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1. Introduction

If $: X — Y is a map of topological spaces and x ¢ X, then ¢, will denote
the germ of ¢ at x. Let F(p, q) = {¢: R® — R!|¢ is €~ and ¢(0) = O} and let
I, q) = {$|¢ e B, @} It $ e F(p, @ or $eJ(p,q), then [¢]* will denote
the set of germs at the origin of elements of F(p, g), which agree with ¢ up to
and including order n at the origin. [¢]” will occasionally be abbreviated to ¢.
Let I*(p, @) = {Ig]"|$ € J(p, @)}-

Whenever m is an integer, %,, will denote the set of invertible germs in
J(m,m). &, is a group. Furthermore, there is a group action of £, X £, on
J*"(p, @) : (e, HUp]") = [Bpa~'1". Suppose ¢: U — R? is €~ where U is an open
subset of R?. Define ¢t,: U — J(p, q) by t,(x) is the germ at the origin of y —
é(x + ¥) — ¢(x). In the following all manifolds are ¥ and paracompact, and
all maps are €=.

Let .Z,, be a subgroup of .#,,. Suppose M is an m- -dimensional manifold and
&/ is an atlas of coordinate functions for M. The pair (M, o/) will be called a
manifold of type .Z,, if for all x € M and coordinate functions e, o, € & whose
domains contain x, z, - —1(a,(x)) € Z,,. The atlas <7 will be suppressed from the
notation.

Let X be a p-manifold and Y a g-manifold. J*(X,Y) will be the bundle
with base X X Y, fiber J*(p, ¢), and group &£, X &,. Let Z, be a subgroup
of £, and 2, a subgroup of #,. Suppose X is a manifold of type .Z, and
Y is a manifold of type Z,. Then the group of J*(X, Y) is reducible to Z, X
2, JMX,Y) may be looked at as the set of equivalence classes of germs of
maps of X into Y where two germs are equivalent if they agree up to order n.

If f: X —» Y and x ¢ X, then f*(x) will denote the equivalence class contain-
ing the germ of f at x. Thus a map f: X — Y induces a commutative triangle:

JMX,Y)
-
X—qp *x¥
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Let A C J*(p, @) and let A be invariant under £, X Z,. Then J%(X,Y)
will denote the bundle with base X x Y, fiber 4, and group Z, X Z,.
Suppose A is as above and f: X — Y. Define A(f), the singular set of f of type
A, to be the set (f*)"' J5(X,Y). If 4 is a manifold, then so is J2(X,Y). If A
is a manifold and f is such that f* is transversal to J2(X,Y), then f will be
called A-transversal. If f is A-transversal, then A(f) is a submanifold of X and,
furthermore, the codimension of A(f) in X is the codimension of 4 in J*(p, q).

Let #"*!(X, Y) denote the set of ¥~ maps of X into Y, provided with the
topology of compact convergence of all partials of order less than or equal to
n+1.

The Thom transversality theorem states that if B ia a submanifold of
J"(X,Y), then the set of maps f: X — Y such that f* is transversal to B is a
Baire set in ¥"*}(X, Y). If X is compact, then this set is open and dense. (See
[3] for a proof of the transversality theorem.) Thus, if 4 C J*(p, q) is a mani-
fold and is invariant under £, X £, X is a manifold of type #, and Y is
a manifold of type Z,, then A(f) is a manifold for a large class of functions

One thing which makes this interesting is that, in general, for A-transversal
f there are connections between A(f) and global properties of X and Y. For
example, if 4 = {[0]'} C J'(p, 1), X is a compact p-manifold, ¥ = R and f is
A-transversal, then the Morse theory tells us how to predict global properties
of X from the behavior of f in a neighborhood of A(f). Other results in this
direction are proven in [2], [4], and [5]. Further (rather incomplete) results
will be presented here but the main result of this paper is the construction of
submanifolds of J*(p, g) which are invariant under various subgroups SZP X Qq
of £, X &Z,.

2. Grassmann bundles

If E is a bundle over X and x ¢ X, then E, will denote the fiber of E over
x. If A C X, then the restriction of E to A will also be written E. If F is a
bundle over Y and h: E — F, then h,: E, — F will denote the restriction of A
to E,. If f: X — Y is a map of manifolds, then Tf: TX — TY will denote the
corresponding map of tangent bundles. If A is a submanifold of X, then
T(X, A) will denote the normal bundle of 4 in X. Finally, if E is a vector
bundle over X, then X will be identified with the image of the zero section of
E. Propositions 2.1 and 2.2 are written up similarly in [5].

Proposition 2.1. Let f: X — Y and let N be a submanifold of Y. If f is
transversal to N, then Tf induces a map T(X, f'N) — T(Y, N) which restricts
to isomorphisms of fibers.

Proof. The desired mapping is given in the following exact commutative
diagram:
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0T 'N) - TX - T(X,f'N) -0 over f-'N

l | !
00— IN —-TY—-> T(,N) -0 over N

That the mapping induces epimorphisms of fibers is a restatement of the
transversality of f, and that it is 1 : 1 on fibers follows from dimensional con-
siderations. q.e.d.

Suppose E is a vector bundle over X and ¢: X — E is a section. Then ¢
will be called a transversal section of E if it is transversal to X (the image of
the zero section of E).

Let E be a vector bundle over X. Then 7T(E, X) is equivalent to £ over X.
Thus, if 0: X — E is a transversal section of E, then T(X, ¢7'X) is equivalent
to E over X.

Let E be an m-dimensional vector bundle over X and let a < m. Define
G,(E) = {p|p is an a-dimensional subspace of some fiber of E}. Structure for
G.(E) as a bundle over X is induced by that of E. Let z: G,(E) — X be the
bundle projection.

Define a vector bundle L, over G,(E) by L, = {(p, v)|v ¢ p}. Define M,,
an (m — a)-dimensional bundle over G,(E), by the exactness of 0 — L, —
#*E - M, — 0.

Proposition 2.2. Let Z be a submanifold of X and let s: Z — G, (E) be a
section. Then over sZ,T(z"'Z,sZ) =~ L* ® M,, where L* denotes the dual of
L,.

Proof. Define a vector bundle F over #7'Z (and a morphism ¢) by the

exactness of 0 — 7*s*L, — 7*E -¢—> F — 0. Over z7'Z there is a bunble mor-
phism L, — F given by the composition L, — z#*E — F. This morphism
induces a section 5 of L} ® F over z7'Z. Furthermore, sZ is the zero set of 7.
If 5 is a transversal section of L¥ ® F then, by Proposition 2.1, T(z7'Z, sZ)
~ L¥*® F over sZ. Since F = M, over sZ, it suffices to demonstrate the
transversality of 7.

