ALGEBRAS OF MATRICES UNDER DEFORMATION

W. STEPHEN PIPER

1. Introduction

The subject of this discussion is families of one-parameter deformations of the associative algebras of $n \times n$ upper triangular real matrices; the purpose is to expand the set of examples of algebraic deformations. Gerstenhaber [1] has given an example of a commutative associative algebra which when deformed is non-commutative. Also, a large class of associative algebras A, namely the class of semi-simple algebras, which includes the algebras of $n \times n$ matrices, has the second Hochschild cohomology group $H^{2}(A, A)$ equal to zero. These algebras are rigid, meaning that their only deformations are trivial, that is, equivalent to those generated by vector space isomorphisms.

We consider the algebras A_{n} of $n \times n$ upper triangular real matrices having equal diagonal elements. For any $n \geq 2, \operatorname{dim} Z^{2}\left(A_{n}, A_{n}\right)>\operatorname{dim} B^{2}\left(A_{n}, A_{n}\right)$, and hence $H^{2}\left(A_{n}, A_{n}\right) \neq 0(\S 4)$. In the case of $n=3$, we exhibit 2-cocycles which can not be integrated to a deformation of A_{3}. Although $H^{3}\left(A_{2}, A_{2}\right) \neq 0$, we prove that any infinitesimal deformation f of A_{2} and any partial integration of f can be completed to a deformation of A_{2}. In other words, all obstructions to the integration of f vanish, and as we shall see, with restriction only on the choice of four of the eight coefficients for the cochains involved.
$\S 2$ presents a brief review of the definitions in algebraic deformation theory, and $\S 3$ introduces the terminology which proves useful in analysis of the deformations of A_{n}. The existence of non-trivial infinitesimal deformations of A_{n} is proven in $\S 4$, together with the fact that $H^{3}\left(A_{n}, A_{n}\right) \neq 0$. The particular cases of $n=2$ and 3 are taken up in $\S \S 5$ and 6 . Formula 19 and $\S 7$ provide examples of deformations of $A_{n}, n \geq 2$.

2. Background

We recall from [1] and [2] the principal definitions of algebraic deformation theory. Given an associative algebra A with multiplication denoted by juxtaposition, we define a (one-parameter) deformation of A to be a formal power series,

$$
\begin{equation*}
F_{t}(\alpha, \beta)=\alpha \beta+f_{1}(\alpha, \beta) t+f_{2}(\alpha, \beta) t^{2}+\cdots, \quad \alpha, \beta \in A \tag{1}
\end{equation*}
$$

[^0]such that F_{t} satisfies the law of associativity:
\[

$$
\begin{equation*}
F_{t}\left(F_{t}(\alpha, \beta), \gamma\right)-F_{t}\left(\alpha, F_{t}(\beta, \gamma)\right)=0, \quad \alpha, \beta, \gamma \in A \tag{2}
\end{equation*}
$$

\]

In terms of the Hochschild cohomology of A (with coboundary operator δ), (2) is equivalent to

$$
\begin{align*}
& \delta f_{1}(\alpha, \beta, \gamma)=0, \tag{3}\\
& \delta f_{r}(\alpha, \beta, \gamma)=\sum_{\substack{p+q=r \\
p, q>0}} f_{p}\left(f_{q}(\alpha, \beta), \gamma\right)-f_{p}\left(\alpha, f_{q}(\beta, \gamma)\right),
\end{align*}
$$

or more conveniently,

$$
\begin{aligned}
& \delta f_{1}(\alpha, \beta, \gamma)=0, \\
& \delta f_{r}(\alpha, \beta, \gamma)=\sum_{\substack{p+q=r \\
p, q>0}} f_{p} * f_{q}(\alpha, \beta, \gamma),
\end{aligned}
$$

where $f_{p} * f_{q}(\alpha, \beta, \gamma)=f_{p}\left(f_{q}(\alpha, \beta), \gamma\right)-f_{p}\left(\alpha, f_{q}(\beta, \gamma)\right)$.
Given an associative algebra A and a cocycle $f_{1} \in Z^{2}(A, A)$, one seeks to "integrate" f_{1} to a deformation F_{t}, i.e., to obtain 2-cochains f_{2}, f_{3}, \ldots satisfying (3). Having obtained $f_{2}, f_{3}, \cdots, f_{r-1}$ satisfying (3), we say that f_{1} is integrated up to the $r^{\text {th }}$-stage. The 3-cochain

$$
\omega_{r}=\sum_{\substack{p+q=r \\ p, q>0}} f_{p} * f_{q}
$$

is called an $r^{\text {th }}$-obstruction to the integration of f_{1}. The obstruction is said to vanish if ω_{r} is cohomologous to zero. Gerstenhaber [1] has shown that $\omega_{r} \in Z^{3}(A, A)$, and the question of integration is then to find $f_{r} \in C^{2}(A, A)$ such that $\delta f_{r}=\omega_{r}$.

