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ALGEBRAS OF MATRICES UNDER DEFORMATION

W. STEPHEN PIPER

1. Introduction

The subject of this discussion is families of one-parameter deformations of
the associative algebras ot n x n upper triangular real matrices the purpose is
to expand the set of examples of algebraic deformations. Gerstenhaber [1] has
given an example of a commutative associative algebra which when deformed
is non-commutative. Also, a large class of associative algebras A, namely the
class of semi-simple algebras, which includes the algebras ot n x n matrices,
has the second Hochschild cohomology group H\A,A) equal to zero. These
algebras are rigid, meaning that their only deformations are trivial, that is,
equivalent to those generated by vector space isomorphisms.

We consider the algebras An of n x n upper triangular real matrices having
equal diagonal elements. For any n > 2, dim Z2(An, An) > dim B\An, An),
and hence H2(An,An) Φ 0 (§4). In the case of n — 3, we exhibit 2-cocycles
which can not be integrated to a deformation of A3. Although H\A2, A2) Φ 0,
we prove that any infinitesimal deformation / of A2 and any partial integration
of / can be completed to a deformation of A2. In other words, all obstructions
to the integration of / vanish, and as we shall see, with restriction only on the
choice of four of the eight coefficients for the cochains involved.

§ 2 presents a brief review of the definitions in algebraic deformation theory,
and § 3 introduces the terminology which proves useful in analysis of the de-
formations of An. The existence of non-trivial infinitesimal deformations of An

is proven in §4, together with the fact that H\An,An) Φ 0. The particular
cases of n = 2 and 3 are taken up in §§ 5 and 6. Formula 19 and § 7 provide
examples of deformations of An, n > 2.

2. Background

We recall from [1] and [2] the principal definitions of algebraic deformation
theory. Given an associative algebra A with multiplication denoted by juxtaposi-
tion, we define a (one-parameter) deformation of A to be a formal power series,

( 1 ) Ft(a, β) = aβ + Ua, β)t + f2(a, β)t2 + , a, β € A ,
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such that Ft satisfies the law of associativity:

( 2 ) Ft(Ft(a, β), γ) - Ft(a, Ft(β, γ)) = 0 , a, β, γ € A .

In terms of the Hochschild cohomology of A (with coboundary operator δ), (2)
is equivalent to

δfΛcc,β,γ) = Σ rfp(ίq(«,β),r) - fp(<*>U(β>r» >

or more conveniently,

δfΛ*,β,r) = ΣrfP*fq(a,β,r),
P,Q>0

where fp * fq(a, β, γ) = fp(fq(a, β),γ) - fp(a, fq(β, γ)).
Given an associative algebra A and a cocycle fλ € Z2(A,A), one seeks to

"integrate" jλ to a deformation Ft9 i.e., to obtain 2-cochains f2, /s, satisfying
(3). Having obtained /2,/3, ,fr_ί satisfying (3), we say that jλ is integrated
up to the rth-stage. The 3-cochain

ωr=pΣJv*fq

is called an rth-obstruction to the integration of fλ. The obstruction is said to
vanish if ωr is cohomologous to zero. Gerstenhaber [1] has shown that
ωr ε Z3(A,A), and the question of integration is then to find fr e C2(A,A) such
that δfr = ωr.

3. The algebras An

Denote by An, for fixed n>2, the algebra over the real numbers of n x n
upper triangular matrices which have equal diagonal elements. Thus An is a
subalgebra of the algebra of all n x n upper triangular real matrices. While this
latter algebra, being semi-simple, has second Hochschild cohomology equal to
zero, the algebra An does not. As a vector space over R,An has a canonical
basis

{e19 - - -, ευ} , dim An = v = 1 + n(n - l)/2 ,

where εγ is the n x n identity matrix, and the remaining εt each have a single
non-zero entry (specifically, 1) above the diagonal. It is convenient to express
the product of elements of An in terms of this basis. In particular,
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( 4 ) εiSj =

Here and subsequently all summation is over the index set of the basis (i.e.,
from k = 1 to k — v).

