THE ABSOLUTE AND RELATIVE BETTI NUMBERS OF A MANIFOLD WITH BOUNDARY

GRIGORIOS TSAGAS

1. Consider a compact manifold M with a boundary B, so that M is the closure of an open submanifold of an n-dimensional orientable Riemannian manifold V, and B is a compact orientable ($n-1$)-dimensional manifold. Let $H_{p}(M, \boldsymbol{R})$ and $H_{n-p}\{(M, B), \boldsymbol{R}\}$ be respectively the p th Betti group of M and the p th Betti group of $M(\bmod . B)$. Then by Lefschetz duality theorem the p th Betti group $H_{p}(M, \boldsymbol{R})$ and the $(n-p)$ th Betti group $H_{n-p}\{(M, B), \boldsymbol{R}\}$ are dual, so that the absolute Betti number A_{p} and the relative Betti number R_{n-p} of the manifold M are equal. For a k-pinched manifold M, the numbers A_{p} and R_{q} for $p=q=2$ are zero, when the number k is greater than a number λ and the second fundamental form on B satisfies some conditions. We can improve the number λ, when the dimension of the manifold M is 5 . These results are a generalization of those given in [8].
2. If α, β are two tensors of the manifold M of order p, then the local inner product of the two tensors α, β is defined by

$$
(\alpha, \beta)=\frac{1}{p!} \alpha^{i_{1} \cdots i_{p}} \beta_{i_{1} \cdots i_{p}}=\frac{1}{p!} \alpha_{i_{1} \cdots i_{p}} f^{i_{1} \cdots i_{p}}
$$

and the local norm of the tensor α is defined by

$$
|\alpha|^{2}=\frac{1}{p!} \alpha^{i_{1} \cdots i_{p}} \alpha_{i_{1} \cdots i_{p}}
$$

If η is the volume element of the manifold M, then the global inner product of the two tensors α, β and the global norm of the tensor α are defined, respectively,

$$
\langle\alpha, \beta\rangle=\int_{M}(\alpha, \beta) \eta, \quad\|\alpha\|^{2}=\int_{M}|\alpha|^{2} \eta .
$$

If α is a p-form, then we have [6, p. 187]

$$
\begin{equation*}
\langle\Delta \alpha, \alpha\rangle=\|d \alpha\|^{2}+\|\delta \alpha\|^{2}, \tag{2.1}
\end{equation*}
$$

[^0]where $\Delta \alpha, d \alpha$ and $\delta \alpha$ are the Laplacian, the exterior differentiation and the codifferentiation of α given by [7, pp. 1-2]
\[

$$
\begin{gather*}
\Delta \alpha=d \delta \alpha+\delta d \alpha, \tag{2.2}\\
(d \alpha)_{j_{1} \cdots j_{p+1}}=\frac{1}{p!} \varepsilon^{\varepsilon_{j_{1} \cdots j_{p+1}}^{l i} \cdots i_{p}} \nabla_{l} \alpha_{i_{1} \cdots i_{p}} \tag{2.3}\\
(\delta \alpha)_{i_{2} \cdots i_{p}}=-\nabla_{l} \alpha_{i_{2} \cdots i_{p}}^{l} . \tag{2.4}
\end{gather*}
$$
\]

The following relation is also valid [7, p. 4]:

$$
\begin{equation*}
\frac{1}{2} \Delta\left(|\alpha|^{2}\right)=(\alpha, \Delta \alpha)-|\nabla \alpha|^{2}+\frac{1}{2[(p-1)!]} Q_{p}(\alpha) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gather*}
|\nabla \alpha|^{2}=\frac{1}{p!} \nabla_{l} \alpha_{i_{1} \cdots i_{p}} \nabla^{l} \alpha^{i_{1} \cdots i_{p}} \tag{2.6}\\
Q_{p}(\alpha)=(p-1) R_{i j h l} \alpha^{i j i_{3} \cdots i_{p}} \alpha^{h l}{ }_{i_{3} \cdots i_{p}}-2 R_{h l} \alpha^{h i_{2} \cdots i_{p}} \alpha_{i_{2} \cdots i_{p}}^{l} \tag{2.7}
\end{gather*}
$$