3. The algebras A_{n}

Denote by A_{n}, for fixed $n \geq 2$, the algebra over the real numbers of $n \times n$ upper triangular matrices which have equal diagonal elements. Thus A_{n} is a subalgebra of the algebra of all $n \times n$ upper triangular real matrices. While this latter algebra, being semi-simple, has second Hochschild cohomology equal to zero, the algebra A_{n} does not. As a vector space over \boldsymbol{R}, A_{n} has a canonical basis

$$
\left\{\varepsilon_{1}, \cdots, \varepsilon_{v}\right\}, \quad \operatorname{dim} A_{n}=v=1+n(n-1) / 2
$$

where ε_{1} is the $n \times n$ identity matrix, and the remaining ε_{i} each have a single non-zero entry (specifically, 1) above the diagonal. It is convenient to express the product of elements of A_{n} in terms of this basis. In particular,

$$
\begin{equation*}
\varepsilon_{i} \varepsilon_{j}=\sum_{k} e_{i j k} \varepsilon_{k} \tag{4}
\end{equation*}
$$

Here and subsequently all summation is over the index set of the basis (i.e., from $k=1$ to $k=v$).

One and 2-cochains g and f can be expressed as:

$$
\begin{equation*}
g\left(\varepsilon_{i}\right)=\sum_{k} b_{i k} \varepsilon_{k}, \quad f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m} \tag{5}
\end{equation*}
$$

One ascertains that $B^{2}\left(A_{n}, A_{n}\right)$ consists of elements of the form:

$$
\begin{equation*}
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta g\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{p, k}\left(e_{i k p} b_{j k}-e_{i j k} b_{k p}+e_{k j p} b_{i k}\right) \varepsilon_{p} \tag{6}
\end{equation*}
$$

The requirement that $f \in C^{2}\left(A_{n}, A_{n}\right)$ be a cocycle imposes restrictions on the coefficients $a_{i j m}$ in the expression (5). In particular, $\delta f\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=0$ for all i, j, k implies that

$$
\sum_{m, p}\left(e_{i p m} a_{j k p}-e_{p k m} a_{i j p}-e_{i j p} a_{p k m}+e_{j k p} a_{i p m}\right) \varepsilon_{m}=0
$$

and, by the linear independence of the ε_{m}, that

$$
\begin{equation*}
\sum_{p}\left(e_{i p m} a_{j k p}-e_{p k m} a_{i j p}-e_{i j p} a_{p k m}+e_{j k p} a_{i p m}\right)=0 \tag{7}
\end{equation*}
$$

for each $m=1, \cdots, v$.
The general form of $h\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right) \in B^{3}\left(A_{n}, A_{n}\right)$ is obtained from consideration of $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m}$. Then
(8) $\delta f\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\sum_{m, p}\left(e_{i m p} a_{j k m}-e_{m k p} a_{i j m}-e_{i j m} a_{m k p}+e_{j k m} a_{i m p}\right) \varepsilon_{p}$.

Let the deformation cochains $f_{p}, p=0,1,2, \cdots$, of the algebra A_{n} be given by

$$
f_{p}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{k} c_{i j k}^{p} \varepsilon_{k}
$$

where, of course,

$$
f_{0}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\varepsilon_{i} \varepsilon_{j}=\sum_{k} e_{i j k} \varepsilon_{k}
$$

and f_{1} is a cocycle. With this notation and the assumption that

$$
\delta f_{s}=\sum_{\substack{p+q=s \\ p, q>0}} f_{p} * f_{q}, \quad s=2, \cdots, r-1
$$

the $r^{\text {th }}$-obstruction,

$$
\begin{equation*}
\omega_{r}=\sum_{\substack{p+q=r \\ p, q>0}} f_{p} * f_{q}, \tag{9}
\end{equation*}
$$

can be expressed as

$$
\begin{align*}
& \omega_{r}\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right) \\
& =\sum_{\substack{p+q=r \\
p, q>0}}\left[f_{p}\left(c_{i j 1}^{q} \varepsilon_{1}+\cdots+c_{i j v}^{q} \varepsilon_{v}, \varepsilon_{k}\right)-f_{p}\left(\varepsilon_{i}, c_{j k_{1}}^{q} \varepsilon_{1}+\cdots+c_{j k v}^{q} \varepsilon_{v}\right)\right] \\
& =\sum_{\substack{p+q=r \\
p, q>0}}\left[\left(c_{i j 1}^{q} c_{1 k 1}^{p}+\cdots+c_{i j v}^{q} c_{v k 1}^{p}-c_{j k 1}^{q} c_{i 11}^{p}-\cdots-c_{j k v}^{q} c_{i v 1}^{p}\right) \varepsilon_{1}\right. \tag{10}\\
& +\left(c_{i j 1}^{q} c_{1 k 2}^{p}+\cdots+c_{i j v}^{q} c_{v k 2}^{p}-c_{j k 1}^{q} c_{i 12}^{p}-\cdots-c_{j k v}^{q} c_{i v 2}^{p}\right) \varepsilon_{2} \\
& +\cdots \\
& \left.+\left(c_{i j 1}^{q} c_{1 k v}^{p}+\cdots+c_{i j v}^{q} c_{i k v}^{p}-c_{j k 1}^{q} c_{i 1 v}^{p}-\cdots-c_{j k v}^{q} c_{i v v}^{p}\right) \varepsilon_{v}\right]
\end{align*}
$$

4. Existence of infinitesimal deformations

The result of this section is the statement that for each $n \geq 2, H^{2}\left(A_{n}, A_{n}\right) \neq 0$ and $H^{3}\left(A_{n}, A_{n}\right) \neq 0$. Thus, there are non-trivial infinitesimal deformations, and so possibly deformations. Further, obstructions do not necessarily vanish. We shall see in $\S 5$ that for $n=2$ all obstructions do vanish, and one has actual deformations. For $n=3$, a non-vanishing primary obstruction will be exhibited (§ 6).