One and 2-cochains g and / can be expressed as:

( 5 ) §(.εi) = Σ bikεk , /(βj, ε̂ ) — Σ aijmεm

One ascertains that B\An,An) consists of elements of the form:

( 6 ) f(εi, εj) = δg(εi, εά) = Σ (eikPbjk — ^ijΦkp + ^kjpi>ik)^p
p,k

The requirement that / 6 C2(/4n, An) be a cocycle imposes restrictions on the
coefficients α^ m in the expression (5). In particular, δf(εi,εj,εk) = 0 for all /,
/, k implies that

Σ (eipm^jkp — epkmaijp — eίjpapk7ϊl + ejkpaipm)εm = 0 ,

and, by the linear independence of the εm, that

( 7 ) Σ (eipm^jkp — ^pkm^ijp ~ ^ίjp^pkm + ^jkp^ίpm) = 0 ,
P

for each m = 1, ,v.

The general form of h(εi, εjy εk) e B\An, An) is obtained from consideration of

ί(βi,Bj) = Σ aijm£m' Then

8) δf(Bi9Bj9Bk) = Σ (eimp^jkm ~ ^mkp^ίjm ~ ^ί
m,p

Let the deformation cochains fp9 p = 0,1,2, , of the algebra An be given

by

where, of course,

k

and /i is a cocycle. With this notation and the assumption that

the rth-obstruction,
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(9) αv= £ r / , * / , >

can be expressed as

= Σ UpiCljΛ + ••• + cΐjvευ,εκ) - /„(€„ cjtle, + +

+ (cϊnc?kυ + . . . + cϊ, β cf t f , - c j t l c f l β - . . . - c<jkvcfvv)εv]

4. Existence of infinitesimal deformations

The result of this section is the statement that for each n>2, H2(An, An) Φ 0
and H\An, An) ψ 0. Thus, there are non-trivial infinitesimal deformations, and
so possibly deformations. Further, obstructions do not necessarily vanish. We
shall see in § 5 that for n — 2 all obstructions do vanish, and one has actual
deformations. For n = 3, a non-vanishing primary obstruction will be exhibited
(§6).

Theorem 1. H2(An,An) Φ 0, n > 2.
For the case where n, and hence v, are greater than 2, the proof is given

most easily by demonstrating that the following cocycle is not a coboundary :

(11) f(ei,£j) = δivδj2εn ,

where di} is the Kronecker delta, and ε2, εn, εv denote the following matrices in
the canonical basis {εl5 ε2, , εn, , εv} of An:

ε2 has a 1 in the 1 s t row, 2nd column, otherwise zero,
εn has a 1 in the 1 s t row, ntiL column, otherwise zero,
εv has a 1 in the (n — l) t h row, wth column, otherwise zero.

First, one shows that (11) is a cocycle.

(12)
(δδk2εn) — Σ eίjmδmvδk2^n + Σ ejkmδiυδm2εn — (δίvδj2εn)εk .

Since

1 < i < v ,
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and

ejk2 = δjlδk2 + δj2δkl 9

(12) becomes

δf(,εi9εj,εk) = (δiιδjΌδk2 — ^ίjVδk2 + ejkiδiv ~ δiVδί2δkι)εn = 0 .

In order that f(εi9εj) be equal to δg(εi9εj) for some g(εt) = Σ bikεk, the
k

coefficient aίjm of εm in (11) must be

(13) aiJm = Σ (eίkmbjk — eijkbkm + ekjmbik) .
k

In particular, when i — v, j = 2, and m = n, (13) becomes

aίjm = αυ2n = Σ V̂ υfc2̂ 2fc ev2kbjcn 4" e\t2vPvk)

But, evfe2 = eυ2A; = 6̂ 2̂  = 0, for all k, 1 < k < v. Therefore, since av2n = 1
in (11), and not 0, Kε^εj) — δivδj2εn is not an element of B2(An,An). Hence
the cohomology class of / in H\An,An) is non-trivial.

When n, and hence v, equal 2, f(εi9 εj) = δί2δj2εi is a non-cobounding cocycle.
The proof is analogous to the preceding general case: (13) becomes for / = /
= 2,m= 1,

Σ \e2k\b2k — e22kbk\ + βk21b2k) .
A:.

And,

&2kl — &k2l : = : €22k = U , K = 1 , 2 .