For a point P on the boundary B, let $\left(u^{1}, \cdots, u^{n-1}\right)$ and (v^{1}, \cdots, v^{n}) be two local coordinate systems of the point P considered as a point of B and M respectively. Then the boundary B is represented locally by

$$
\begin{equation*}
v^{i}=f^{i}\left(u^{1}, \cdots, u^{n-1}\right), \quad i=1, \cdots, n \tag{2.8}
\end{equation*}
$$

in $U(P) \cap M$, where $U(P)$ is a coordinate neighborhood of V. Denote by N the normal vector field of the boundary B and choose the coordinate system (u^{1}, \cdots, u^{n-1}) such that the vector fields $N, \partial / \partial u^{1}, \cdots, \partial / \partial u^{n-1}$ form a positive sense of M with respect to the basis $\partial / \partial u^{1}, \cdots, \partial / \partial u^{n}$. Then Stokes' theorem can be stated as follows. If $\gamma=\left(\gamma_{i}\right)$ is an arbitrary vector field on M, then [9, p. 589]

$$
\begin{equation*}
\int_{B}(\gamma, N) \bar{\eta}=-\int_{M} \delta \gamma \eta \tag{2.9}
\end{equation*}
$$

where

$$
\bar{\eta}=\sqrt{h} d u^{1} \wedge \cdots \wedge d u^{n-1}, \eta=\sqrt{g} d v^{1} \wedge \cdots \wedge d v^{n}
$$

h being the determinant of the metric on the boundary B, which is obtained under the assumption that the mapping F defined by (2.8) is an isometric immersion of M into B.

A p-form $\alpha=\left(\alpha_{i_{1} \cdots i_{p}}\right)$ is tangential to B if it satisfies the relation [10, p. 431]:

$$
\alpha^{i_{1} \cdots i_{p}}=\left(\partial v^{i_{1}} / \partial u^{j_{1}}\right) \cdots\left(\partial v^{i_{p}} / \partial u^{j_{p}}\right) \bar{\alpha}^{j_{1} \cdots j_{p}},
$$

or

$$
\alpha^{i i_{2} \cdots i_{p}} N_{i}=0,
$$

on B, where $\bar{\alpha}=\left(\bar{\alpha}_{i_{1} \cdots i_{p}}\right)$ is a p-form defined over B. The p-form α satisfies also the relation [10, p. 434]:

$$
\begin{align*}
\left(\nabla_{l} \alpha_{h i_{2} \cdots i_{p}}\right) \alpha^{h i_{2} \cdots i_{p}} N^{l}= & p H_{i j} \bar{\alpha}_{\alpha_{2} \cdots i_{p}}^{i} \alpha^{j i_{2} \cdots i_{p}} \tag{2.10}\\
& -(p+1)\left(\nabla_{[l} \alpha_{\left.h i_{2} \cdots i_{p}\right]}\right) \alpha^{l i_{2} \cdots i_{p}} N^{h}
\end{align*}
$$

where

$$
\begin{aligned}
(p+1) \nabla_{[l} \alpha_{\left.h i_{2} \cdots i_{p}\right]}= & \nabla_{l} \alpha_{h i_{2} \cdots i_{p}}-\nabla_{h} \alpha_{l i_{2} \cdots i_{p}} \\
& -\nabla_{i_{2}} \alpha_{h i_{3} \cdots i_{p}}-\cdots-\nabla_{i_{p}} \alpha_{h i_{2} \cdots i_{p-1} l} .
\end{aligned}
$$

A p-form $\alpha=\left(\alpha_{i_{1} \cdots i_{p}}\right)$ on the manifold M is normal to the boundary B, if it satisfies the relation [10, p. 432]:

$$
\alpha_{i_{1} \cdots i_{p}}\left(\partial v^{i_{1}} / \partial u^{j_{1}}\right) \cdots\left(\partial v^{i_{p}} / \partial u^{j_{p}}\right)=0
$$

from which we obtain [10, p. 435]

$$
\begin{align*}
& \left(\nabla_{h} \alpha_{l i_{2} \cdots i_{p}}\right) \alpha^{l i_{2} \cdots i_{p}} N^{h}=p\left(\nabla_{h} \alpha^{h}{ }_{i_{2} \cdots i_{p}}\right) \alpha^{l i_{2} \cdots i_{p}} N_{l} \tag{2.11}\\
& \quad \quad+p H^{l}{ }_{l} \bar{\alpha}_{i_{2} \cdots i_{p}} \bar{\alpha}^{i_{2} \cdots i_{p}}-(p-1) p H_{i j} \bar{\alpha}^{i}{ }_{i_{3} \cdots i_{p}} \bar{\alpha}^{j i_{3} \cdots i_{p}}
\end{align*}
$$

where $\bar{\alpha}=\left(\bar{\alpha}_{i_{2} \cdots i_{p}}\right)$ is a $(p-1)$-form defined by

$$
\alpha_{l i_{2} \cdots i_{p}} N^{l}=\bar{\alpha}_{j_{2} \cdots j_{p}}\left(\partial v^{j_{2}} / \partial u^{i_{2}}\right) \cdots\left(\partial v^{j_{p}} / \partial u^{i_{p}}\right) .
$$