Theorem 1. $\quad H^{2}\left(A_{n}, A_{n}\right) \neq 0, n \geq 2$.
For the case where n, and hence v, are greater than 2 , the proof is given most easily by demonstrating that the following cocycle is not a coboundary:

$$
\begin{equation*}
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i v} \delta_{j_{2}} \varepsilon_{n}, \tag{11}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta, and $\varepsilon_{2}, \varepsilon_{n}, \varepsilon_{v}$ denote the following matrices in the canonical basis $\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}, \cdots, \varepsilon_{v}\right\}$ of A_{n} :
ε_{2} has a 1 in the $1^{\text {st }}$ row, $2^{\text {nd }}$ column, otherwise zero,
ε_{n} has a 1 in the $1^{\text {st }}$ row, $n^{\text {th }}$ column, otherwise zero,
ε_{v} has a 1 in the $(n-1)^{\text {th }}$ row, $n^{\text {th }}$ column, otherwise zero.
First, one shows that (11) is a cocycle.

$$
\begin{align*}
& \delta f\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right) \tag{12}\\
& \quad=\varepsilon_{i}\left(\delta_{j v} \delta_{k 2} \varepsilon_{n}\right)-\sum_{m} e_{i j m} \delta_{m v} \delta_{k 2} \varepsilon_{n}+\sum_{m} e_{j k m} \delta_{i v} \delta_{m 2} \varepsilon_{n}-\left(\delta_{i v} \delta_{j 2} \varepsilon_{n}\right) \varepsilon_{k} .
\end{align*}
$$

Since

$$
\begin{aligned}
& \varepsilon_{i} \varepsilon_{n}=\varepsilon_{n} \varepsilon_{i}=\delta_{i 1} \varepsilon_{n}, \quad 1 \leq i \leq v, \\
& e_{i j v}=\delta_{i 1} \delta_{j v}+\delta_{i v} \delta_{j 1},
\end{aligned}
$$

and

$$
e_{j k 2}=\delta_{j 1} \delta_{k 2}+\delta_{j 2} \delta_{k 1}
$$

(12) becomes

$$
\delta f\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\left(\delta_{i 1} \delta_{j v} \delta_{k 2}-e_{i j v} \delta_{k 2}+e_{j k 2} \delta_{i v}-\delta_{i v} \delta_{i 2} \delta_{k 1}\right) \varepsilon_{n}=0
$$

In order that $f\left(\varepsilon_{i}, \varepsilon_{j}\right)$ be equal to $\delta g\left(\varepsilon_{i}, \varepsilon_{j}\right)$ for some $g\left(\varepsilon_{i}\right)=\sum_{k} b_{i k} \varepsilon_{k}$, the coefficient $a_{i j m}$ of ε_{m} in (11) must be

$$
\begin{equation*}
a_{i j m}=\sum_{k}\left(e_{i k m} b_{j k}-e_{i j k} b_{k m}+e_{k j m} b_{i k}\right) . \tag{13}
\end{equation*}
$$

In particular, when $i=v, j=2$, and $m=n$, (13) becomes

$$
a_{i j m}=a_{v 2 n}=\sum_{k}\left(e_{v k 2} b_{2 k}-e_{v 2 k} b_{k n}+e_{k 2 n} b_{v k}\right)
$$

But, $e_{v k 2}=e_{v 2 k}=e_{k 2 n}=0$, for all $k, 1 \leq k \leq v$. Therefore, since $a_{v 2 n}=1$ in (11), and not $0, f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i v} \delta_{j 2} \varepsilon_{n}$ is not an element of $B^{2}\left(A_{n}, A_{n}\right)$. Hence the cohomology class of f in $H^{2}\left(A_{n}, A_{n}\right)$ is non-trivial.

When n, and hence v, equal $2, f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i 2} \delta_{j 2} \varepsilon_{i}$ is a non-cobounding cocycle. The proof is analogous to the preceding general case: (13) becomes for $i=j$ $=2, m=1$,

$$
\sum_{k}\left(e_{2 k 1} b_{2 k}-e_{22 k} b_{k 1}+e_{k 21} b_{2 k}\right)
$$

And,

$$
e_{2 k 1}=e_{k 21}=e_{22 k}=0, \quad k=1,2
$$

Again, since $a_{221}=1$ in (11), and not $0, f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i 2} \delta_{j 2} \varepsilon_{1}$ is not an element of $B^{2}\left(A_{2}, A_{2}\right)$.

