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QUASI-SASAKIAN STRUCTURES OF RANK 2p +1

SHUKICHI TANNO

Introduction

Quasi-Sasakian structures were defined and studied by D. E. Blair [1]. How-
ever, there are some gaps in arguments in § 3 — § 5 of [1]. The first is found
in the middle of page 337, namely, for a quasi-Sasakian structure (¢, £, 7, &),
the new (¢, &, 7, g) is not quasi-Sasakian, in general. Moreover, 6%, ¢, are
not uniquely determined.

In this note we give complete statements on quasi-Sasakian structures of rank
2p + 1.

1. Quasi-Sasakian structures

Let ¢ be a (1, 1)-tensor, & a vector field, and 5 a 1-form on a differentiable
manifold M of dimension 2x + 1. Then (g, &, ) is an almost contact structure if

1.2) F——1+E®7.

For a (positive definite) Riemannian metric g, (¢, &, 7, g) is an almost contact
metric structure if

(1.4) 8(9X,4Y) = g(X,Y) — n(X)n(Y)

for X,Y ¢ 6™*!, where &***! denotes the module of vector fields on M. An
almost contact metric structure (¢, £, %, g) is a contact metric structure if

dpX,Y) = 2g(X, ¢Y) for X, Y e £+,
(¢, &, ) is said to be normal if

—N'(X,Y) =[¢,9l(X,Y) + (dp(X,Y)§ =0.

N' = 0 implies the followings (cf. [4]):

(1.5)
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(1.6) NY(X,Y) = (Lyxn(Y) — (Lyp(X) =0,
(1.7 NY(X) = (L X =0,
(1.8) NX) = —(Lp)X =0,

where Ly denotes the Lie derivation with respect to X. Define a 2-form @ by
O(X,Y) = g(X,4Y). Then a normal almost contact Riemannian structure
(¢,&,7,8) is said to be quasi-Sasakian, if @ is closed.

Proposition 1.1. Let M(¢, &, 7, 8) be a quasi-Sasakian manifold. Then we
have

(1.9 dné,X) =0, X et
(1.10) dy(¢X,$Y) = dy(X,Y), X,Ye&n,
(1.11) Lé=0,

(1.12) Lg=0.

Proof. (1.9) and (1.11) are the same as (1.8) and (1.7). Since L,y =
di(pX)y + i(¢X)dy, by (1.1) and (1.6) we obtain

(1.13) dy(¢X,Y) — dy(¢Y,X) = 0 .

Then replacing Y by ¢Y and using (1.9) we have (1.10). (1.12) can be proved
by means of d® = 0, (1.8) and (1.11) (cf. [1, Lemma 4.1]).
Remark. The condition d@ = 0 is used only for (1.12).

2. Quasi-Sasakian manifolds of rank 2p 4 1

Let M(g, &, 7, 8) be a quasi-Sasakian manifold. If dy = 0 on M, then M is
called a cosymplectic manifold (cf. [2]). If 20 = dy, then M is called a Sasakian
manifold or a manifold with normal contact metric structure (cf. [4]). In this
case, » A (dp)" # 0 holds on M.

A quasi-Sasakian manifold M (or more generally, an almost contact mani-
fold M) is said to be of rank 2p if (dp)? # 0 and 5 A (dp)? = 0 on M, and to
be of rank 2p + 1if y A (dp)? # 0 and (dp)?*' = 0 on M. It is known that there
are no quasi-Sasakian structures of even rank (cf. [1]).

Let M be a quasi-Sasakian manifold of rank 2p + 1, and define a submodule
&% of &% (2q = 2n — 2p) by

&M = {X e & i(X)dyp = 0 and p(X) = 0} .

&% is well defined and &% is of dimension 2q at each point x of M. We denote
by &' a submodule of &***! composed of {f§} for C=-functions f on M, and by
&*? the orthogonal complement of '@ 8¢ in &£***'. Put £?*' = £? @ &',
and let X e £*¢. Then by 7(¢X) = 0 and (1.13) or (1.10) we have ¢X e £%°.
Since X = ¢(—¢X) for X € 6%, we get
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2.1 . ¢ = &, P = &7
Define (1,1)-tensors ¢ and 4 by

$X) =¢X ifXeer,

=0 ifXes® e,
0X) = gX  if Xeé,
=0 if X e g

Then —¢*, —¢* + &£ ® » and —@* are projection tensors to &??, &**! and &6*?
respectively, and we have ¢ = ¢ + 4 and

2.2) ¢ =¢p=¢, 0 =0p=F¢

by the definitions of ¢ and § and by (2.1) respectively. We define a (0,2)-
tensor g* by

(2.3) 288X, Y) = —dp(X,¢Y), X,Ye&n.