Let x e Z and let oy, - - -, a,, be a vector space basis for E, such that s(x) is
the span of «,, - - -, @,. Any a-plane p in G,(E), near s(x) is uniquely express-
ible as the span of a vectors, a; + v, (P)ag, + <+ + Vim-a(P)ms - -+

g + Vo (P)ags + -+ + Vam_o(P)ay,. Thus coordinates {v, ;} for G,(E), at
s(x) have been fixed. -

Ty (—a—) = 0L ((d® OG0, aF ® ey e -

a’vi’j avi’j

Since {(id ® $)(s(x), af @ 2, )|1 < i< aand 1 < j< m— a}is abasis for
(L¥ @ F)y(ay, the result follows.
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3. Fixing the rank of vector bundle morphisms

Let 4 be a manifold, E, a bundle over 4, E, and E, be vector bundles over
A, and y: E, — E¥ ® E, a morphism of fiber bundles over A, which induces
the identity on A. Suppose zn: E, — A is the bundle projection. Whenever
ecE,y(e) e (Ef ® E,), and therefore there is a linear map (E,), ., — (E));
which corresponds to y(e). Suppose a is not greater than the fiber dimension
of E, and let A,(y) = {e € E, |kernel y(e) has dimension a}. In this section we
will study the set 4,(y).

Let z: G,(z*E,) — E, be the bundle projection. Over G,(z*E,) there is an
exact sequence 0 — L, — z*z*E, - M, — 0 as in §2. We define a section
7o' Go(n*E,) — L¥ @ n*n*E, as follows: An element of G.(z*E,) is a pair
(e, p) where e ¢ E, and p is an a-dimensional subspace of (E,),.,. Let (e, p)

= (e, p, (e, p)) where y(e, p) is the restriction of y(e) to p. r.(e, p) may be
viewed as an element of (L} ® z*7*E,),, ).

Definition 3.1. Suppose that there are a vector space ¥ and for each x ¢ 4
a diffeomorphism 6,: V — (E)), such that y, o 4, is linear. y will be called
a-uniform if for all choices of x; € A and p; € G,(E)x;, i € {1,2}, dimension
{n(e,p)|e e (E),,} = dimension {5(e, p,| e e (E"),,}.

7: E, — E¥ ® E, induces y*: z*r*E, — L* Q@ z*nx*E, as follows: An element
of #*x*E, is a triple (e, p, &) where e and ¢ are elements of E, with z(e) = #(é)
and p is an a-plane in (E,), ,. Define y* by (e, p, &) = (e, p, 5(&, p)).

Let S, = y*(z*=*E)), and note that the image of the section 7, is contained
in S,. If 7 is a-uniform, then S, is a vector sub-bundle of L} ® z*7*E,.

If V is a vector space, x,ye V, and g: R — V is defined by g() = x + ty,
then we define y, e TV, by y, = g(0). TV = {y,|x,y e V}.

Let V and 6, be as in Definition 3.1. Since 7, o 6, is linear, T'(y, o ,)(y.)

= (75 © 0,(0),,.0,- Now, if p € G,(E,),, then (S,), is the set of all restric-

tions to p of maps of the form 7, o 6,(y) where y e V. It follows that if 7 is a-
uniform, then 5, is a transversal section of S,.

Define a vector bundle K, over 4,(y) by the exactness of 0 — K, — 7*E,

LA n*E, where 7 is defined in the obvious way. (An element of 7*E, is a
pair (e,, ;) where e, ¢ E, and e, ¢ (E,),,,- Define 7 by (e, e,) = (e,, r(e)e,),
an element of 7*E,.) Define a bundle N, over 4,(y) by the exactness of 0 —
K, — n*E, — N, — 0. Finally, define a section s,: A,(y) — G.(z*E,) by s,(e)
= (e, kernel y(e)).

Theorem 3.2. Lety: E, — E} ® E, be a-uniform. Then A,(y) is a submani-
fold of E,, and furthermore over A,(y) there is an exact sequence

0— Kj: ®Na. - S:,_kSa - T(Els Aa,(T)) —0.

Proof. The first statement is straightforward and will be treated first. Let
W be the zero set of the section 7,. Since 7, is a transversal section of S,, W
is a submanifold of G,(z*E,). It is easily seen that s,4,(y) is an open subset
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of W. ((e,p) e W if and only if p C ker (y(e), Thus s,4,(y) C W. If e e A,(y)
and if € is sufficiently close to e, then dimension ker (&) is not larger than a.
That s,4,(y) is open in W follows.) Thus s,4,(7) and therefore A,(y) is a
manifold. We now prove the second statement.

Since 7, is transversal and s,4,(y) is open in W, Proposition 2.1 shows that
there is an equivalence T(G,(7*E,), 5,44(y)) — S, over s,4,(y) induced by
Ty., and also that over s,4,(y) we have an exact sequence 0 — L, — 7*1*E,
— z*z*E, which determines a monomorphism M, — z*z*E, and hence a
monomorphism L} ® M, — L¥ ® z*z*E, over 5,4,(7).

It is not hard to show that the following diagram is communative:

T s, 52Aup) — T(Goa¥Ey, 52Aop)

zz !
L*@M, L} ® z*z*E, over s,4,(7) .

Since the image of T(G(z*E,), s,4.(y)) — L¥ @ z*z*E, is contained in the
sub-bundle S, of L¥ ® z*z*E,, the image of L¥ ® M, is contained in S,,.
Thus over s,4,(y) we have an exact commutative diagram:

0 0
1 !
0— T@ A1), 5aAa(1)) = T(Go(T*Ey), S0 Ao(1)) = T(Go(T*E3), T 1A4(y)) — 0
! 1
00— Lf@Ma _——— S,
1 1
0 0

and hence an exact sequence 0 — L} @ M, — S, — T(G(z*E,), 77 A (1)) — 0.
Since s¥L, = K,,5tM, = N, and s¥T(G,(7*E)), 7 A.(y) = T(E,, Aa(?’)),
the result follows. q.e.d.

Suppose that X and Y are topological spaces and that a group H acts on
both X and Y. Let f: X — Y. Then f will be called equivariant if for each
he H, hf = fh.

Definition 3.3. Suppose U is a vector bundle over X and there is a group
H which acts on U and X in such a way that the bundle projection of U is
equivariant. Suppose also that for each he Hand xe X, h,: U, —> U, 4, is a
vector space isomorphism. Then U will be called an H-bundle.

Proposition 3.4. Let U, and U, be H-bundles over X, and suppose H acts
on a space Y and f: Y — X is equivariant.

a) Then there is a group action of H on U}, which makes U¥ an H-bundle ;

b) similarly with U, ® U,;

c) similarly with f*U,.

d) If U, C U, and the inclusion is equivariant, then the factor bundle of
U, by U, is an H-bundle.

e) If a is not greater than the fiber dimension of U,, then there is an action
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of H on G,(U,) which makes the projection ©: G,(U,) — X equivariant.

f) The action of H on #*U, restricts to an action on L,, which makes L,
an H-bundle over G,(U,).

g) If H acts differentiably on X (assumed to be a manifold), then TX may
be given the structure of an H-bundle.

h) If H acts differentiably on Y and X, then Tf: TY — TX is equivariant.

Proof. a) The action of & on U¥ is the dual of the action of A~! on U,.

b) The action of 4 on U, ® U, is the tensor product of the actions of 4 on
the U,.

¢) An element of f*U, is a pair (y, u) where ue U
of h by h(y, u) = (hy, hu).

e) Since h e H restricts to vector space isomorphisms of fibers, it takes a-
planes into a-planes.

g) The action of % on TX is the derivative of the action of 4 on X.