Theorem 2. $\quad H^{3}\left(A_{n}, A_{n}\right) \neq 0, n \geq 2$.
Analogously to the preceding, one demonstrates that

$$
\begin{equation*}
g\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\delta_{i n} \delta_{j n} \delta_{k n} \varepsilon_{n} \tag{14}
\end{equation*}
$$

is a non-cobounding cocycle. Since $e_{i j n}=\delta_{i 1} \delta_{j n}+\delta_{i n} \delta_{j 1}$, we have

$$
\begin{aligned}
\delta g\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}, \varepsilon_{m}\right)= & \varepsilon_{i}\left(\delta_{j n} \delta_{k n} \delta_{m n} \varepsilon_{n}\right)-e_{i j n} \delta_{k n} \delta_{m n} \varepsilon_{n}+\delta_{i n} e_{j k n} \delta_{m n} \varepsilon_{n} \\
& -\delta_{i n} \delta_{j n} e_{k m n} \varepsilon_{n}+\delta_{i n} \delta_{j n} \delta_{k n} \varepsilon_{n} \varepsilon_{m}=0 .
\end{aligned}
$$

Suppose $g=\sum_{m} c_{i j k m} \varepsilon_{m} \in B^{3}\left(A_{n}, A_{n}\right)$. Then one shows that $c_{n n n n}=0$, whereas for the $g \in Z^{3}\left(A_{n}, A_{n}\right)$ defined by (14) above, $c_{n n n n}=1$.

Consider $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m}$ such that $\delta f=g$. The ε_{n}-coefficient of $\delta f\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)$ is

$$
\sum_{m} e_{i m n} a_{j k m}-e_{m k n} a_{i j m}-e_{i j m} a_{m k n}+e_{j k m} a_{i m n}
$$

Setting $i=j=k=n$, we get

$$
c_{n n n n}=\sum_{m} e_{n m n} a_{n n m}-e_{m n n} a_{n n m}-e_{n n m} a_{m n n}+e_{n n m} a_{n m n}=0
$$

since $e_{n n m}=0$ for all m, and $e_{n m n}=e_{m n n}=\delta_{m 1}$.

5. Deformations of A_{2}

The algebra A_{2} of 2×2 upper triangular matrices with equal diagonal elements, considered as a vector space over \boldsymbol{R}, has a canonical basis

$$
\left\{\varepsilon_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \varepsilon_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
$$

The coefficients $e_{i j k}$ in (4) can be conveniently expressed in matrix form:

$$
e_{i j 1}=\left(\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right), \quad e_{i j_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

In order that

$$
\begin{equation*}
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m} \tag{16}
\end{equation*}
$$

be an element of $B^{2}\left(A_{2}, A_{2}\right)$, the coefficients $a_{i j m}$ must satisfy

$$
a_{i j_{1}}=\left(\begin{array}{cc}
b_{11} & 0 \tag{17}\\
0 & 0
\end{array}\right), \quad a_{i j 2}=\left(\begin{array}{ll}
b_{12} & b_{11} \\
b_{11} & b_{22}
\end{array}\right),
$$

from which we conclude $\operatorname{dim} B^{2}\left(A_{2}, A_{2}\right)=3$.
In order that $f \in C^{2}\left(A_{2}, A_{2}\right)$ be a cocycle, its coefficients in (16) must satisfy

$$
a_{i j 1}=\left(\begin{array}{cc}
a_{111} & 0 \tag{18}\\
0 & a_{221}
\end{array}\right), \quad a_{i j 2}=\left(\begin{array}{cc}
a_{112} & a_{111} \\
a_{111} & a_{222}
\end{array}\right),
$$

from which we conclude $\operatorname{dim} Z^{2}\left(A_{2}, A_{2}\right)=4$. Therefore $\operatorname{dim} H^{2}\left(A_{2}, A_{2}\right)=1$. A generator for $H^{2}\left(A_{2}, A_{2}\right)$ is the cohomology class of the cocycle $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=$ $\delta_{i 2} \delta_{j_{2}} \varepsilon_{1}$.

Using the cocycle $f_{1}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i 2} \delta_{j 2} \varepsilon_{1}$, we proceed to deform A_{2}. The primary obstruction $\omega_{2}=f_{1} * f_{1}$ is equal to zero for our choice of f_{1}. Hence f_{2} can be any cocycle, the zero cocycle, for instance. Letting $f_{r}=0, r>1$, we have

$$
\begin{equation*}
F_{t}(\alpha, \beta)=\alpha \beta+\sum_{r=1}^{\infty} f_{r}(\alpha, \beta) t^{r}=\alpha \beta+f_{1}(\alpha, \beta) t \tag{19}
\end{equation*}
$$

a non-trivial deformation of the original multiplication of A_{2}. If

$$
\alpha=\left(\begin{array}{ll}
a & a_{1} \\
0 & a
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
b & b_{1} \\
0 & b
\end{array}\right),
$$

then

$$
F_{t}(\alpha, \beta)=\left(\begin{array}{cc}
a b+a_{1} b_{1} t & a b_{1}+a_{1} b \\
0 & a b+a_{1} b_{1} t
\end{array}\right) .
$$