3. Assume that the manifold M is of odd dimension $n=2 m+1$ and admits a metric which is positively k-pinched, and let α be a harmonic 2 -form on the manifold M. Then for any point P of the manifold there is a special basis $\left(X_{1}^{*}, \cdots, X_{n}^{*}\right)$ in the vector space M_{P}^{*} such that at the point P, α can be written as

$$
\begin{equation*}
\alpha=\alpha_{12} X_{1}^{*} \wedge X_{2}^{*}+\alpha_{34} X_{3}^{*} \wedge X_{4}^{*}+\cdots+\alpha_{2 m-1,2 m} X_{2 m-1}^{*} \wedge X_{2 m}^{*} \tag{3.1}
\end{equation*}
$$

Now consider the $2 m$-form β defined by

$$
\begin{equation*}
\beta=\frac{1}{m!} \alpha \wedge \cdots \wedge \alpha,(m \text { times }) \tag{3.2}
\end{equation*}
$$

which becomes, in consequence of (3.1),

$$
\begin{equation*}
\beta=\alpha_{12} \alpha_{34} \cdots \alpha_{2 m-1,2 m} X_{1}^{*} \wedge \cdots \wedge X_{2 m}^{*} \tag{3.3}
\end{equation*}
$$

Since the manifold M is k-pinched, $Q_{2}(\alpha)$ and $Q_{2 m}(\beta)$ satisfy the inequalities [8]:

$$
\begin{gather*}
\frac{1}{2} Q_{2}(\alpha) \leq-2(2 m-1) k|\alpha|^{2}+\frac{8}{3}(1-k) \delta \tag{3.4}\\
\frac{1}{2[(2 m-1)!]} Q_{2 m}(\beta) \leq-2 m k|\beta|^{2} \tag{3.5}
\end{gather*}
$$

where

$$
\begin{align*}
& |\alpha|^{2}=\alpha_{12}^{2}+\alpha_{34}^{2}+\cdots+\alpha_{2 m-1,2 m}^{2}, \quad|\beta|^{2}=\alpha_{12}^{2} \alpha_{34}^{2} \cdots \alpha_{2 m-1,2 m}^{2} \tag{3.6}\\
& \delta=\alpha_{12} \alpha_{34}+\cdots+\alpha_{12} \alpha_{2 m-1,2 m}+\cdots+\alpha_{2 m-3,2 m-2} \alpha_{2 m-1,2 m}
\end{align*}
$$

Applying the Laplace operator Δ to the function $|\beta|^{2}$, we get $\Delta\left(|\beta|^{2}\right)=\delta d\left(|\beta|^{2}\right)$ and therefore

$$
\int_{M} \Delta\left(|\beta|^{2}\right) \eta=\int_{M} \delta d\left(|\beta|^{2}\right) \eta
$$

By means of (2.5) and (2.9), the above relation becomes

$$
-\frac{1}{2} \int_{B}\left(N, d\left(|\beta|^{2}\right)\right) \bar{\eta}=\int_{M}\left[(\beta, \Delta \beta)-|\nabla \beta|^{2}+\frac{1}{2[(2 m-1)!]} Q_{2 m}(\beta)\right] \eta
$$

which takes the form, due to (2.1),

$$
\begin{equation*}
\frac{1}{2} \int_{B}\left(N, d\left(|\beta|^{2}\right)\right) \bar{\eta}=\int_{M}\left[-|d \beta|^{2}-|\delta \beta|^{2}+|\nabla \beta|^{2}-\frac{Q_{2 m}(\beta)}{2[(2 m-1)!]}\right] \eta \tag{3.7}
\end{equation*}
$$

By virtue of (3.5) and the relation $d \beta=0$, a consequence of (3.2), from (3.7) it follows that

$$
\begin{equation*}
\frac{1}{2} \int_{B}\left(N,\left(d|\beta|^{2}\right)\right) \bar{\eta} \geq \int_{M}\left[-|\delta \beta|^{2}+2 m k|\beta|^{2}\right] \eta \tag{3.8}
\end{equation*}
$$