Corollary 3.5. Let E, and E, be H-bundles over A, and let H act on E,
in such a way that n: E, — A is equivariant. Suppose y: E, — E¥ Q E, is a-
uniform and equivariant. Then A.(y) is invariant under H. Furthermore the
bundles K, N, stS, and T(E,, A,(y)) are all H-bundles over A,(y), and the
sequence 0 — K¥ @ N, — s¥S, — T(E,, A,(y)) — 0 is an exact ‘sequence of
equivariant maps.

Proof. The equivalences T(z7'A,(7), S 4a(p)) — L¥ ® M, and T(G,(z*E,),
§,A4,(y)) — S, over s,4,(y) are induced by derivatives of equivariant maps.
The result is now trivial from Proposition 3.4 and the proof of Theorem 3.2.

17+ Define the action

4. Invariant submanifolds of J"*'(p, @)

Fix subgroups &, C ¥, and Z,C ¥, andlet H = %, X Z,.

Let A be a submanifold of J*(p, q) and suppose A is invariant under H.
Let E, = {[¢]"*'|[¢]" € A}. H acts on E, in such a way that the projection
n: E, — A is equivariant.

If U is an open subset of R?,f: U — R? and x ¢ U, then define a linear
map Df: R? — R? by Tf(v,) = (Df,(v)) ;. Df will abbreviate Df,.

H acts on A X R?; (a, p([$]", v) = ([fpa']", Da(v)). Let E, be a vector
sub-bundle of 4 X R?, invariant under H. E, is an H-bundle over A4.

Note that J%(p, g) = {0}. Define J%p, q) = R? and J™(p, @) = {[¢]™|[g]™"
= 0} for m > 1. Define an action of H on J(p, @) by («, p)(w) = DB(w)
and an action of H on J™(p, q),m > 1, by (@, B)([$]™) = [Bga]™.

Let B be a vector sub-bundle of 4 X J"(p, g) which is invariant under H.
Define E, by the exactness of 0 > B — 4 X J™p,q) — E,— 0. E, is an H-
bundle over 4.

We now proceed to define a bundle morphism 7: E, — Ef Q E,.

If m is an integer and 1 <y < m, let 6(x) = (0, ---,0,1,0,---,0) e R™
where the 1 occurs in the v** position. Let @ = (i), - - -, i,,) be a tuple of non-



SINGULAR MANIFOLDS 529

negative integers. Define |w| =7, + - -+ + i, andw! =i !.-.i,. If g e F(p, D,
let D, = (8''¢/oxi*---0xp) (0). If 1 <j< g, define w(w,j) e Fp,q) by
wa, Py, -+ 5 %) = Ao Dxpr- - xpo([@.

If n > 0, define H**': E, - A X (R™® J™(p, q)) by

,a
H () = (i1, 3 D) ® utw, ).
where ¢; denotes the j** coordinate function of ¢.

The injection E, — A X R” and the epimorphism 4 x J*(p, q¢) — E, together
induce an epimorphism e: 4 X (R ® J*(p, q)) — Ef ® E,. Define 7 E, —
EfQE, by y = eH"*.

Motivational remarks. If ¢ e F(p, g), let u, denote the projection of ¢*: R?
— J*(R?, R%) = R? X R x J*(p, q@) onto J*(p, q). J"(p, q) is a vector space,
so if g{;,gZeJ”(p, q) then g@e TJ*(p, g). Motivation for studying the map y
comes from the fact that if (a,, - - -, a,) € R? then

Tu¢(al’ R a;a)o = ( 2 ‘aqu+a(y)¢ju(C¢)a ]))
1< ol <n,v, j [g1m

Thus y is induced by Tu, and hence T¢" but somewhat artificially. Proper
selection of A4, E, and E, makes the correspondence T¢" — 7([¢]**!) “natural”.
Theorem 4.3 and Proposition 4.4 establish criteria for this to be so. If ¢ is
A-transversal then T¢" determines TA(¢),. Sometimes (see Proposition 4.5) y
will carry enough information to determine whether ([¢]*, v) € E, is such that
v, € TA(¢),. This is central to much of what follows and is the main idea of
the proof of Boardman’s result, Theorem 6.2.

If V is a vector space, then 9 V will denote the m-fold symmetric product

of ¥ with itself, and ® V' denotes the appropriate tensor product so that O V
cRV.
If n > 0, there is a vector space isomorphism g, : J(p,q) — (O RP*) ® R

determined by the equations
LUy -5 0p), 1)) = Zelt Ak()* @ - - - ® dk(n)* @ () ,

where I = {k: {1, ---,n} > {1, ---, p}|k~"{2} has i, elements whenever 1 <
A< p}

The notation in the following is as in § 3.

Let ¢5: Go(n*E,) X (R” ® J™(p, q)) — L¥ ® n*r*E, be the epimorphism.
Define S, = ¢, (Ga(n:* E) X (d® p)~! ((le*) ® Rq)).

Proposition 4.1. S, = S,.

Proof. The result follows if H*"'E;, = A X (id ® p,)™! ((O RP*) ® R‘l).

n+1
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That H*'E, C A X (id ® p,)™* ( (OIR”*) ® Rq) is apparent from the symme-

tries of (n + 1)*¢ order derivatives. The opposite inclusion is equally simple.
q.e.d.
Thus there is a sense in which S, is the “symmetric subset” of L* ® z*7*E,.
The condition that y is a-uniform is the condition that the symmetric subspace
of (L¥ ® ﬁ*n*E3)£ does not depend on the choice of p € G,(z*E,).
If 1 < m < n, define C,,: J*(p, q9) — J™(p, q) by

Cn([$]™) =M};n J_Dmgziju(cu, D -
Recall that if ¢ € F(p, q), then t,: R? — J(p, q) is defined by: #,(x) is the germ
at the origin of ¢(x + -) — ¢(x). If m > 1, then ¢, induces t,n: R? — J™(p, q).
Note that y([¢]**)([¢]", v), is the projection of ([$]", C,Dt,(v)) on E;.

Definition 4.2. Let C C J(p, g)(or C C J™(p, q)). C will be called transla-
tion invariant if, for all ¢ € ¥(p, q), t;*(C) (or ¢;2(C)) is an open subset of R?.

Whenever m > 1, there is a linear map inj (m) = inj: J™(p, g) — J™*'(p, p)
determined by the equations inj (#(w, j)) = w(w, j).

Theorem 4.3. Let %,, %, A, B,E,E, E, and y: E, — Ef ® E, be as
above, and suppose, in addition, that £, and &, are translation invariant.
Then y is equivariant if the following two conditions are met:

i) n=0,n=1or (inj (Dt;n_.(v))sn € TA, whenever ([¢]", V) € E,.

i) n =0 or ([¢]*, C.l¢]") e B, whenever ([¢]")sm € TA.

Proof. It suffices to show that whenever a ¢ Z, and fe Z, the following
two squares are commutative:

E—' LE*QE, E—" LE*QE,
l(a-l, id) l(a-l, id) l(id' ) l(id’ )
E—" LErQE, E, Ef ®E,

We show that the first of these is commutative, the other demonstration being
similar.