On the other hand, suppose for f_{2}, one chooses a non-zero cocycle. The question is then whether

$$
\alpha \beta+f_{1}(\alpha, \beta) t+f_{2}(\alpha, \beta) t^{2}
$$

can be extended to a deformation of A_{2}, or if f_{1} is an arbitrary cocycle, whether there even exists an f_{2} whose coboundary equals $f_{1} * f_{1}$. More generally, one asks what restrictions, if any, are needed on the f_{i} in order that the partial integration of f_{1},

$$
\begin{equation*}
\alpha \beta+f_{1}(\alpha, \beta) t+f_{2}(\alpha, \beta) t^{2}+\cdots+f_{r}(\alpha, \beta) t^{r} \tag{20}
\end{equation*}
$$

be extendible to a deformation of A_{2}.
From (8) we conclude that $B^{3}\left(A_{2}, A_{2}\right)$ consists of cochains whose coefficients $c_{i j k m}$ satisfy

$$
\begin{array}{ll}
c_{i j 11}=\left(\begin{array}{cc}
0 & 0 \\
-a_{211} & 0
\end{array}\right), & c_{i j 12}=\left(\begin{array}{cc}
0 & 0 \\
a_{111}-a_{212} & a_{211}
\end{array}\right) . \\
c_{i j 21}=\left(\begin{array}{cc}
a_{121} & 0 \\
0 & 0
\end{array}\right), & c_{i j 22}=\left(\begin{array}{cc}
a_{122}-a_{111} & -a_{121} \\
a_{121}-a_{211} & 0
\end{array}\right), \tag{21}
\end{array}
$$

where the $a_{i j m}$ are the coefficients for some 2-cochain $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m}$. Dimension $B^{3}\left(A_{2}, A_{2}\right)$ is then four,

In an analogous manner, one can show that for a 3-cochain $h\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=$ $\sum_{m} c_{i j k m} \varepsilon_{m}$ to be an element of $Z^{3}\left(A_{2}, A_{2}\right)$, its coefficients $c_{i j k m}$ must satisfy

$$
\begin{array}{ll}
c_{i j 11}=\left(\begin{array}{cc}
0 & 0 \\
c_{2111} & 0
\end{array}\right), & c_{i j 12}=\left(\begin{array}{cc}
0 & 0 \\
c_{2112} & -c_{2111}
\end{array}\right), \\
c_{i j 21}=\left(\begin{array}{cc}
c_{1121} & 0 \\
0 & 0
\end{array}\right), & c_{i j 22}=\left(\begin{array}{cc}
c_{1122} & -c_{1121} \\
c_{1121}+c_{2111} & c_{2222}
\end{array}\right) . \tag{22}
\end{array}
$$

Hence $\operatorname{dim} Z^{3}\left(A_{2}, A_{2}\right)=5$, and $\operatorname{dim} H^{3}\left(A_{2}, A_{2}\right)=1$. A representative of a non-zero class in $H^{3}\left(A_{2}, A_{2}\right)$ is $h\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\delta_{i 2} \delta_{j 2} \delta_{k 2} \varepsilon_{2}$, and all other cocycles are cohomologous to real multiples of this one.

Lemma 1. If $f_{1} \in Z^{2}\left(A_{2}, A_{2}\right)$ and $f_{2}, \cdots, f_{r} \in C^{2}\left(A_{2}, A_{2}\right)$ satisfy

$$
\begin{equation*}
\delta f_{s}=\sum_{\substack{p+q=s \\ p, q>0}} f_{p} * f_{q}, \quad s=2, \cdots, r \tag{23}
\end{equation*}
$$

then for $1 \leq s \leq r$,

$$
\text { i) } a_{121}^{s}=a_{211}^{s},
$$

ii) $a_{122}^{s}=a_{212}^{s}$,
where $f_{s}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m}^{s} \varepsilon_{m}$.
For $s=1$ the lemma is a consequence of f_{1} 's being a cocycle. Computing $\delta f_{2}=f_{1} * f_{1}$, one notes that $a_{121}^{2}-a_{211}^{2}=0$ by examining the coefficient c_{2122} in (21). Similarly, the sum of coefficients

$$
c_{2112}+c_{1122}=a_{122}^{2}-a_{212}^{2}=0
$$

The proof for general s now proceeds by induction. Let

$$
\delta f_{s}\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\sum_{\substack{p+q=s \\ p, q>0}} f_{p} * f_{q}\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=\sum_{m} c_{i j k m}^{s} \varepsilon_{m}
$$

Since this is a 3-coboundary, from (21) we have

$$
\begin{align*}
& a_{121}^{s}- a_{211}^{s}= \\
&=c_{1121}+c_{2111} \\
&= \sum_{\substack{p+q,=s \\
p, q>0}}\left[c_{212}^{p} c_{111}^{q}+c_{221}^{p} c_{112}^{q}-c_{111}^{p} c_{121}^{q}-c_{121}^{p} c_{122}^{q}\right. \tag{24}\\
&\left.\quad+c_{111}^{p} c_{211}^{q}+c_{211}^{p} c_{12}^{q}-c_{21}^{p} c_{11}^{q}-c_{221}^{p} c_{112}^{q}\right] \\
&= \sum_{\substack{p+q=s \\
p, q>0}}\left[\left(c_{211}^{p} c_{212}-c_{121}^{p} c_{122}^{q}\right)+c_{111}^{q}\left(c_{121}^{p}-c_{211}^{p}\right)+c_{111}^{p}\left(c_{211}^{q}-c_{121}^{q}\right)\right] \\
&= 0,
\end{align*}
$$

by the induction hypothesis, as p and q are less than s. Also,

$$
\begin{align*}
a_{122}^{s}-a_{212}^{s} & =c_{1122}+c_{2112} \\
& =\sum_{\substack{p+q=s \\
p, q>0}}\left[c_{112}^{p} c_{211}^{q}+c_{212}^{p} c_{212}^{q}-c_{212}^{p} c_{111}^{q}-c_{222}^{p} c_{112}^{q}\right. \tag{25}\\
& \left.\quad+c_{122}^{p} c_{111}^{q}+c_{22}^{p} c_{112}^{q}-c_{112}^{p} c_{121}^{q}-c_{122}^{p} c_{122}^{q}\right] \\
& =0 .
\end{align*}
$$

We conclude that all obstructions to the integration of infinitesimal deformations of A_{2} vanish by letting $r=1$ in the following theorem.