Again, since a2n = 1 in (11), and not 0, fiε^εj) — δί2δj2ελ is not an element of
B\A2,A2).

Theorem 2. H\An, An) φ 0, n > 2.
Analogously to the preceding, one demonstrates that

(14) 8iβi9εj9εk) = δίnδjnδknεn

is a non-cobounding cocycle. Since eijn = δaδjn + δinδjl9 we have

δg(εi9εj9εk9εΊn) — εi(δjnδknδmnεn) — eίjnδknδmnεn + δinejknδmnεn

— δίnδjnekmnεn + δίnδjnδknεnεm — 0 .

Suppose g = Σ Cij*mβm € 5 3 U n , ^ n ) . Then one shows that cnnnw = 0, where-
m

as for the g e Z\An, An) defined by (14) above, cnnnn = 1.
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Consider /(εί5 ε̂ ) = 2 aijmεm such that δf = g. The εn-coefficient of
TO

uf\£i) £jy £fc) IS

ZJ eimnajkm — emknaίjτn — eijmamkn + ejkmaίmn
ΊΠ

Setting / = / = k = n, we get

m

since ennm = 0 for all m, and enmn = emnn =<δml.

5. Deformations of A,

The algebra A2 of 2 x 2 upper triangular matrices with equal diagonal ele-
ments, considered as a vector space over R, has a canonical basis

Γ = lo i ) ^ = lo oil "

The coefficients eijk in (4) can be conveniently expressed in matrix form:

(15) eiΛ =

In order that

(16) Ket,e,)=Σβ««e»
m

be an element of B2(A2,A2), the coefficients aijm must satisfy

from which we conclude dim B2(A2, A2) = 3.
In order that / € C2G42, A2) be a cocycle, its coefficients in (16) must satisfy

0 aj \aιn a2

from which we conclude dim Z2(A2, A2) = 4. Therefore dim H2(A2, A2) = 1.
A generator for H2(^2,y42) is the cohomology class of the cocycle /(εί?ε^) =

Using the cocycle ^(ε*, ε̂ ) = δί2δj2εx, we proceed to deform A2. The primary
obstruction ω2 = /x * /x is equal to zero for our choice of fγ. Hence f2 can be any
cocycle, the zero cocycle, for instance. Letting fr — 0, r > 1, we have
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(19) Ft(a, β) = aβ+ Σ U(«, β)tr = ocβ + /,(«, β)t ,

a non-trivial deformation of the original multiplication of A2. If

\0 a I \0 b

then

0 ab -\- ax

On the other hand, suppose for /2, one chooses a non-zero cocycle. The ques-
tion is then whether

aβ + f,(a, β)t + f2(a, β)t2

can be extended to a deformation of A2, or if fx is an arbitrary cocycle, whether
there even exists an f2 whose coboundary equals fι*fι. More generally, one
asks what restrictions, if any, are needed on the ft in order that the partial
integration of /15

(20) aβ + Ua, β)t + f2(a, β)t2 + . + / > , β)t' ,

be extendible to a deformation of A2.
From (8) we conclude that B3(A2, A2) consists of cochains whose coefficients

cίjkm satisfy

c - I ° σ

(21)
_ /αi2i 0\ _ /α122 — am —a

\ 0 0 ; \fl121 - α9 l 1 0

where the «^ m are the coefficients for some 2-cochain /(εί?ε^) = 2 aijm£m-
m

Dimension J53(y42,>42) is then four,
In an analogous manner, one can show that for a 3-cochain h(ei9εj9εk) —

Σ cijkm£m to be an element of Z3(A2,A2), its coefficients c ί j f e w must satisfy

(22)

0
C2111

0

°)
oί '

ol

: = / o
V L 21112

| ^ 1 1 2 2

0 '

^2111

\

/ '

C 1 1 2 ]

^2222
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Hence dim Z\A2, A2) = 5, and dim H\A2,A2) = 1. A representative of a
non-zero class in H\A2,A2) is h(εί9εj,εk) = δi2δj2δk2ε2, and all other cocycles
are cohomologous to real multiples of this one.