By (1.13), g* is symmetric. Assume that g* is positive definite on &*7, and define
a new metric g by

(2.4) g(X,Y) = n(X)n(Y) + g{¢'X, ¢'Y) + 8(0°X, °Y) .

Then we have

by (1.10) and (2.2), etc. (¢, &, 3, &) is a normal almost contact metric structure.

Proposition 2.1. Let M(¢,&,7,8) be a quasi-Sasakian manifold of rank
2p + 1, and assume that

@ [9,61 =0,

(ii) g* defined by (2.3) is positive definite on . Then M has a normal
almost contact metric structure (¢, &,7, &) such that for each point x of M we
have two submanifolds U***' and V*? of M containing x, where U*®*' is a
Sasakian manifold and V*? is a Kihlerian manifold.

Proof. An almost product structure (defined by —¢* and —¢* 4+ £ ® p) is
integrable (see [5, p. 240]), since [4, ] = O implies [#*, )] = 0. For a point x
of M, let V*? and U*?*! be integral submanifolds of —#* and —¢* + & ® 5 pass-
ing through x. Consider the imbeddings r: V?*? — M and s: U??*! — M, and
let u, v be vector fields on U?**!. Define ¢, &), 7,, &, by

bt = s7'psu = s7'gsu , & =5,

W) =nlsw) ,  p=s5%,  gu,v) = glu,sv),
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where by s we also mean the differential of s; these are well defined. (g, &,
75> &) 1S an almost contact metric structure, and is normal since

5{[Bo> Gol(, v) + (dny)(u, v)&} = [@, pl(su, sv) + (dp)(su,sv)E = 0 .

Further, we have

28,(u, ¢v) = 2g(su, ¢sv) = 2g*(su, ¢sv) = — (dy)(su, ¢gsv)
=(dp)(su, sv) = (s*dp)(u,v) = (dyp)(u,v) .

Hence U??*! is a Sasakian manifold.
Let w, z be vector fields on V??, and define J, and G, by

Jow = rorw = rigrw , G(w,2) = glrw, rz) .

Then J, and G, are well defined and define an almost Hermitian structure.
Moreover, J, is integrable since

o, Jolw, 2)} = [0, 01(rw,rz) = 0 .
Define Q,(w,z) = Gy(w, J,z). Then

.QO(W, Z) = g’(rW, I‘JOZ) = g(rw, ¢rZ)
= g(0°rw, ¢rz) by (2.4)
= 0(rw,rz) = (r*O)(w, z) ,
and therefore df2, = dr*Q = r*d® = 0. Hence V* is Kihlerian.
Remark. d® = 0 is used only for d2, = 0. Thus, if d& = 0, then d® =0
is unnecessary, where 0 is deﬁlled below.
We define 2-forms ¥, 7, 0,6 by
U(X,Y) = gX,¢Y), FX,Y) = gX,¢Y),
0(X,Y) = g(X,0Y) , 0(X,Y) = g(X,6Y) .

Lemma 2.2. &°? and &° are invariant under exp 1€, and we have

2.5 Lgy=0, L¥=L7T=0,
(2.6) L6=0, LO=LO=0,
2.7 Lg=0, Lg=0.

Proof. Let X ¢ % and put « = exp t&, ¢ being a real number (sufficiently
small, if necessary). If & is complete, « is a diffecomorphism of M. If & is
not complete, we understand that « is a map: W — oW for some open set W,
and also that X e 6% implies X | W e 6*?| W. Since « leaves 7 invariant, we have
P(aX) = 0. For Z e £,
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(dp)(aX,Z) = ([dp(aX,ala'Z)) = a*(dpX,a'Z) = dy(X,a"'Z) =0,

which implies i(aX)dy = 0. Therefore £%? and also &*? are invariant under a.
Next, we show (2.5). Let X e 2. Then we get

(2.8) (L)X = L(¢X) — JL.X .