Theorem 3. Given $f_{1} \in Z^{2}\left(A_{2}, A_{2}\right)$ and $f_{2}, \cdots, f_{r} \in C^{2}\left(A_{2}, A_{2}\right)$ such that

$$
\begin{equation*}
\delta f_{s}=\sum_{\substack{p+q=s \\ p, q>0}} f_{p} * f_{q}, \quad s=2, \cdots, r \tag{26}
\end{equation*}
$$

one can extend

$$
\begin{equation*}
\alpha \beta+f_{1}(\alpha, \beta) t+f_{2}(\alpha, \beta) t^{2}+\cdots+f_{r}(\alpha, \beta) t^{r} \tag{27}
\end{equation*}
$$

to a deformation $F_{t}(\alpha, \beta)$ of A_{2}.
Gerstenhaber [1] has proven that

$$
\begin{equation*}
\omega_{r+1}=\sum_{\substack{+q=r+1 \\ p, q>0}} f_{p} * f_{q} \tag{28}
\end{equation*}
$$

is a 3 -cocycle. Comparing (21) and (22), we note that a 3 -cocycle is a 3 -coboundary if the coefficient c_{2222} is zero. Calculating c_{2222} for (28), we have

$$
\begin{align*}
c_{2222} & =\sum_{\substack{p+q=r+1 \\
p, q>0}}\left[c_{122}^{p} c_{221}^{q}+c_{222}^{p} c_{222}^{q}-c_{212}^{p} c_{221}^{q}-c_{222}^{p} c_{222}^{q}\right] \tag{29}\\
& =\sum_{\substack{p+q=r+1 \\
p, q>0}}\left(c_{122}^{p}-c_{212}^{p}\right) c_{221}^{q}=0,
\end{align*}
$$

by the lemma.
Comparison of (21) and (22), together with (24), (25) and (29), yields the corollary.

Corollary. With the hypotheses and notation of the theorem, the extendibility of (27) to a deformation of A_{2} is independent of the values of a_{11}, a_{12}, a_{221}, and $a_{222}, 1 \leq s \leq r$, and the corresponding coefficients for values of $s>r$ may be chosen arbitrarily in integrating (27).

6. Deformation of A_{3}

The 4-dimensional algebra A_{3}, considered as a vector space over \boldsymbol{R}, has a canonical basis

$$
\left\{\varepsilon_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \varepsilon_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \varepsilon_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \varepsilon_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right\}
$$

The coefficients $e_{i j k}$ in (4) can be expressed in matrix form:

$$
e_{i j 1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{30}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad e_{i j 2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
e_{i j_{3}}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad e_{i j 4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

In order that

$$
\begin{equation*}
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m} \tag{31}
\end{equation*}
$$

be an element of $Z^{2}\left(A_{3}, A_{3}\right)$, the coefficients $a_{i j m}$ must satisfy

$$
\begin{align*}
a_{i j 1}=\left(\begin{array}{llll}
a_{111} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{241} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad a_{i j 2}=\left(\begin{array}{llll}
a_{112} & a_{111} & 0 & 0 \\
a_{111} & a_{222} & -a_{241} & a_{242} \\
0 & -a_{241} & 0 & 0 \\
0 & a_{422} & 0 & 0
\end{array}\right), \\
\text { 2) } \tag{32}\\
a_{i j 3}=\left(\begin{array}{ccrr}
a_{113} & 0 & a_{111} & a_{112} \\
a_{213} & a_{223} & a_{233} & a_{243} \\
a_{111} & a_{323} & -2 a_{241} & a_{343} \\
0 & a_{423} & a_{422} & a_{443}
\end{array}\right), a_{i j 4}=\left(\begin{array}{llll}
a_{213} & 0 & 0 & a_{111} \\
0 & 0 & 0 & a_{222}-a_{233} \\
0 & 0 & 0 & -a_{241} \\
a_{111} & a_{323} & -a_{241} & a_{343}+a_{242}
\end{array}\right) .
\end{align*}
$$

