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1. Introduction

In [1] Adler has shown that Kahler metrics can be classified by geometric
conditions of the image of an isometry into certain Grassmannians. In this pa-
per, we find a necessary condition on the isometry which will guarantee that
the original metric was in fact a Hodge metric. (The cohomology class of the
fundamental form of the metric belongs to an integral cohomology class.)

Some standard conventions are observed. Difϊerentiable will mean difϊeren-
tiable of class C°°. If φ is a mapping, φ^ will denote the induced map in tangent
spaces. Lower case letters will denote the Lie algebra, upper case letters the
Lie group. For example, o(ή) will denote the Lie algebra of the orthogonal
group 0(/i). Finally, if g is an element of a matrix group, gι will denote the
transpose of g.

The results of this paper are part of the author's Ph. D. thesis, which was
written at Purdue University under A. W. Adler.

The following material can be found in [1]. We include it here for the sake
of completeness.

By a modification of Nash's theorem on isometric imbeddings in Euclidean
space, it can be shown that every ^-dimensional Riemannian manifold M can
be isometrically imbedded in Sk+P~ί (the unit sphere in Ek+P) where p is a large
positive integer depending on K but not on M.

Let B£i2n) = 0{2n + p)/0(2n) x 0(p — 1). Then B^{2n) can be considered as
the set of all pairs (P1 ? P2), where Pλ is a 2n-plane in E(2n + p) through the
origin, and P2 is a vector in E(2n + p) orthogonal to Px. L e t F be an isometric
imbedding of a 2n-dimensional Riemannian manifold M into S2n+p~K Each
point F(jή) of F(M) defines an element of B£(2n) (i.e., a pair (P15 P2)) as follows:
Pλ is to be the tangent space of F(M) at F(m) translated to the origin in
E(2n + p), and P2 is to be the position vector of F(m) The mapping
TΓ: F(M) —> B^2n) defined by τr(m) = (P19 P2) is called the spherical image map-
ping; on composition with F, it determines a map / of M into B^2ny

Let Br be the bundle of orthonormal bases over M. Then Bf is the space of all
(2n+ l)-tuples (m, e19 , e2n), where m is a point in M, and e19 , e2n is an
orthonormal basis for Mm. Define a mapping
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g:B> = 0(2n + p)/0(p -

by

g(m: , e2n) =

where F^fo) denotes the vector derived from F^ie^ by parallel translation to
the origin inE2n+p. The following diagram is the commutative

where λ, τ, and a are the natural mappings.
Let M be a hermitian manifold. Then the bundle Br of orthonormal bases of

M is reducible to a principal U(ή) -bundle B over Aί, and the condition that M
be Kahler is equivalent to the existence of a torsionless connection on B. Let
B+ ( n ) = 0(2rc + p)/U(n) x 0(p — 1). Then there is a mapping / o f M into
B^m such that the following diagram commutes:

π+p-l

where τ, τ\ d are the natural mappings.
Let x be a tangent vector to 0(2n + p), and denote by X the element of

0(2n + /?) defined by x. Define H>0) to be the projection of X into o(2n). Since
the 1-form w is horizontal over Vin>v and right invariant under the action of
0(p — 1) there is a o(2n)-valued 1-form wι on V%ntV such that σ*(w1) = w. A
vector x on B^m is said to be //-horizontal if there is a vector y on K^^ with
x = r*(v) and wYy) = 0.
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The importance of the notion of #-horizontality is seen in the following
theorem:

Theorem 1. A In-dimensional Riemannian manifold M is a Kdhler mani-
fold if and only if it admits a mapping g into B^{n) such that:

(a) g(M) is H-horizontal,
(b) the projection of g{M) into B^2n) is the spherical image of the projection

of g(M) into S2n+p-\
A 2n-dimensional submanifold M of B^(n) is said to be a K-manifold if it

satisfies the following two conditions:
(a) M is ^-horizontal, that is, every tangent vector of M is //-horizontal.
(b) The projection of M into B^{2n) is the image under the spherical map

of the projection of M into S2n+P~\
By Theorem 1, every A^-manifold can be identified with a Kahler manifold.

