

Lemma 7.3, π%bm_x — 1, so the lemma is valid for / = m — 1.
We now assume that t > m — 1 and that Lemma 7.5 is valid for / < t, and

prove for / = t + 1. Σ ^m-ι-ί = bm-ι implying Σ ^ί+1cm-i = abm_x = c m ,
ί=0 i=0

m m

so Σ aiCm_i = 0. Thus if t + 1 > m, then Σ at+ι-m+ίcm_i = 0. Applying ττ#

and the induction hypothesis,
0 = ττ#(αί+1) +mΣ π^at+1-m+ί)Wm_i(E)

m - l

i = 0

m - l m

so s,(α'+1) = 2 Wt+2_2m+i{-E)Wm^{E). But 2 Wi+2-2m+i(--E)H/™-i(^) is
ί=0 ΐ=0

the (t + 2 — m)-dimensional term of W{—E)W{E) which is 0 since
(t + 2 — m) φ 0. It follows that

m

»,(*••) = 2 Wt+2_2m+i(-E)Wm_i(E) = Wt+2_m(-E) .

Theorem 7.6. Let p < q and In — (1, , 1). Let X be a compact p-

n
manifold, and Y a q-manifold. Suppose f: X —> Y is Z{Im)-transversal for each
m < n and such that ZJtf) = φ for each i > 1. Then the dual to Z(In){f) in
X is a polynomial in the Wt(f*TY — TX), and this polynomial is computable
and does not depend on X, Y and f.

Proof. Let all notation be as in § 6. If 1 < m < n, then fm*E? = f*E\ and

j™*Eΐ = (<g> f*E\] (x) f*Qι over Z(Im)(f). Note that d i m ^ = 1 and dim Q} =

(jf — p + 1. Let i m : Z(/m)(/) -> Z(Iι)(f) be the inclusion. By Proposition 7.2,
i f l < m < n — 1, then
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Thus

n-l [o-» + l

π Σ
Denote this cohomology class by C. If Ϊ : Z(P)(f) —• X is the injection, then
D(Z, Z(/»)(f)) = /#C. Let π: G^ΓJT) -> X be the projection and sι: ZtfOtf) ->
G ^ Γ * ) the obvious section. Then its1 = i so D(X, Z(In)(f)) = π^s\C. If Q is
defined over Gλ(TX) by the exactness 0 -• Mx -> τr*/*ΓF -^ β -> 0, then f β 1

= j ^ β . As noted before, f*E\ = sι*Lλ. s\C is now computable by Lemma 7.1.
By the Whitney duality theorem, s\C is expressible in terms of WX(L^ and the
Whitney closses of π*TX and π*f*TY. By Lemma 7.5, π^s\C is computable.

Theorem 7.7. Lei p > q, and In = (p — <? + 1, 1, .. ., 1). Let X be a

compact p-manifold, and Y a q-manijold. Suppose f: X —> Y w Z(Im)-trans-
versal for each m < n and such that

i) Zi(f) = φ for each i > p — q + 1, an J

ii) Z(p - q + 1, /)(/) - 0 /or eac/z ί > 1.
Then the dual to Z(/n)(/) m Z £y a polynomial in the Wi(f*TY — TX), and
this polynomial is computable and does not depend on X, Y and f.

Proof. In the spirit of Theorem 7.6.
The author has been unable to find a nice form (as in Theorem 7.4) for the

polynomials of Theorems 7.6 and 7.7.
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