The commutativity of the square will follow if we can show that if [¢]"*' € E,
and v = (a,, - - -, a,) is such that ([¢]*, v) € E,, then

(Bl 3 Duss @)Dyl e,
(*) lol=n,i,7,k
— R, o Z ) D, ;(¢)a;u(w, j))e B,
o|=n,1,]
where R, denotes right composition with «; left composition will be written in
the obvious way.
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If p=(y, --+,ip) and 1 < j < p, define v(y, j): R? — R? by v(y, )(x) =
L'xil- - xi28(j), so v(p,elp,p). If 1 <j< q and o is a p-tuple of
n!

integers, define P(w,j): J(p,q) X J(p,p) — R by P(w,j)(¢, ) = D,(¢;p)-
oP(, ) 9P@.)) (4 0) a 4 0P(w,))
uGp, k) a (9, k)
evaluated at (¢, p). It follows from the chain rule that

(¢, p) denote the appropriate partial derivatives

oP(w, J)
’ D +3(v D
In1<lol,» au( US| )(¢ ) 7+3( )¢j 50Xy

oP(, J)
y @)D, s, -
17157015 90(7, v) w00,y & DPrw

Dw+5(k)(¢ja)

Thus

Dm+a(k)(¢ja)D5(i)(0(—l)kaiu(wa D

lol=n,,j,k

_ Z 3P(a), ]) (¢’ )D”+a(y)¢jD6(k)a D,,(Z)(a )ka u((t)’ ])
|aJ| n,l71<n,i,7,k,v au(v, )
oP(w, j)

———22A¢, D, 5490, Ds 05 (" Dra;u(w, J)
lol=n,l71<n,i,7,k,v 30(77, v)

= (DR, 3 D,.upa:u(, )

Inl=n,1,j

+ (QC.R, = ) .Dy+5(i)¢jaiu(7]9 1))

1<y1<n—-1,1,j

+ (3)CnD(L¢)a Z ) Dq+5(k>“uDa<i)(0‘—1)ka1:’v(7], V) .

1<I71<n,y, i,k

Now (2) = C,R (inj)Dt,»_,(v) and (3) = C,D(L,),Dt,Da~'v. Thus to dem-
onstrate (%) it must be shown that

(Igal*, C,R (i) Dt,u_(v) + C,D(L,),Dt,De'v) ¢ B .

But, by 1), (inj (Dtn_s(v))ymeTA, so (R, (inj)(Dtyn-1(v))garn € TA.
Thus, by ii), ([¢ae]" C.R.(inj)Dt,._,(v)) € B. Since &, is translation
invariant, ¢,(x)e ,? for small xe R?. Since A4 is invariant under Z,,
L,ot(x)eA for small x. It follows that (D(L,),Dt,Da~'v),,n € TA. By ii),
([¢al", C,D(L,),Dt,Da~'v) € B, and hence the result.

Proposition 4.4. Theorem 4.3 remains valid if n = 1, 2, = {id}, and condi-
tion ii) is replaced by ii)': B D {([¢]', [¢]) | [¢]' € A and image D¢ C image Dg}.

Proof. A mild modification of the proof of Theorem 4.3.

Proposition 4.5. Let n> 1 andlet y: E, — E} Q E, be as in Theorem 4.3.
Suppose, in addition, that B = {([§]*, [¢]")|[g]" € 4, [¢]" € J*(p, @) and
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([¢))sne TA}. If [g]"e 4, let U(g)={veR?|([4]", v) ¢ E, and Tt;n(v,) e TA}.
Then A,(y) = {[g]"*'|[¢]" € A and U(g) is an a-dimensional vector space}.
Proof. Trivial.
Let y be a-uniform. It follows from Proposition 4.1 that

S = S0 = ¢4 (Ga(n*Ez) X (id ® ;z,»-*( QR ® R")) .

Thus S, is a factor bundle of G, (z*E,) X J**'(p, q) and s*S, is a factor bundle
of A,(y) X J**!(p, q). It follows from Theorem 3.2 that there is an exact se-
quence 0 - K} Q@ N, — s¥S, — T(E,, Ao(y)) — 0. Thus T(E,, A,(y)) is a factor
bundle of A4,(y) X J**'(p,q). In fact, if 7 is equivariant, there is an exact
sequence of H-bundles and equivariant maps 0 — B — A,(y) X J**'(p, @) —
T(E,, Au(1)—0 over A,(y), where B={(g, §) € Ao(y) X J**(p, @) | 6, e TAL()}.

Note. Let y: E, - Ef Q E, be as in Theorem 4.3 with n = 0 or B =
{4, 9 e A x Jp, Q|p,eTA}. Let E = {[¢g]""*|[g]"*' € Ao(y)} and let
Y E—>KIQT(E, Al(y)) be the map induced by H"**: E — A, (y) X
(R”™ ® J**'(p, q)). Then 7’ obeys the conditions of Theorem 4.3.

Suppose V' and W are vector spaces and 5: V' — W. Then 7 will be called a
polynomial function if, relative to some choice of bases, each coordinate func-
tion of 7 is a polynomial in the coordinate functions of V. This condition does
not depend on the choice of bases.

Let ¥V and W be vector spaces, X a subset of V, and C a vector subbundle
of X X W. Suppose X is determined by polynomial equalities and inequalities.
C will be called polynomially determined if there are an integer b and a poly-
nomial »: ¥V — Lin (W, R®) such that (x, w) e C for x ¢ X if and only if »(x)(w)
= 0.

Proposition 4.6. Let all notation be as in Theorem 4.3. Suppose E, C
J"(p,q) X R? and B C J*(p, q) X J™p, q) are both polynomially determined.
Then A,(y) is determined by polynomial equalities and inequalities.

Proof. Let ¢:J*p, q0 — Lin (R?, R®) be a polynomial such that
([¢]",v) e E, if and only if [¢]*e A and o([¢]")(v) = 0. Let z: J*(p,q) —
Lin (J*(p, @), R°) be a polynomial such that ([¢]", [¢]*) ¢ B if and only if
[¢]" € A and z([¢]")([¢]") = O. Let [#]" € A. Then [¢]"*' € A,(y) if and only if
@, .a) ogIN@, -+, a) = 0 and f([‘f‘]”)(l S aD.f@) = ol

ol=n,v,j

is an a-dimensional vector space. Thus there is a polynomial »: J**!(p, q) —
Lin (R?, R**¢) such that [¢]**' e A,(y) if and only if [¢] € A and 7([¢]**") has
rank p — a. Since determinant functions are polynomials, the result follows.

Proposition 4.7. Assume the hypothesis of Proposition 4.6. Then K, and
B are polynomially determined.

Proof. Let » be the polynomial of the proof of Proposition 4.6. Then
([¢]"**, v) € K, if and only if [¢]"*' € A,(y) and 7([¢]**")(v) = 0. We now show
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that B s polynomially determined. If ¢ € A,(y), let B,={¢ e J*(p,q) | ([$]", $) € B}
and F, = {w e R*|w(v) = 0 whenever (¢, v) ¢ K,}. Let

C, = it (@ ® )R ® B, + F,® 0.0 0 ((Q ") ® R7)) .

Let C = {(¢,¢) |pe Au(y) and ¢ e C,}. The bundle C is polynomially deter-
mined. It follows from Proposition 4.1 and the exactness of 0 — B — 4 X
J*(p, @) — E, — O that there is an exact sequence 0 — C — A4 X J**'(p, q) —
S:fSa — 0.