In fact, it can be shown that every X-manifold M induces a partial Hermitian
metric h in 'Bum. Let Ω denote the fundamental form of h, and Ω be the re-
striction of fi to M Then Ω is the fundamental form of the natural Kahler
metric and complex structure on M, and we have

Theorem 2. Let Mbea In-dimensional manifold with Riemannian metric r.
1. r is the real part of a Kahler metric of an almost complex structure on

M if and only if M admits a differentiate isometric imbedding f onto a K-
manifold. In case such an f exists, it is in fact a homeomorphic isometry with
respect to the natural Kahler metric and complex structure of f(M).

2. If r is the real part of a Kahler metric of a complex analytic structure on
M, then /*(β) is the fundamental form of the metric.

Let x be a tangent vector of 0{2n + p), and denote by X the element of
o(2n + p) defined by x. Define 1-forms w0 and wf as follows:

wo(x) is to be the projection of X into u(n), the Lie algebra of U(ri), and
w'(x) is to be the projection of X into o(2n + p — 1). Identify o(2n + p) with
the space of (2n + p) X (2n + p) skew symmetric real matrices, and denote by
witj the 1-form which assigns to each matrix its (/, /)th entry, 1 < /, / < 2n + p.
Let

trace 1m X =

Note that trace Im is invariant under the action of U(ή) x 0(p — 1). Finally
let Ωf denote the curvature form of w'.

Let M b e a compact complex analytic manifold with a Kahler metric Λ, and
/ be a differential isometric imbedding of M into a /c-manifold. Then the 2-forms
trace Im dw0, trace Im wf Λ w', and trace Im Ωf are horizontal over /(M). Since
they are also invariant under the right action of U(n) x 0(p — 1), they induce
2-forms on /(M). Denote these 2-forms by Trace Im dwQ, Trace Im w' Λ w',
and Trace Im Ω', respectively.
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Proposition 1. (a) (l/2τr)/*(Trace Im dwQ) is the first Chern form of the
Kdhler metric on M.

(b) (1 /2τr)/*(Trace Im Ωr) is the fundamental form of the Kdhler metric on
M.

(c) Trace Im Ωf = Trace Im dw0 + Trace Im w' Λw'.
The fact that w = w0 on f-ι[f(M)] implies that Trace Im w' Λ w' =

n 2n + p — 1

Σ Σ wia Λ wi+na. We will denote this form by Ωx .
i = l a = 2 + l

2. A condition

A ^-manifold Mf contained in B^(n) will be said to be special if each mf of
M'has a neighborhood V(mf) which admits a cross-section σv into δ~\V) such
that d(σv*wλ) — 0, where w 1 denotes the o(2n + /? — 1) valued 1-form w' — w.

A complex analytic manifold M together with a Kahler metric K{,) on M
will be said to be a special Kahler manifold if it admits an isometric imbedding
F into S2n+p-1 (for some p) such that f_(M) is a special K-manifold. Let D de-
note covariant differentiation with respect to the connection wr on 0(2n + p) as
a bundle over S2n+P~ι.

Proposition 2. Let (M, K( ,)) be a special Kdhler manifold, F be as pre-
scribed, and meM. Then there is an orthonormal basis e19 -,e2n+p_ι of
vector fields tangent to S2n+P~1 and defined on some neighborhood F(U(m)) of
F(m) such that:

(a) el9 , e2n is a basis for the tangent space of F(U),
(t>) eΣn + 1, -,e2n+p_ι is a basis for the orthonormal complement to the

tangent space of F(U),
(c) dWiY = 0 for i = 1, ., 2n: a = In + 1, , In + p — 1 where

wiy(x) = φa*i9ea>.
The converse is also true.