Lemma 1. // fx <ε Z\A2, A2) and /2, , fr <= C\A2, A2) satisfy

(23) δfs= Σ fp*U,

then for 1 < s < r,

fp*U
p + q=s
p,q>o

i) a{2λ = as

2U ,

ii) a\22 = as

2l2 ,

where f8{ei9ej) = Σ </mεm
TO

For 51 = 1 the lemma is a consequence of /^s being a cocycle. Computing
df2 = /x * /x, one notes that αj21 — α211 = 0 by examining the coefficient c2122 in
(21). Similarly, the sum of coefficients

The proof for general s now proceeds by induction. Let

δfs(.£i>>Zji£k) = Σ ίp^ίqiβi^j^k) — Σ Cίjkm^τn

Since this is a 3-coboundary, from (21) we have

— y \rP cq Λ- rp rq rp rq rp cq

— Z-J L c212 t ' l l l I C221LΊ12 L Ί l l t Ί 2 1 L'121LΊ22

fOΛΛ l /̂ P /̂ 9 I /"P /̂ ? /i? r*q rp Γq 1
\**~J \ 1'111U211 T^ ^211 212 ^211 111 i '221 t '112J

x ' rίΛJ> « ? ΛJJ ^i? "\ I (~>q ίpp /-»P Λ I f*p (r*q f*q \\
— /_j LVt/211^212 ^121^122/ ~Γ t'lllVL'121 ^ l l ^ "Ί~ l / l l l\^211 ^121/J

p,q>o

= 0,

by the induction hypothesis, as p and q are less than s. Also,

^122 ^212 = = ^1122 H" ^2112

V1 \f>p r q j _ >̂ P ^Q r P rq s*P Γq

— Z_l LCΊ12C211 T" C 2 1 2 C 2 1 2 c 2 1 2 L ' l l l ^222^112

+ r*V r*q _L /'•i7 /^9 rP s*Q r P rQ- Ί

*-'122t'lll r ^222^112 *^112I-'121 I"122L'122J

= 0 .

We conclude that all obstructions to the integration of infinitesimal deforma-
tions of A2 vanish by letting r = 1 in the following theorem.
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Theorem 3. Given fx e Z2(A2, A2) and /2, , fr e C2(A2, A2) such that

(26) δf*= Σ_fP*fq> s = 2, , r ,
P,Q>0

one can extend

(27) aβ + Ua, β)t + /2(α, β)t2 + + fr(a, β)tr

to a deformation Ft(a,β) of A2.
Gerstenhaber [1] has proven that

(28) ωr+1= p+q=r+l
>0

is a 3-cocycle. Comparing (21) and (22), we note that a 3-cocycle is a 3-co-
boundary if the coefficient c2222 is zero. Calculating c2222 for (28), we have

(29)

^2222 — 2-J
p+q=r+l

P,Q>0

= Σ <
p+q=r+l

I ^222^222

by the lemma.
Comparison of (21) and (22), together with (24), (25) and (29), yields the

corollary.
Corollary. With the hypotheses and notation of the theorem, the extend-

ibility of (27) to a deformation of A2 is independent of the values of anι,an2,
a22l, and a222, 1 < s < r, and the corresponding coefficients for values of s > r
may be chosen arbitrarily in integrating (27).

6. Deformation of A3

The 4-dimensional algebra A3, considered as a vector space over R, has a
canonical basis

l\ 0 0\ /0 1 0\ /0 0 1\ /0 0 0\

1 o , ε 2 = 0 0 0 , e s = 0 0 0 , e 4 = 0 0 1

\0 0 1/ \0 0 0/ \0 0 0/ \0 0 0/

The coefficients eίjk in (4) can be expressed in matrix form:

eijι =

(30)

1 0 0 0\
0 0 0 0
0 0 0 0,
0 0 0 0/

0 1 0 0\
1 0 0 0
0 0 0 0
0 0 0 0/
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eij3 —