If geA.(p), let

P,=1 % a»Da.+.s<u>¢ju(w,i)|([¢]",(al,---,a,,))eEz}.

lol=mn,»,

Each P, may be described in terms of polynomials in the coordinates of ¢.
Since 0 — K¥ @ N, — s¥S, — T(E,, A,(y)) — 0 is exact, so is K¥ ® s*S, —
T(E,, A.(y)) — 0. It follows that

B ={¢.919c 40, $C, + (W@ R @ PN O R ® R

and is therefore polynomially determined.

S. Singularities of mappings

Let V be a manifold of type G, and suppose G acts on F. F will denote the
bundle with base V, fiber F and group G. If U is a subset of F, which is
invariant under G, then U is a sub-bundle of F. Let W be a bundle over U,
and suppose G acts on W in such a way that the bundle projection W — U is
equivariant. Then W induces a bundle W over U with group G and fiber that
of W. Suppose G acts on bundles W, and W, over U in such a way that the
bundle projections are equivariant. If ¢: W, — W, is an invariant bundle
morphism, then ¢ induces a morphism ¢: W, — W,. If W, and W, are G-
bundles and ¢: W, — W, is an equivariant morphism of vector bundles, then
¢ is a morphism of vector bundles. Furthermore, — takes commutative dia-
grams into commutative diagrams and exact sequences into exact sequences.

Let all notation be as in § 4, and #, and ., translation invariant subgroups
of &, and %, respectively. Suppose y: E;, — EF ® E, is a-uniform and satisfies
the hypotheses of either Theorem 4.3 or Proposition 4.4 (so y is equivariant).
Let X be a manifold of type .#, and Y a manifold of type .Z,. It follows from
Corollary 3.5 that over J;'{,,(X, Y) there is an exact sequence

0->Kf¥Q®N, —skS, - T(U% (X, Y),J50,(X,Y)) - 0.
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Note also that K¥* ® N, =~ (K,)* ® N,. In the furture, underlines will be
dropped, s¥S, will be abbreviated to F,, and T(J%(X,Y),J5 (X, Y)) to
R,. Thus the above sequence becomes 0 — K¥ ® N, — F, — R, — 0 over
-’2;37)()(, Y)

Let r,: JM(X, Y) - J"'(X,Y), r: J(X,Y)>X XY for n>1, and
g: X XY ->Xande : X X Y — Y be the projections. For n > 1, define
JUX,Y)={¢eJ"(X,Y)|¢ is (n — 1)-equivalent to a constant germ}. J*(X, Y)

is a vector bundle over X x Y and, in fact, J/(X,Y) =~ (O eTX *) R FTY

~ {0} X J"(p, ).

E, is a factor bundle of r**J*(X,Y) over J%(X,Y) because of the exactness
of 0B — A x Jp,q) — E,— 0 over A. Thus if n = 1, then E, is a factor
bundle of TJ'(X,Y) = Tri'TrJY(X,Y) over J4(X,Y). Note that for n > 1
there is an exact sequence 0 — r*J*(X,Y) - TJ*X,Y) —»r¥TI*(X,Y)—0,
so B is a sub-bundle of TJ*(X,Y) over J%(X,Y). If n > 2, it follows from
the hypotheses of Theorem 4.3 that there is an exact sequence 0 — TJ%(X, Y)
+B—-Tr;'Tr,TJ%(X,Y)— E,— 0. Therefore for n > 1 there is an epimorphism
e: ITr;*Tr,TJYX,Y)— E,. If n =0, then E, is a factor bundle of TY over Y.
The epimorphism 7Y — E, will also be denoted e.

Let f: X > Y. A,(y)(f) will be abbreviated to 4,(f). Note finally that if
n > 1, then f~E, is a sub-bundle of TX over A(f). In the case n =0, E, is a
subbundle of TX.

Proposition 5.1. Let n=0and f: X —»Y. Then A,(f) = {x ¢ X |dimension
kernel (e o Tf) | (E,), = a}.

Proof. Trivial.

Proposition 5.2. Letn>1andf: X—Y. Then A,(f)={xec A(f)|dimension
kernel (¢ o Tf") |(f"E,), = a}.

Proof. This is a local question. Assume X = R?, Y = R%, x = 0, f(0) = 0,
and 0 e A(f). J"(R?, RY) = R™ X R? x J"(p, q). Let f" be the projection of f*
on J¥p,q). Tf*®,) = (Dtm(v));n. Let v, € f*E,, implying ([f]*, v) ¢ E, so
((nj)Dt jn_o(v)); syn € TA. It follows that for v = (ay, - - -, a,), (eo Tf*)(vy)) =0
if and only if ([f]", S aD,.s0f o, j)) ¢ B. Thus 0 A,(f) if and only if

lol=n,v,j

kernel (e o Tf*)/(f*'E,), has dimension a. q.e.d.

R, is a factor bundle of r*+*J**(X, Y) over I3, (X, Y). Thus, if f: X -7,
then f*"R, is a factor bundle of (ol TX*) ® *TY.

Suppose f is A-transversal; so A(f) is a manifold. Tf*(TA(f)) C TJ3(X,Y)
so Tf**(TA() C Tr;2, TJUX,Y) = TJ3 (X, Y). Since there is a map
T3 (X, Y) — R, over A,(y), Tf**' induces a map TA(f) — R, over A,(f)
and hence a map ¢: TA(f) — f**""R, over A,(f).

Since f is A-transversal, Tf**! induces an exact commutative diagram
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0

0— TA® TX T(X, A()

Is b :

0 — f*""R, — f***"T(""'(X, ), J5:t, (X, Y)) — f*T(J™(X, Y), Ji(X, Y)) — 0

a

over A,(f). f is A4(y)-transversal if and only if 5 is an epimorphism if and only
if ¢ is an epimorphism. Hence we have shown
Proposition 5.3. Let f: X — Y. Then f**R, is a factor bundle of

(01 TX *) ® f*TY over A(f). If f is A-transversal, then Tf**! induces a map

TA(f) — f**"R, over A,(f). f is A,(y)-transversal if and only if this map is an
epimorphism.

Let f be A,(y)-transversal, x e A(f) and ve TX,. Then ve TA,{f) if and
only if Tf"*'(v) e TJ3*(X, Y). Thus

Proposition 5.4. Let f be A,(y)-transversal. Then, over A,(f), TA.(f) is
the kernel of TA(f) — "*"R,.

6. Examples and applications
Let V be a vector bundle over X, and suppose W, is a factor bundle of 9 V
and W, is a factor bundle of O V. Then W,® W, is a factor bundle of

(9 V) ® <9 V> — W, ® W,. Define W, o W, to be the image of anV. Since
the fiber dimension of W, o W, may vary from point to point of X, W, o W, is
not necessarily a bundte.

If W, is a factor bundle of X X (O R?) and W, is a factor bundle of
X x J™p, q), then W, Q W,is a factormbundle of X x ((O R"‘) ® J(p, q))
=X X (((ﬂ? Rp*) ® (Cn) Rl’*) ®R‘1). Define W, o W, tombe the image of

X X (( C+)n R”") ® R") = X X J™*"(p, q). Once again, W, o W, need not be

a bundle.

Consideration of the special case, where X is a point, yields similar defini-
tions for the symmetric product of appropriate vector spaces.