Proof. Given a cross-section σu on a neighborhood f(U) of a point /(m),
one gets an orthonormal basis for vector fields tangent to S2n+P~ι and defined
in a neighborhood F(U) of F(m) satisfying (a) and (b). Conversely,
such an orthonormal basis eλ, -,e2n+p_1 gives a cross-section σu(f(m)) =
{F(m), e19 - , e2n+p_1} defined on the neighborhood f(U) of f(m). So it suffices
to show that d(<7w*Ox)) = 0 if and only if dw£e = 0 for all/ = 1, , In a
= 2n + I, - —2n + p — 1. But this is immediate since, in fact, wβe =
j9*<7w*((>v-L)iα), this last statement being the equivalence of the Qartan and
bundle definitions of a connection.

3. The isomorphism between de Rahm and Cech cohomology for

special ^-manifolds

Let M be a special X-manifold contained in B^(n), m a point of M, and
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U(m) a neighborhood of m in M admitting a cross-section σw(m) into 0(2n + p)
such that σ*im)w

L is closed. Then °U = {U(m) mzM} is an open covering of
M. Let Ψ* — {Vs s € S} be a locally finite (differentiably) simple refinement of
the covering °U, [3]. Since Ψ* is a refinement of''<%, each F s is contained in some
member of the covering %. Hence, for each s in S, there is a cross-section σs

defined on Vs such that d{σ*wL) = 0. Since each F s is simply connected, there
are functions hs

ia, i = 1, . . . , 2n; a = 2n + 1, , 2n + p — 1, such that
dh\a = σ8*wiά on Ks. Let hs be the skew symmetric (2n + p) X (2n + p) matrix
whose (/, α)th entry is A{β for / = 1, , 2n a = 2n + 1, ., 2n + p — 1 and
whose remaining entries above the diagonal are zero. Let hs be the skew sym-
metric matrix defined on δ~ι{V^ by hs = h* o 3, where δ is the natural projec-
tion of 0(2n + p) onto B^ny

Lemma 1. On σ8(V8)9 dhs = w1.
Proof. σs*dhs = σs*W(/ιs o 5) = σ*{δ*dhs) = (5 o σβ)*(dA ) = σ/w 1 .
Let .R^ denote right translation along the fiber for δ~ι(Vs) by an element g of

U(n) X 0(p - 1). Then 3 o Rg = δ, for all g in Ό(n) x 0(p - 1). For each b
in δ~\Vs) define g,(6) to be the element of U(n) X 0(p — 1) such that Rςs{b)(b)
= σso δ(b), that is, gs(fc) is to be the element of U{n) x 0(p — 1) such that right
translation by gs(b) carries b to the point of the cross-section σs(Vs) lying in the
same fiber as b.

Lemma 2. Let b be any point of δ~ι(Vs). Then

Proof. Since fce^'^F^), Z? can be written as (m,/1? ,/2n+p-i)> where
m — aodo δ(b), /1? , /2TO is an orthonormal basis for the vector fields tangent
to a o 9(M) on some neighborhood of the point m, and /2 n +i, , f2n+p-ι i s a n

orthonormal basis for the orthogonal complement to the tangent space of M on
this neighborhood. Here, as before, a°d denotes the natural projection of B£{n)

onto S2n+P~1. Let e19 , e2n+.p-i be the orthonormal vector fields defined by the
section σb. Then by definition of gs(b), we have

(/i(m), ,/ 2 n + p . 1 (m)) - (^ ( w ), ',e2™p_λ)gs{b) ,

where m = α o 9 o ^(fc). Let x be any tangent vector of δ~\Vs) at the point b
and x = ( « o 9 o d)**. Then

gia<ek,x(gβa)eβ + gβaDxeβ}
—

= </*

2n
— ^

2n

= Σ

2n + p-l

Σ
β=2n+l

2n + p-l

Σ

> = <

8ki<e

8ki<e

ι 2n

Σ 8kiek

„ *>,(*„
k,Dxeβy

~ β = 2n-l /

2n 2n + p-l

e \ — y y
k=lβ=2n+l

2n 2n + p — 1

8βa = Σ Σ i
k=l β=2n+l
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where 1 < k < 2n, In — 1 < β < In + p — 1. Since by Lemma 1, a*dh8

= σ^w1, the assertion now follows.
Define an operator T on pairs Aλ,A2 of (2n + p) X (2n + p) matrices by

T(Al9 A2) = trace Im [Al9 A2] where [AX,A2] denotes the matrix AXA2 — A2AX.
Finally, define a 1-form as on δ~ι(Vs) by

as(X)b = Tlgst(b)hs(b)gs(b),wbHX)]

for any tangent vector X of δ~\Vs) at the point b. Recall that ΩL denotes the
2-form Σ ϊ - ί ί + ί Σΐ=χWia Λ >v,+nα = trace I m w 1 Λ w 1 .