For a harmonic 2 -form α tangential or normal to the boundary B, formula (2.5) becomes [10, pp. 435-436]

$$
\frac{1}{2}\left(\Delta|\alpha|^{2}\right)=-|\nabla \alpha|^{2}+\frac{1}{2} Q_{2}(\alpha)
$$

from which we get

$$
\frac{1}{2}|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right)=-|\alpha|^{2 m-2}|\nabla \alpha|^{2}+\frac{1}{2}|\alpha|^{2 m-2} Q_{2}(\alpha)
$$

$$
\frac{1}{2} \int_{M}|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right) \eta=\int_{M}\left[-|\alpha|^{2 m-2}|\nabla \alpha|^{2}+\frac{1}{2}|\alpha|^{2 m-2} Q_{2}(\alpha)\right] \eta
$$

which together with (3.4) gives

$$
\begin{align*}
-m \int_{M}|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right) \eta \geq \int_{M}[& 2 m|\alpha|^{2 m-2}|\nabla \alpha|^{2}+4 m(2 m-1) k|\alpha|^{2 m} \tag{3.9}\\
& \left.-\frac{16}{3} m(1-k) \delta|\alpha|^{2 m-2}\right] \eta
\end{align*}
$$

It is well known that the following relation holds:

$$
\Delta\left[\left(|\alpha|^{2}\right)^{m}\right]=m|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right)-m(m-1)|\alpha|^{2 m-4}\left(d\left(|\alpha|^{2}\right)\right)^{2},
$$

which implies the inequality

$$
\Delta\left[\left(|\alpha|^{2}\right)^{m}\right] \leq m|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right),
$$

or

$$
\begin{equation*}
\int_{M} \Delta\left[\left(|\alpha|^{2}\right)^{m}\right] \eta \leq \int_{\boldsymbol{M}} m|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right) \eta . \tag{3.10}
\end{equation*}
$$

By means of (2.9), the relation (3.10) takes the form

$$
\begin{equation*}
\int_{B}\left(N, d\left[\left(|\alpha|^{2}\right)^{m}\right]\right) \bar{\eta} \geq-\int_{M} m|\alpha|^{2 m-2} \Delta\left(|\alpha|^{2}\right) \eta . \tag{3.11}
\end{equation*}
$$

From (3.9) and (3.11) follows immediately the inequality

$$
\begin{align*}
\frac{1}{2} \int_{B}\left(N,|\alpha|^{2 m-2} d\left(|\alpha|^{2}\right)\right) \bar{\eta} \geq \int_{M} & {\left[|\alpha|^{2 m-2}|\nabla \alpha|^{2}-\frac{8}{3}(1-k) \delta|\alpha|^{2 m-2}\right.} \tag{3.12}\\
& \left.+2(2 m-1) k|\alpha|^{2 m}\right] \eta
\end{align*}
$$

By means of the inequality

$$
\begin{equation*}
|\delta \beta|^{2} \leq \frac{(2 m-1)(m-1)}{m^{m-2}}|\nabla \alpha|^{2}|\alpha|^{2 m-2} \tag{3.13}
\end{equation*}
$$

proved in [8], from (3.8) we obtain

$$
\begin{align*}
\frac{m^{m-2}}{2(2 m-1)(m-1)} \int_{B}\left(N, d\left(|\beta|^{2}\right)\right) \bar{\eta} \geq \int_{M} & {\left[-|\nabla \alpha|^{2}|\alpha|^{2 m-2}\right.} \tag{3.14}\\
& \left.+\frac{2 m^{m-1}}{(2 m-1)(m-1)}|\beta|^{2}\right] \eta
\end{align*}
$$

Thus addition of (3.12) to (3.14) gives readily

$$
\begin{aligned}
& \frac{1}{2} \int_{B} 3\left(N, m^{m-2} d\left(|\beta|^{2}\right)+(2 m-1)(m-1)|\alpha|^{2 m-2} d\left(|\alpha|^{2}\right)\right) \bar{\eta} \\
& \quad \geq \int_{M} 2\left[3(2 m-1)^{2}(m-1) k|\alpha|^{2 m}-4(2 m-1)(m-1)(1-k) \delta|\alpha|^{2 m-2}\right. \\
& \left.\quad+3 m^{m-1} k|\beta|^{2}\right] \eta
\end{aligned}
$$