(0 0 1 0\
0 0 0 1
1 0 0 0j

\0 0 0 0/

^ 0 0 0 1
0 0 0 0
0 0 0 0

vl 0 0 0

In order that

(31) Rε^Bj) = Σ aijm£m
Ίϊl

be an element of Z2(A3, A3), the coefficients aiJm must satisfy

0112

0111

0

0

0213

0

0

0111

0222

— 0241

0422

0

0

0

0

0

0

0

•«241

0

0

0

0242

0

0

0111

0222 -

CLoAΛ

— a9Λ + 024

The dimension of Z\A3, A3)is 15.
In order that /(>*, Cj) given by (31) be an element of B\AZ, A3), i.e., / = δg,

for some g(si) = 2 bijεj e Cι(Az, Az), its coefficients aiJm must satisfy

bn

0

0

0

0
0

0

0

0
0

0

0

0

0

0

an, =
i 2b2

0 bΆ

0

0
0

0
u —

0
0

(33) aw =
bu b2i

\0 0

, o o
0 0 0

0 0 0

, b,Λ b,.

2h

bn

bu

Hence the dimensions of B2(A3, A3) and H2(^3, A3) are, respectively, 12 and 3.
From (8) we conclude that B3(A3, A3) consists of cochains whose coefficients

Cίjkm satisfy the following constraints, where the aiJm are the coefficients for
some 2-cochain given by (31):
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cίjn —

cίji2 —

cίjn —

ciju —

Cij2l —

Cίj22 —

Cίj2i —

(34)

cijn —

0 0

-0211 0

— a

— a

!

\

0114

0111

I

vflin

^ 1 2 1

0

vo
0122

0121

0123

0124

0121

0

/0124

0

0

^0121

\o

311 0

411 0

0

— 0212

— 0312

— 0412

0

— 0213

— 0313

— 0413

0

0214

0314

0414

0 0
0 0
0 0
0 0

- β i π

0211

— 0311

0411

0

0224

0221

0

0

0

0

0221

0 0
0 0
0 0
0 0

0
0

0

0

0

0221

0

0

0

0214

0211

0

0

0

0

0211

—

0

— 0311

0

0

0

0311

0

0

0

0314

0311

0

0

0

0

0311

0

0321

0

0

— 0121

0 a

— <

0

0324

0321

0

0

0

0

0321

—

^321

^421

0

0424

0421

0

0

- 0 3 2 4

0

0421

0

0331

0

0

0411

0414

0

— a

0

0

—

0

0

0

—

\

0312

1

0313

0411

0

314

0411

- 0 1

321

— 02

- 0 4

0323

j

31

j

— 0141

0231 0421 0241 0322

31

31

5

— 0341

- 0 4 4 1
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Cij32 —

In the algebra Λ2, we found that all obstructions to integration of infini-
tesimal and partial deformations vanished (Theorem 3). For A5, we have the
contrary result.

Lemma 2. The infinitesimal deformation

(35)

where

βA = Σ di



ALGEBRAS OF MATRICES 449

is not integrable.
Comparing (32) and (33) we note that f(εi9 ε, ) in (35) is a cocycle but not a

coboundary. The primary obstruction

(36) ω2(ei9ej9ek) = f(f(ei9ej)9εk) — Kei9f(εj9εk)) = Σ ciJkmεm

m

has as a coefficient:

(37) c4223 = (2<z323 — a222)am = 2 .

From (34) any 3-coboundary £ cijkmem e B\AZ9 A2) must have c4223 = 0. There-

fore (36) is an actual obstruction, and the 2-cocycle (35) is not integrable.
More generally, in order that the primary obstruction to the integration of

the cocycle f(εi9 εj) = Σ aίjmεm be cohomologous to zero (i.e. vanish), the fol-

lowing relations must be satisfied by the aίjm:

(38) 0423(2^323 - «222) = 0 , ^ f a u s + 2̂42 ~ ^ 2 2 ) = 0 .

7. Existence of deformation of An

The existence of deformations of the algebras An9 n > 2, is demonstrated by
consideration of the non-cobounding 2-cocycle,

(39) ί^βu ej) = Σ ahm^m = δiΌδj2en ,
m

(cf. (11)). The primary obstruction of (39) is

— fi(δiΌδj2εn9εk) — fι(εi,

δnvδk2 — δjυδk2δίυδn^εn = 0 ,

since n Φ v, n Φ 2. Therefore, in particular, choosing /, = 0, s > 2, we have
the deformation of An,

Ft(εi,εj) =_ei6j + δίvδj2εnt , n > 2 .

The similar deformation of A2 was given in § 5.
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