Let W,, W, and W, be factor bundles of X X (Ck) V), X X (O V), and

X X ((n) V) respectively, and suppose W, o W, and W, o W, are bundles. Then

Wio(Wyo Wy) = (W, 0 W,) o W,, so parentheses may be removed without intro-
ducing ambiguity. Similarly, if W, W, and W, are factor bundles of

X X (Ck) R”*) , X X (9 RP*), and X X J*(p, q) respectively.
If 0 < p < g, there is an epimorphism R? — R? defined by (x,, - - -, x,) —
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(x;, -+ -, x,). Suppose I™ = (a,, - - -, a,,) is such that each g, is a non-negative
integer and @, > - - - > a,,. Since each of the vector spaces R* is a factor space
of R“, R*mo ... o R* is defined. Define P(I™) = dimension (R®™o - - - o R®).

Lemma 6.1. Let W, --.,W,, be vector bundles over X, and suppose that
for each i there is an epimorphism W;— W,,,. Then W, o - .- o W, is a vector
bundle. If, for each i, dim W, = a;, then dim (W, o---o W) =P(a, - - -, an).

Proof.  Straightforward.

Let p and g be given. Define an admissible sequence of length n to be a
tuple (a,, - - -, a,) of non-negative integers such that a, > p — q and p > a,

- >a, If I"=(a, ---,a,) is an admissible sequence of length n and
0 <m < n, thenI™ = (a,, - -,a,) is an admissible sequence of length m.

Fix an admissible sequence I* = (a,, - - -, a,). If 0 < i < j, let ri: Ji(p, q)
— Ji(p, q) be the projection.

Define Z(¢) = {0} = J(p, @). Let E} = Z(¢) X R? and E} = Z(¢$) X RC.
Now suppose that whenever 1 <m < n — 1, Z(I™) is a submanifold of J™(p, q).
Hl<m<nletEr={gecl™p,q|lg]" e ZU™ N} 1 <m<n—1,let
B™ ={(¢, ) € Z(I™) x J™(p, @) | ¢, € TZ(I™)} and assume it to be a bundle over
Z(I™). If 1 < m < n— 1, define EP* over Z(I™) by the exactness of 0 — B™
—Z(I™) x J™(p,q9) > Er »0. If0<m < n— 1, let E* be a vector sub-
bundle of Z(I™) X R?. If 0 < m<n—1, H™': Em*' — Z(I™) X (R* @ J™(p, q))
induces y™*': EP*! > E*QER. If 0 <m < n — 2, suppose y™*! is a,,,-
uniform and Z(I™*') = ZU™),,,,,G™*"). Define Z(I") = Z(I""),,G™. If
0<m<n—1,y"*" induces a map r**"Ep — rm*"E? over EP*L. If 0 <
m < n — 2, suppose this map induces an exact sequence 0 — E*! — rm**En
— rmArEm O™t 5 0 over Z(I™*Y) defining Q™*!. (Note that the bundles
E? and the sets Z(I™) are defined inductively.) Define bundles E7 and Q" over
Z(I™) by the exactness of 0 — E? — r*_*Ez~' —»r*_*Er!' Q" —0. If
1 < m < n, define a bundle N™ over Z(I™) by the exactness of 0 — ET —
rm_*—Ert' > N™ 0.

Let 7z: G,,(rr_,*E}™") — E} be the bundle projection, and 0 — L,, —
m*ry_*E}~' - M, — 0 the usual sequence as in §2. If s*: Z(I") —
G, (r*_\*E3™") is the standard section, then s*'L, = E7 and s"M,, = N™.

Ifl1<i<n—1, y*: Ei>E"® Ei™! over Z(I*"") induces a monomorphism
N — ri_*E{™' and hence, over G, (rr_,*E}""), a monomorphism

L% oz*(r"_*E} "o ... o r"E) @ *r¥'N,

an
~ - * ik - i—1
g La* o n'*(r"n I*E;‘ Po.uiio I‘? E;) ® ﬂ*rZL 1*E§ .

It is annoying but straightforward to show that the image of this map is con-
tained in the symmetric subset L* o z*(ri_*E}~"o -« o rf"Ef o rp_ ;*E{™).
0->Niori *Ei' 50t —»0and 0>Ef QN »E! ori_(*Ei' S Ef o Q' — 0
are exact. But for 1 < i< n— 1, Ei'c Q' = E} by Proposition 4.1 and Theo-
rem 3.2. Thus over each point of G,,(r7_,*E;"") there are exact sequences:
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0— L¥, oz*ry FE; " @ z*r N
— L¥, o m*rn_$Ep "o n*ry }Ep~t — L¥ oz*ri }E;™ —0,
0— L¥, o r¥ri_¥E;™" o s _fE;™ @ #*ri_fN"~?
— L¥, o m*rn_fE3~" o n¥rn_$E3 o n¥ry_$E;

= LY, 0w FET o 2 B 0,

0 L¥ om*rn ¥Ep"o ... o 24P EF @ 2*rpN!
— LE om*ry ¥E7 "o ... o ¥rP"EY @ n*ry"({0} X RY)
— L, o t* 1 fE} o - o R ER o IE — 0

Note that the fiber dimension of N' is p — a,, and the fiber dimension of N*
is a;_, — a; for i > 1. Thus from Lemma 6.1 and the exactness of the
above sequences, the fiber dimension of L} o z*rz_¥E7;~' at each point of

n-—1
G, (r:_¥Ey~") is P(a, -+, a,) (@ —p + a) — Z}z P(a;, - -, a)(a;_, — a,).

Consequently, 7" is a,-uniform and therefore Z(I") is a manifold. Furthermore,
0—E @ N* - EXort ¥Er' - T(E?, Z(I")) —0 is exact. Thus T(E?, Z(I™))

~ E}" o Q" and has dimension P(a,, - - -,a,)(q — p + @) — 3. P(as, - - -, a,)
i=2

@, — ay).

That Z(I") is invariant under ¥, X %, is immediate from Theorem 4.3.
If U and V are manifolds and ¢: U — V, let Z,(¢) = Z(a)(¢) = {x € U|dimen-
sion kernel T¢, = a}. Let X be a p-manifold, Y a g-manifold, and letf: X > Y
be Z(I™)-transversal for each m < n — 1. It follows from Proposition 5.4 that,
for each m, ZU™*)(f) = Z,,,,.(f/| ZA™)H).

We now summarize:

Theorem 6.2 (Boardman). Let X be a (compact) p-manifold, Y a q-mani-
fold and I" = (a,, - - -, a,) an admissible sequence. If f: X — Y, define Z(¢)(f)
= X, and if ZA™)(f) C X is defined and is a manifold, define ZI™*')(f) =
Zq, .| ZA™)()). Then for a (open and dense) dense set of functions f in
E"*YX,Y), ZU™)(f) is a manifold for 1 < m < n, and furthermore, for such f,

dimension T(Z(I*~)(f), Z(I™(¥)))

= PU)G — p + @) — 31 P(ay -+, @)@, — @)

Proposition 6.3. Let 2, = {a)|acFp,p), 0y L, and, for sufficiently
small x, Do, preserves perpendicularity}. Let a > p — q and max (0, a(q — p
+ a) + a — p) < b < a, then there is a submanifold Z(a | b) of (r})~'Z(a),
invariant under %, X &£ ,, such that:

i) dimension T((r}))~'Z(a), Z(a | b)) = b(p —al@q — p + a) — (a — b)),
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i) if X is a manifold of type Z,,Y is a g-manifold and f: X —Y is Z(a)-
transversal, then Z(a | b)(f) = {x e Z(a)(f) | the intersection of the vector space
normal to TZ(a)(f), with kernel Tf, is b-dimensional}.