The dimension of $Z^{2}\left(A_{3}, A_{3}\right)$ is 15 .
In order that $f\left(\varepsilon_{i}, \varepsilon_{j}\right)$ given by (31) be an element of $B^{2}\left(A_{3}, A_{3}\right)$, i.e., $f=\delta g$, for some $g\left(\varepsilon_{i}\right)=\sum_{j} b_{i j} \varepsilon_{j} \in C^{1}\left(A_{3}, A_{3}\right)$, its coefficients $a_{i j m}$ must satisfy

$$
\begin{align*}
& a_{i j 1}=\left(\begin{array}{cccc}
b_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & -b_{31} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad a_{i j 2}=\left(\begin{array}{cccc}
b_{12} & b_{11} & 0 & 0 \\
b_{11} & 2 b_{21} & b_{31} & b_{41}-b_{32} \\
0 & b_{31} & 0 & 0 \\
0 & b_{41} & 0 & 0
\end{array}\right), \\
& a_{i j 3}=\left(\begin{array}{cccc}
b_{13} & 0 & b_{11} & b_{12} \\
b_{14} & b_{24} & b_{34}+b_{21} & b_{44}-b_{33}+b_{22} \\
b_{11} & b_{21} & 2 b_{31} & b_{41}+b_{32} \\
0 & 0 & b_{41} & b_{42}
\end{array}\right), \tag{33}\\
& a_{i j 4}=\left(\begin{array}{clll}
b_{14} & 0 & 0 & b_{11} \\
0 & 0 & 0 & b_{21}-b_{34} \\
0 & 0 & 0 & b_{31} \\
b_{11} & b_{21} & b_{31} & 2 b_{41}
\end{array}\right) .
\end{align*}
$$

Hence the dimensions of $B^{2}\left(A_{3}, A_{3}\right)$ and $H^{2}\left(A_{3}, A_{3}\right)$ are, respectively, 12 and 3.
From (8) we conclude that $B^{3}\left(A_{3}, A_{3}\right)$ consists of cochains whose coefficients $c_{i j k m}$ satisfy the following constraints, where the $a_{i j m}$ are the coefficients for some 2-cochain given by (31):

$$
\begin{aligned}
& c_{i j 11}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-a_{211} & 0 & 0 & -a_{311} \\
-a_{311} & 0 & 0 & 0 \\
-a_{411} & 0 & 0 & 0
\end{array}\right), \\
& c_{i j_{12}}=\left(\begin{array}{cllc}
0 & 0 & 0 & 0 \\
a_{111}-a_{212} & a_{221} & a_{311} & a_{411}-a_{312} \\
-a_{312} & 0 & 0 & 0 \\
-a_{412} & 0 & 0 & 0
\end{array}\right), \\
& c_{i j 13}=\left(\begin{array}{cllc}
0 & 0 & 0 & 0 \\
a_{114}-a_{213} & a_{214} & a_{314} & a_{414}-a_{313} \\
a_{111}-a_{313} & a_{211} & a_{311} & a_{411} \\
-a_{413} & 0 & 0 & 0
\end{array}\right), \\
& c_{i j 14}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-a_{214} & 0 & 0 & -a_{314} \\
-a_{314} & 0 & 0 & 0 \\
a_{111}-a_{414} & a_{211} & a_{311} & a_{411}
\end{array}\right), \\
& c_{i j 21}=\left(\begin{array}{lllc}
a_{121} & 0 & 0 & 0 \\
0 & 0 & 0 & -a_{321} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& c_{i j 22}=\left(\begin{array}{cccc}
a_{122}-a_{111} & -a_{121} & -a_{131} & -a_{141} \\
a_{121}-a_{211} & 0 & a_{321}-a_{231} & a_{421}-a_{241}-a_{322} \\
-a_{311} & -a_{321} & -a_{331} & -a_{341} \\
-a_{411} & -a_{421} & -a_{431} & -a_{441}
\end{array}\right), \\
& c_{i j 23}=\left(\begin{array}{lllc}
a_{123} & 0 & 0 & 0 \\
a_{124} & a_{224} & a_{324} & a_{424}-a_{323} \\
a_{121} & a_{221} & a_{321} & a_{421} \\
0 & 0 & 0 & 0
\end{array}\right), \\
& c_{i j 24}=\left(\begin{array}{llll}
a_{124} & 0 & 0 & 0 \\
0 & 0 & 0 & -a_{324} \\
0 & 0 & 0 & 0 \\
a_{121} & a_{221} & a_{321} & a_{421}
\end{array}\right), \\
& c_{i j 31}=\left(\begin{array}{lllc}
a_{131} & 0 & 0 & 0 \\
0 & 0 & 0 & -a_{331} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& c_{i j 32}=\left(\begin{array}{lllc}
a_{132} & 0 & 0 & 0 \\
a_{131} & a_{231} & a_{331} & a_{431}-a_{332} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& c_{i j 33}=\left(\begin{array}{cccc}
a_{133}-a_{111} & -a_{121} & -a_{131} & -a_{141} \\
a_{134}-a_{211} & a_{234}-a_{221} & a_{334}-a_{231} & a_{434}-a_{241}-a_{333} \\
a_{131}-a_{311} & a_{231}-a_{321} & 0 & a_{431}-a_{341} \\
-a_{411} & -a_{421} & -a_{431} & -a_{441}
\end{array}\right) . \\
& c_{i j 34}=\left(\begin{array}{cccc}
a_{134} & 0 & 0 & 0 \\
0 & 0 & 0 & -a_{334} \\
0 & 0 & 0 & 0 \\
a_{131} & a_{231} & a_{331} & a_{431}
\end{array}\right), \\
& c_{i j 41}=\left(\begin{array}{lllc}
a_{141} & a_{131} & 0 & 0 \\
0 & a_{231} & 0 & -a_{341} \\
0 & a_{331} & 0 & 0 \\
0 & a_{431} & 0 & 0
\end{array}\right), \\
& c_{i j 42}=\left(\begin{array}{cclc}
a_{142} & a_{132} & 0 & 0 \\
a_{141} & a_{241}+a_{232} & a_{341} & a_{441}-a_{342} \\
0 & a_{332} & 0 & 0 \\
0 & a_{432} & 0 & 0
\end{array}\right), \\
& c_{i j 43}=\left(\begin{array}{cccc}
a_{143}-a_{112} & a_{133}-a_{122} & -a_{132} & -a_{142} \\
a_{144}-a_{212} & a_{244}-a_{222}+a_{233} & a_{344}-a_{232} & a_{444}-a_{242}-a_{343} \\
a_{141}-a_{312} & a_{241}-a_{322}+a_{333} & a_{341}-a_{332} & a_{441}-a_{342} \\
-a_{412} & a_{433}-a_{422} & -a_{432} & -a_{442}
\end{array}\right), \\
& c_{i j 44}=\left(\begin{array}{cccc}
a_{144}-a_{111} & a_{134}-a_{121} & -a_{131} & -a_{141} \\
-a_{211} & a_{234}-a_{221} & -a_{231} & -a_{241}-a_{344} \\
-a_{31} & a_{334}-a_{321} & -a_{331} & -a_{241} \\
a_{141}-a_{441} & a_{434}-a_{421}+a_{241} & -a_{431}+a_{341} & 0
\end{array}\right) .
\end{aligned}
$$