Proposition 3. On r K ^ ) , dα,/2 = flx.
/. Let b be any point of δ-\Vs). Then

Since trace Im is right invariant under the action of U(ri) x 0(p — 1), we
have

as = T(gιhsgs, w1) = trace Im (g/A'ftw-1- — wLgs

ιhsgs)

= ti3co1m(gt

th'gtgMΐtdh')gt - gMΐ.dhOg&'h g,)

= trace Im (hs(b)R*dhs

σsδ{b) - R*dhs

σsδ(b)h
s) ,

which becomes, in consequence of hs(σsδ(b)) = As(b),

α, = trace Im (hs(b)dhb

s - dhb

shs(b)) .

Thus

dα, = trace Im (dA6 Λ dAδ

s + dhb

sdhb

s)

= 2tr2iceIm(R*s(b)(dhs

σsHb) A dhs

σsHb))

= 2R*sib) trace Im ( < 3 ( δ ) Λ < δ ( δ ) ) = 2Ωb

L ,

since the 2-form Ωb

L is invariant under the right action of U(n) X 0(p - 1).
Now let r and s be elements of the index set 5 such that Vr Π Vs is not empty.

For each m in VΎ Π Kβ, let g r s(m) be the element of U(ή) x 0(p — 1) such that

σs(m) = RMm)(σr(m)) .

If 6 is any point in δ~ι(Vr Π Vt), then gs(b)gr\b) = grs(δ(b))
Lemma 3. On Vr Π V89 the 1-form

is closed.
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Proof. By an application of Lemma 3 we have dhr = grldh*grs. Thus
dgr[dh'grs = grldhsdgrs, and

d(J(h°gra,h
rdg}s)

= d trace \m{h°grj?dg}s - ffdgχh'grί)

+ d trace 1m(-hrgίJι'dgr, + h!dgrsh
rgr\)

= trace Im (.d(&grljh
rdg;. + h dgrjh?g$

- tiacelm(.d(hrdg;jh'gr, + hrg}Jh*dgrs)) .

The first term above is equal to

trace Im (dh°grjι
rdgfs + h'grjh

rdgf, + dh*dgrj?gr\ - h°dgrsdhrg$

= trace hn (ί-dgί^dh gr. + gϊjh dgτχhr))

+ trace Im (h°(grsdh'dg;s - dgrsdhr8rS)) = 0 .

Similarly,

trace Im (d(h'dg;jιsgrί + k'gfji'dgj) = 0 .

Since Vr Π Vs is simply connected, there exists a function j), such that

dfr\ =

on Vr Π V,. Define a function /r

2

s on Vr Π Vs by /r

2

s = Γ(Asgrs, /?•#,) and let
α s (resp. αr) be the 1-form σs*(αs)(resp. σ r*(α)).

Proposition 4. On F r Π V., αs-αr = d(j>. - #,)•

Proo/. α s - α r = T{h°, dhs) - T{hr, dhr)

= T(h°,grsdhr8ti - T(h',g;sdhs8r,)

Since T = trace Im ( [ , ]), and trace Im is invariant under the right action of
£/(n) X 0(p — 1), we have:

α, - αr = TQi gr dhrgtt + T(dh°grs,h'gfs)

= d(J(h*grs, A'gΛ)) - T(hs8rs, hrdg}s) - T{h'dgrs, hrgβ

= d(fί. - /λ) .

Now let r, ί, and t be any elements of the index set S such that Vr Π F s Π J^
is not empty, and let

αrst = W. - /A + /i) - (/λ - fr\ + fh) •
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Let {a} denote the cohomology class of H2(M, R) of which [(l/4π)arst] is a
representative, and {trace Im w1 Λ w1} the cohomology class of the 2-form
trace Im wL A wL in H\M).