Proof. Over Z(a), H' induces an exact sequence 0 — K, — Z(a) X R? —
Z(a) X R"— Q, — 0. Furthermore, T(J'(p, q), Z(a)) =~ K¥*® Q,. Define E over
Z(a) by E = {(¢, v) € Z(a) X R?|v is perpendicular to w whenever (¢, w) € K,;},
Eisan Z, X %, bundle over Z(a) with fiber dimension p — a. H? induces
7’ (D 7Z(a) - EX*® K¥ ® Q,. Define Z(a | b) = Z(@)p_ag-p+ar-—a—n1)-
r*isp — a(q — p + a) — (a — b) uniform sice E N K, is the zero section of
Z(a) X R?. Over Z(a | b),7* induces and exact sequence 0 — K, ,, — 17E —
r(K¥ ® Q,) where dimension (K,,,) =p —a(gq —p +a) — (a— b). If N,,,
is defined by the exactness of 0 — K, , — r'/E — N, , — 0, there is an exact
sequence 0—K} ,QN,,,—K¥ ,Qr(K*® Q,) — T((r))Z(a), Z(a | b))—0.
That Z(a | b) is invariant under £, X %, is inmediate from Theorem 4.3.
It remains to show ii).

Let X be a manifold of type #, and Y a g-manifold. Let f: X —Y be Z(a)-
transversal and let x € Z(a)(f). By Proposition 5.4, x e Z(a | b) if and only if
(f"E), N (TZ(a)(f)), has dimension p — a(q —p + a) — (a — b). But

((f"E): U TZ(@D )t = F°E): + TZ(@)(H): = (Ko, + TZ(@) (D .
Thus xe Z(a | b) if and only if

al@—p+a) + (a—b) .
= dim (f"E), N TZ(a)(H)* = dim (f"K,), + TZ(a)(H3)
= dim f*K, + dim TZ(a)(H*+ — dim ((f"K.). N TZ(a)()3)
=a + alg — p + a) — dim ((f"K,), N TZ(@()3)

if and only if dim ((f"K,), N TZ(@)(HL) = b. q.e.d.

Obviously Proposition 6.3 is not the most general result possible. One can
construct invariant manifolds by combining perpendicularity considerations with
the constructions of Theorem 6.2.

Proposition 6.4. Let &, C %, be translation invariant, Z, = {id}, and
Q. be as in the proof of Proposition 6.3. Let E be a vector sub-bundle of
Z(a) X R? invariant under the action of £,, and y*: (r)~'Z(a) - E*®
(Z(a) X R™ ® Q, be the map induced by H?. If b < dim E, then Z(a),(y?) is
a manifold and is invariant under % .

Proof. y* is b-uniform by Lemma 6.1, so Z(a),(>) is a manifold. y* is
equivariant by Proposition 4.4. so Z(a),(y?) is invariant under Z,. q.e.d.

We conclude this section with an application of Proposition 6.4.

Let X be a p-manifold, and f: X — R? an immersion. f induces a map
f:ix— G,(R,) defined by TA(TX,) = ( fx) 7+ According to Proposition 2.2,
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f*TG,(RY) = TX* ® f*Q,. Thus Tf induces a map ¢: TX — TX* @ f*Q,.
If, in Proposition 6.4, a =0 and E = Z(0) X R?, then a straightforward local
analysis shows that ¢ = f**. It follows from Proposition 6.4 that for b < p
and f suitably transversal, Z,(f) is a submanifold of X. Define bundles K2 and
N2 over Z,(f) by the exactness of the sequences 0 — K2 — TX — TX* ® f*Q,
and 0 —» K} — TX — N} — 0. For Z(0),(y®)-transversal immersions f there is
an exact sequence 0 — K@ N2 — K¥* O TX* ® f*Q, — T(X, Z,(f)) — 0 over
Z(f). Thus T(X, Z,(f)) has dimension @b + 1) + blp — b))(g — p) —
b(p —b) =3b(b + D(@—p) +blp —b)g—p—1).

Proposition 6.5. Let X be a compact p-manifold and let ¢ > p + 2. Then
there is a set & of immersions of X into R, which is open and dense in the
set of all immersions of X into R (in €*(X, RY) such that f is an immersion
for each fe &.

Proof. Ifb>1and q>p + 2, then 1b(b + 1)(g — p) + b(p — b)(g—Pp
—D>=bb+ 1D +bp—>b)=>bp+1)>p.

7. Characteristic classes

In this section it will be shown that there is a connection between certain
kinds of singularities of nice maps of manifolds and the Whitney classes of the
domain and target manifolds. Since the results are fragmentary, only a sketch
of the methodology will be given. The approach was outlined by Porteous in
[5].

Let .Z, (respectively Z,) be a subgroup of .2, (respectively %,), and
A C J™p, q) a manifold invariant under #, X Z,. Let E, = {[¢]**!|[¢]" € A},
and let z: E;, — A be the bundle projection. Let E, be a vector sub-bundle of
A X R?, which is invariant under £, X Z,, and let 0 » B — 4 X J*(p, @)
— E; — 0 be an exact sequence over 4 with B invariant under .2, X Z,. Let
7 E, —> Ef ® E, be the map induced by H"*!, and suppose that y is equiva-
riant and a-uniform (a < fiber dimension E,). Let X be a manifold of type .Z >
and Y a manifold of type Z,.

Then, as in §5, J4(X,Y) and J3},(X,Y) are manifolds, and E, and E,
determine bundles (also denoted E, and E;) over J%(X,Y). Also y induces a
map 7: J2 (X, Y) - Ef ® E; over J3(X,Y), and we have a bundle G,(z*E,)
over J3*Y(X,Y) and an exact sequence 0 — L, — #*E, - M, — 0 over
G, (x*E,) where 7: G,(z*E,) — J%(X,Y) is the bundle projection. Let
7o: Go(n*E,) — L¥ @ 7*7*E, be the section induced by y. Since 7 is a-uniform,
there is a symmetric sub-bundle S, of L} ® #*z*E,, containing the image of
74, such that 7, is a transversal section of S,.

Let f: X — Y. f~*! induces amap f: G,(f*E,) — G (z*E,). If #: G,(f*'E,)
— A(f) is the bundle projection, and 0 — L,— #*f"E,— M, — 0 is the obvious
sequence over G,(f"'E,), then L, = f*L, and M, = f*M,. 7: E, —» E¥ QE,
induces a vector bundle morphism 7:f*E, — f*'E, which, in turn, induces a
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section 7,: G,(f"'E,) — L* ® #*f*'E,. Since 7, is the pullback f*y, of the
section 7,, the image of 7, is contained in the symmetric sub-bundle f*S,.
Note that A,(f) = {x ¢ A(f)|dimension kernel 7, = a}. Define a section
§.: A(f) > G,(f"E,) by 3,(x) = kernel 7,. Suppose f is A-transversal. It is not
difficult to show that f is 4,(y)-transversal if and only if 7, is a transversal sec-
tion of f*S, on 5,4,(f).