By the definition of ¢ we have ¢X = ¢X. Since &?? is invariant under exp £,
L.X e &*? and therefore ¢L.X = ¢L.X. Thus

LpX = LX) — gL X = (L:p)X ,

and (L)X = 0 by (1.11). If X e &2 D &, then (L.¢)X = O follows from
(2.8). Hence we have L.¢ = 0. Further, L. ¥ = 0 follows from ¥(X,Y) =
g(X,¢Y) and (1.12),L.6 = O from L, = 0,L,¢) =0 and ¢ = ¢ + 6, and
L.g* =0 from (2.3) and L.dy = dL. = 0. Finally, by (2.4) we have L,g =0.
Remark. d@ = 0 is used only for L.,g = 0.
Lemma 2.3. For X € £™*', we have

(2.9 Vi =—¢X .

Proof. Since L.g = 0 by Lemma 2.2, we have (Fyp)Y + (Fyp)X = 0,
which implies

(2100  dpX,Y) = T)Y — TypX = —2(Fy)X= —28(74&,X) .

Next, we show that
(2.11) dp(X,Y) = 2g(X, ¢Y)

for X,Yeé&™* If X, Ye&??, then (2.11) is (2.3). If Xe &P &* or
Y e 62 @ &, then both sides of (2.11) vanish. Thus we have (2.11), and finally
(2.10) and (2.11) give (2.9).

Remark. d® =0 is used to apply L.g = 0. Thus, if L,g = 0, then Lemma
2.3 holds for a normal almost contact Riemannian manifold of rank 2p + 1.

By K(X,,Y,) we denote the sectional curvature with respect to g for a 2-
plane determined by X, and Y, at x of M.

Theorem 2.4. Let M(¢,&,7,8) be a quasi-Sasakian manifold of rank
2p + 1, and assume that g* defined by (2.3) is positive definite on &**, Then,
with respect to g, we have

KE, X)=1 iX,eé®—0
—0 ifX,ef%_0.

Proof. Let X e £ @ 6% and assume that X is a unit vector field (locally).
Then, by (2.5) and (2.9),
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g(R(&,X)E,X) = g((ﬁ[s,X] + 7X76 - 757)(){:,)0 = —g(SbZX,X) .

Thus, if X, € %, then K(§,, X,) = 1; if X, e &%, then K(¢,,X,) = 0.
Proposition 2.5. In a quasi-Sasakian manifold, we have

W xONY, Z) = n( D) x)(¢Y) — n(Y)V xn)($Z)
(= 9(2)gW &, 9Y) — 9(Y)gV 5§, $2)) .

If M is of rank 2p + 1 and V3§ = —¢X, then

Vx0)Y,Z) = n(Y)g(X,Z) — n(2)g(X, Y)
+ 9(Y)g(0°X, Z) — 7(2)g(0°X, Y) .

(2.12)

(2.13)

If M is of rank 2p + 1 and @ is also closed for the metric g defined by (2.4),
then (2.13) holds for V,®, g.

Proof. In [4] under the assumptions N' = 0,d® = 0 and L.g = 0, it was
proved that

Vil = —nlV o — 0V magl

which is nothing but (2.12) since V;p, = —F ;. If M is of rank 2p + 1 and
V & = —¢X, then we obtain (2.13) from (2.12) on account of (1.4), ¢ = ¢,
and ¢ = —I + E®y — 6°. If @ is closed, we have (2.12) for V,®, g, and
hence the last statement of Proposition 2.5 follows from (2.9).

Next we have (cf. [1, Theorem 5.2])

Corollary 2.6. A quasi-Sasakian manifold is cosymplectic if and only if
V® = O (or equivalently V¢ = 0).

In fact, if a quasi-Sasakian manifold is cosymplectic, then dy = 0 and L.g
= 0, which imply /' = 0. Thus by (2.12) we have F'¢ = 0. The converse fol-
lows from [¢, ¢] = 0 and (1.5).