In the algebra A_{2}, we found that all obstructions to integration of infinitesimal and partial deformations vanished (Theorem 3). For A_{3}, we have the contrary result.

Lemma 2. The infinitesimal deformation

$$
\begin{equation*}
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\left(\delta_{i 3}+\delta_{i 4}\right) \delta_{j 2} \varepsilon_{3}+\delta_{i 4} \delta_{j 2} \varepsilon_{4}=\sum_{m} a_{i j m} \varepsilon_{m} \tag{35}
\end{equation*}
$$

where

$$
a_{i j m}=\left(\delta_{i 3}+\delta_{i 4}\right) \delta_{j 2} \delta_{m 3}+\delta_{i 4} \delta_{j 2} \delta_{m 4}
$$

is not integrable.
Comparing (32) and (33) we note that $f\left(\varepsilon_{i}, \varepsilon_{j}\right)$ in (35) is a cocycle but not a coboundary. The primary obstruction

$$
\begin{equation*}
\omega_{2}\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)=f\left(f\left(\varepsilon_{i}, \varepsilon_{j}\right), \varepsilon_{k}\right)-f\left(\varepsilon_{i}, f\left(\varepsilon_{j}, \varepsilon_{k}\right)\right)=\sum_{m} c_{i j k m} \varepsilon_{m} \tag{36}
\end{equation*}
$$

has as a coefficient:

$$
\begin{equation*}
c_{4223}=\left(2 a_{323}-a_{222}\right) a_{423}=2 . \tag{37}
\end{equation*}
$$

From (34) any 3-coboundary $\sum_{m} c_{i j k m} \varepsilon_{m} \in B^{3}\left(A_{3}, A_{3}\right)$ must have $c_{4223}=0$. Therefore (36) is an actual obstruction, and the 2-cocycle (35) is not integrable.

More generally, in order that the primary obstruction to the integration of the cocycle $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m} \varepsilon_{m}$ be cohomologous to zero (i.e. vanish), the following relations must be satisfied by the $a_{i j m}$:

$$
\begin{equation*}
a_{423}\left(2 a_{323}-a_{222}\right)=0, \quad a_{423}\left(a_{343}+a_{242}-2 a_{422}\right)=0 . \tag{38}
\end{equation*}
$$

7. Existence of deformation of A_{n}

The existence of deformations of the algebras $A_{n}, n>2$, is demonstrated by consideration of the non-cobounding 2 -cocycle,

$$
\begin{equation*}
f_{1}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sum_{m} a_{i j m}^{1} \varepsilon_{m}=\delta_{i v} \delta_{j 2} \varepsilon_{n} \tag{39}
\end{equation*}
$$

(cf. (11)). The primary obstruction of (39) is

$$
\begin{aligned}
f_{1} * f_{1}\left(\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right) & =f_{1}\left(\delta_{i v} \delta_{j 2} \varepsilon_{n}, \varepsilon_{k}\right)-f_{1}\left(\varepsilon_{i}, \delta_{j v} \delta_{k 2} \varepsilon_{n}\right) \\
& =\left(\delta_{i v} \delta_{j 2} \delta_{n v} \delta_{k 2}-\delta_{j v} \delta_{k 2} \delta_{i v} \delta_{n 2}\right) \varepsilon_{n}=0,
\end{aligned}
$$

since $n \neq v, n \neq 2$. Therefore, in particular, choosing $f_{s}=0, s \geq 2$, we have the deformation of A_{n},

$$
F_{t}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\varepsilon_{i} \varepsilon_{j}+\delta_{i v} \delta_{j 2} \varepsilon_{n} t, \quad n>2 .
$$

The similar deformation of A_{2} was given in $\S 5$.

References

[1] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964) 59-104.
[2] W. S. Piper, Algebraic deformation theory, J. Differential Geometry 1 (1967) 133168.

[^0]: Communicated by D. C. Spencer, October 6, 1970.