If U is a topological space, then H,(U)(H*(U)) will denote the singular
homology (cohomology) of U with Z,-coefficients. Let U, and U, be compact
manifolds with U, C U,. If i: U, — U, is the inclusion, i,: H,(U) — H,(U,)
is the group homomorphism induced by i, and u is the fundamental cycle of U,
then the dual to i u in H*(U,) will be called the dual to U, in U,, and will be
denoted D(U,, U,).

Let E be an m-dimensional vector bundle over a compact manifold U.
WE)=1+ W(E) + --- + W,(E) will denote the Whitney class of E. If
g: U — E is a transversal section and Z is the zero set of g, then W, (E) is the
dual to Z in U.

If A,(f) = ¢ for each b > a, then §,4,(f) is the zero set of 7,. Hence the
following

Lemma 7.1. Suppose the fiber dimension of S, is m. Let f: X — Y be
A (y)-transversal. suppose A(f) is compact and A,(f) = ¢ for each b > a. Then
the dual to 5,A,(f) in G,(f"E,) is W,(f*S,).

If dimension E, = 1, then G,(f*'E,) = A(f) and f*S, = (f*E)* ® (f*'E,).
Thus

Proposition 7.2. Let dimE, = 1,dimE, =m and f: X - Y be A,(y)-
transversal. If A(f) is compact, then

D(A(), A,(H) = Wa((WED* ® ("Ey) = ii W(WE)' W _i(fVEs)

Let U, and U, be compact manifolds and let ¢: U, — U, be continuous. ¢
induces a group (not ring) homomorphism ¢,: H*(U,) — H*(U,). ¢, is defined
by composing ¢, with the appropriate duality isomorphisms.

If ¢*: H*(U,) —» H*(U)) is the ring homomorphism induced by ¢, u, e H*(U,)
and u, e H*(U,), then ¢,((¢*u,) - u)) = u,-du,. If ¢: U, — U, and ¢: U, — U,
then (¢¢), = ¢yy. Note that if U, C U,, i: U, — U, is the inclusion, and 1 is
the unit cohomology class of U,, then D(U,, U)) = §]1.

For the remainder of this section, X will be compact.

Lemma 7.3. Let E be a vector bundle over X of fiber dimension m. Let
a<mand let z: G,(E)— X be the projection. Suppose 0—L,—z*E—M,—0
is the usual sequence over Go(E). Then zy(W,,_,(M,)*) is the unit cohomology
class of X.

Proof. See [5].

If E is a vector bundle over X, then — E will denote the inverse bundle of E.

Porteous uses Lemma 7.3 to prove
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Theorem 7.4. Let X be a compact p-manifold, Y a g-manifold and a a
positive integer such that a < panda > p — q. Let f: X — Y be Z(a)-trans-
versal and suppose Z,(f) = ¢ for b > a. Then D(X, Z,(f)) is the determinant
of the a X a matrix whose i, j term is W,_p,q.;_(f*TY — TX).

Proof. See [5].

(Actually, Porteous proves a somewhat stronger theorem.)

Lemma 7.5. Let E be a vector bundle over X of fiber dimension m, and
7: G(E) — X be the bundle projection. Then z,(W (L)?) = W;_,, .,(—E) for
each j.

Proof (By inductionon j). Leta=W(L),1+b,+ --- +b,_,=WM,)
and 1 +c¢, + --- + ¢, = 7*W(E). 7, lowers dimension by the fiber dimension
of G,(E), so the lemma is trivial for j < m — 1. By the Whitney duality theorem,

m=1 m—1

2,4y 3 =Dby_,, sO ﬁ#bm-l = 3, ﬁ#(ai)Wm—l—i(E) = ﬁ's(am_l)- But by
i=0

i= i=0
Lemma 7.3, z,b,,_, = 1, so the lemma is valid for j = m — 1.
We now assume that t > m — 1 and that Lemma 7.5 is valid for j < ¢, and

m—1 m-—1
prove for j =t + 1. 3] a*c,_,_; = b, _, implying >} a**'c,,_; = ab,,_, = cp,
=0 i=0
SO i a,cp_; = 0. Thus if ¢t + 1 > m, then i at*i-mric, = 0. Applying 7,
i=1 i=0
and the induction hypothesis,

0= ﬁ#(ah'l) +m2:ﬁ’(al+1—M+i)Wm—i(E)

m-—1
= my(a*) + Z Wi il —E)Won_(E)

m—1 m
SO ﬁ*(at+l) = Z(:] Wt+2—2m+i('—E)Wm—i(E)- BUt ZO Wt+2—2m+i('—E)Wm-12(E) iS

the (t + 2 — m)-dimensional term of W(—E)W(E) which is O since
(t + 2 — m) + 0. It follows that

ﬁ#(atﬂ) == Zlo Wl+z—2m+i(_E)Wm—i(E) = Wt+2—m(—E) .
Theorem 7.6. Let p < q and I" =(1,---,1). Let X be a compact p-
——

n
manifold, and Y a q-manifold. Suppose f: X — Y is Z(I™)-transversal for each
m < n and such that Z(f) = ¢ for each i > 1. Then the dual to Z(I")(f) in
X is a polynomial in the W,(f*TY — TX), and this polynomial is computable
and does not depend on X, Y and f.
Proof. Let all notation be as in § 6. If 1 < m < n, then f™E7 = f"E} and

fmEm = (@ e ;) ® 0! over Z(U™)(f). Note that dim E} = 1 and dim Q' =

qg—p+ 1. Let i,,: ZU™)(f) — ZUI")(f) be the inclusion. By Proposition 7.2,
ifl<m<n-—1,then
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D™D, ZU™ D) = it (Wooy (@ 1E2) @ 1°0'))

- z,’ﬁ‘,(Z((m + 1)wl(f"E;»qu_pH-i(fl*Ql)) :

7

Thus
DI, 2a0® =TT {5 1 + VWG ED Wy 700 -

Denote this cohomology class by C. If i: Z(I')(f) — X is the injection, then
DX, Z(I")(f)) = i,C. Let #: G(TX) — X be the projection and s': Z(I")(f) —
G,(TX) the obvious section. Then zs' = i so D(X, ZU™)(f) = =,s',C. If Qis
defined over G,(TX) by the exactness 0 — M, — 7*f*TY — Q — 0, then f*Q!
= s"Q. As noted before, f*E} = s"L,. siC is now computable by Lemma 7.1.
By the Whitney duality theorem, siC is expressible in terms of W (L,) and the
Whitney closses of z*TX and z*f*TY. By Lemma 7.5, 7,s5;C is computable.

Theorem 7.7. Let p>gq,and I"=(p —q+ 1,1,...,1). Let X be a

n—1

compact p-manifold, and Y a q-manifold. Suppose f: X — Y is Z(I™)-trans-
versal for each m < n and such that

) Z,f) =¢foreachi>p —q+ 1, and

i) Zp —q+ 1,)() = ¢ for each i > 1.
Then the dual to Z(I™)(f) in X is a polynomial in the W, (f*TY — TX), and
this polynomial is computable and does not depend on X, Y and f.

Proof. In the spirit of Theorem 7.6.

The author has been unable to find a nice form (as in Theorem 7.4) for the
polynomials of Theorems 7.6 and 7.7.
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