3. Locally product quasi-Sasakian manifolds

Let M3**! (¢, &,, 7,, &) be a Sasakian manifold, and M}?(J,, G,) a Kihlerian
manifold. Then M, X M, has a quasi-Sasakian structure (¢, &, 7, g) of rank
2p + 1 scuh that

(3.1) X = (¢.X,,1,X)) ,
(3.2 §=(£,0),

(3.3) nX) = (X)),

(3.4 gX,Y) = g(X,, Y) + G(X,, Y))

for the canonical decompodition X = (X, X,) of a vector field X on M, X M,
(cf. [1, Theorem 3.2]).
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Conversely, we have

Theorem 3.1’. Let M(¢, &, 7, 8) be a quasi-Sasakian manifold (more gen-
erally, a normal almost contact Riemannian manifold) of rank 2p + 1. If gt
defined by (2.3) is positive definite on &, and 70 = O with respect to the
Riemannian metric g defined by (2.4), then ($, &, 9, 8) is also a quasi-Sasakian
structure of rank 2p + 1, and M(¢, &, 7, g) is locally the product of a Sasakian
manifold and a Kahlerian manifold.

Proof. Clearly, Fy0 = 0 implies Vy6* = 0 and [¢,$] = 0. Then the
almost product Riemannian structure (defined by —¢* + £§® 7y and —¢) is
integrable. Let x be an arbitrary point of M. Then we have some open set W
containing x such that W = U*?*! X V*¢, which is a Riemannian product. From
(2.11) and 76 = 0, it follows that 2¥ = dy is closed, F® = 0 and, in particular,
d6 = 0, so that @ = ¥ + O is closed. Hence the structure (¢, &, 7, §) is quasi-
Sasakian, and L.g = 0 by (1.12). In order that U***!' X V*? be the product of
a Sasakian manifold U??+! and a Kihlerian manifold V¢, it must be shown that

(3.5) Vg =0 for X e &% ,
(3.6) Vyp=0  for Xe&4.

(3.5) follows from Lemma 2.3 (cf. remark to Lemma 2.3), and (3.6) is equiv-
alent to V¥ =0 for Xe&%. Since ® =¥ + © and VO = 0, we have
(Fx®)(Y,Z) = 0. On the other hand, an application of Proposition 2.5 to the
quasi-Sasakian structure (¢, &, 5, ) yields

3.7 FxO)Y, Z2) = 9 2D)F x)(@Y) — 7(Y)F xn)($2) -

Since 7 y& = 0 implies 7 yy = 0 for X ¢ &%, we have V;® = 0.

Now the Sasakian structure on U??*! and the K#hlerian structure on V% de-
fined in Proposition 2.1 (cf. remark to Proposition 2.1) give the product quasi-
Sasakian structure on U??*! X V?¢, which and the quasi-Sasakian structure on
W, restriction of (g, &, », ) to W, are isomorphic by (3.5), (3.6) and 7§ = 0.

Theorem 3.1. Let M(¢, &, ) be a normal almost contact manifold such that

® pAN@p?+0 and (dp)***'=0 on M,
(ii) —(dpX,¢X) >0 for any X e &1 .

Then we have a normal almost contact Riemannian structure (¢, &, 7, 8) which
admits the canonical almost product structure (—¢* + £y, —6). If V' = 0,
then M($, &, 7, 8) is locally the product of a Sasakian manifold of dimension
2p + 1 and a Kdihlerian manifold of dimension 2n — 2p.

In fact, let g’ be any Riemannian metric associated with (¢, &, 7). Then
(¢, &, 7, 8) is a normal almost contact Riemannian structure, and therefore we
obtain Theorem 3.1 by using Theorem 3.1’ for (¢, &, 7, &).
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4. A simple example

Let E* be a 3-dimensional Euclidean space with coordinates (x, y, z), and
define ¢, &, 9, g by

01 0
¢=[—1 0 0],
0y O
§=1(0,0,2), 2y =(-»0,1),
I+ 0 —y
4g = 0 1 0
—y 0 1

Then (g, &, , g) is a Sasakian structure (cf. [3]). Let B be a non-constant posi-
tive function of x and y, i.e., f(x,y) > 0, and define

g =p+U0—-pPR7y.
Then (¢, &, 9, g*) is a normal almost contact Riemannian structure. In this case,

1

O* = BP = —
P 2

Bdn = i_ﬁdx A dy .

Since Bis a function of x and y, we have d®* = 0, and therefore E*(g, &, 7, &%)
is a quasi-Sasakian manifold of rank 3, which is not Sasakian.
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