Theorem 3. Let M be a special K-manifold, and [a] as defined above. If
φ denotes the isomorphism of H2(M) onto H\V, R), then

^({trace Im wL Λ wL}) = {a} .

Proof. The assertion follows immediately from Propositions 3 and 4.

4. A sufficient condition for a special Kahler manifold

to be a Hodge manifold

Theorem 4. Let (M, K(,)) be a special Kahler manifold. Suppose more-
over that the matrices hs can be chosen so that dgrsh

rgfs + grsh
rdgfs vanishes

whenever r and s are elements of the index set S such that Vr Π Vs is not
empty. Then K(,) is a Hodge metric.

The remainder of this section is devoted to the proof of this theorem.
Lemma 1. Under the conditions of Theorem 4 the functions f}8 can be

chosen to be identically zero.
Proof. By definition,

dfr\ =

= T(h\grsKdg}s + dgrsh
rg}s) = 0

on Vr Π Vs. Thus f}8 is a constant and, in fact, can be chosen to be zero.
Define constant matrices crs by cτs — hs — grsh

rg^s for all r, s in the index
set S such that Vr Π Vs is not empty.

Lemma 2. // r, s, t are elements of the index set S such that VrΠVsΠ Vt

is not empty, then

Crt + grtCsrgrt ~ Cst = 0 .

Proof. We have

hr = gsrh'gfr + csr ,

hι = gsth
sgs\ + cst ,

hι = grth
rgϊt + drt ,

so,

grt ~ Cst = gsth
Sgl

st - grth
rg}t + grtCrSgrt

= grt(gsrhSgr

ts ~ hr)gr\ + grtCsrg

= -8rt(Csr)gϊt + grtCsrgrt = 0 .
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Now fix any element s of the index set S and for each r in S such that Vr Π Vs

is not empty, define hr = hr — csr.
Lemma 3. Under the same hypothesis as in Lemma 2,

grth
rgrt = Srt(hr ~ Csr)g^t = grttt'gr\ - grtCsrgr\

= grthrg}t + crt - cst = hι - cst = hι .

Let S denote all elements r of the index set S such that Vr Π Vs is not empty.
If u is an element of S such that Vu Π Vr is not empty for some r in S, define
hu = hu — cru, where c r M is defined by c r M = hu — gruh

rgrU.
Lemma 4. Λw is well defined.
Proof. We must show that if r and t are elements of S such that KM Π Vr

and Kw (Ί Fί are not empty, then hu — cru — hu — ctu, that is, cru = ctu. But,
as before, cru + gructrg}u — ctu = 0, and, by Lemma 3, ctr = 0. Hence the
lemma follows.

Continuing this process defines matrices hr for each r in the index set 5 in
the same connected component as Vs such that grth

rg}t = hι for all r and t with
Vr Π Kt not empty. Doing this for every connected component gives matrices
hr for each r in S such that grth

rgft = & for all r and t such that F r Π Vt is
not empty.

Lemma 5. The cohomology class [a] vanishes.
Proof. Since dhs = dhs for all s, and trace Im is invariant under the right

action of U(n) x 0(p — 1), a representative of [a] is

arst =

Since T(Λ% Ar) = trace Im ([Ar, Ar]) = 0 for all r in S, we have

flr5ί = T(g'th'grt - fr, A0 - ΓίgΛί^rί - Ar, Λr) + T(gίth%t - hs, hs)

= 0

by the definition of h. Thus the cohomology class [a] vanishes.
Lemma 6. // {a} vanishes, then K(,) is a Hodge metric.
Proof. By Proposition 1, (l/2^)β J- = Ω — c19 where cx is the first Chern

form of M, and Ω is the fundamental form of the metric K(,). By Theorem 3,
φ(Ωλ) — {a}. Thus {a} vanishes, so that the first Chern form and the funda-
mental form of the metric are cohomologous. Since the first Chern form is
integral, the assertion follows.
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