or

$$
\begin{align*}
& \int_{B} 3\left[m^{m-2}\left(\nabla_{l} \beta_{h i_{2} \cdots i_{2 m}}\right) \beta^{h i_{2} \cdots i_{2 m}} N^{l}, \quad\left(h<i_{2}<\cdots<i_{2 m}\right)\right. \\
& \left.\quad+(2 m-1)(m-1)|\alpha|^{2 m-2}\left(\nabla_{l} \alpha_{h i_{2}}\right) \alpha^{h i_{2}} N^{l}, \quad\left(h<i_{2}\right)\right] \bar{\eta} \tag{3.15}\\
& \geq \int_{M} 2\left[3(2 m-1)^{2}(m-1) k|\alpha|^{2 m}-4(2 m-1)(m-1)(k-1) \delta|\alpha|^{2 m-2}\right. \\
& \left.\quad+3 k m^{m-1}|\beta|^{2}\right] \eta .
\end{align*}
$$

If the harmonic 2 -form α is tangential to B, then by means of (2.10), $d \alpha=0$ and $d \beta=0$, (3.15) becomes

$$
\begin{align*}
& \int_{B} 3 H_{i j}\left[2 m^{m-1} \bar{\beta}_{i_{2} \cdots i_{2 m}} \bar{\beta}^{j i_{2} \cdots i_{2 m}}, \quad\left(i_{2}<\cdots<i_{2 m}\right)\right. \\
& \left.\quad+2(2 m-1)(m-1)|\alpha|^{2 m-2} \bar{\alpha}_{i_{2}}^{i} \bar{\alpha}^{j i 2}\right] \bar{\eta} \tag{3.16}\\
& \geq \int_{M} 2\left[3(2 m-1)^{2}(m-1) k|\alpha|^{2 m}-4(2 m-1)(m-1) \delta|\alpha|^{2 m-2}\right. \\
& \left.\quad+3 k m^{m-1}|\beta|^{2}\right] \eta .
\end{align*}
$$

We can prove with the same technique as in [8] that if k satisfies the inequality

$$
\begin{equation*}
k>\lambda=2(2 m-1)(m-1)^{2} m /[m(m-1)(2 m-1)(8 m-5)+3] \tag{3.17}
\end{equation*}
$$

then the second member of (3.16) is positive. Hence we have the following theorem and corollary.

Theorem I. Let M be a compact k-pinched Riemannian manifold of dimension $n=2 m+1$ with boundary B. If $k>\lambda$, given by (3.17), and the second fundamental form on the boundary is semi-negative, then the second absolute Betti number A_{2} of the manifold vanishes.

Corollary I. For a compact k-pinched Riemannian manifold M of dimension $n=2 m+1$ with a totally geodesic boundary, $A_{2}=0$ if

$$
k>2(2 m-1)(m-1)^{2} m /[m(m-1)(2 m-1)(8 m-5)+3]
$$

If the harmonic 2 -form α is normal to B, then by means of (2.11) and $\delta \alpha$ $=0$, (3.15) takes the form

$$
\begin{align*}
& \int_{B} 6\left\{m^{m-1}\left(\nabla_{h} \beta^{h}{ }_{i_{2} \cdots i_{2 m}}\right) \beta^{l i_{2} \cdots i_{2 m}} N_{l}\right. \\
& +H_{l}^{l}{ }_{l}\left[m^{m-1} \bar{\beta}_{i_{2} \cdots i_{2} m} \bar{\beta}^{i_{2} \cdots i_{2 m}}+(2 m-1)(m-1)|\alpha|^{2 m-2} \bar{\alpha}_{i_{2}} \bar{\alpha}^{i_{2}}\right] \\
& -H_{i j}\left[(2 m-1) m^{n-1} \bar{\beta}^{i}{ }_{i_{3} \cdots i_{2} m} \bar{\beta}^{j i_{3} \cdots i_{2 m}}\right. \\
& \left.\left.+(2 m-1)(m-1)|\alpha|^{2 m-2} \bar{\alpha}^{i} \bar{\alpha}^{j}\right]\right\} \bar{\eta}, \quad\left(i_{2}<i_{3}<\cdots<i_{2 m}\right) \tag{3.18}\\
& \geq \int_{M} 2\left[3(2 m-1)^{2}(m-1) k|\alpha|^{2 m}-4(2 m-1)(m-1)(k-1) \delta|\alpha|^{2 m-2}\right. \\
& \left.+3 k m^{m-1}|\beta|^{2}\right] \eta .
\end{align*}
$$

Denote the following quadratic form by $L(\alpha, \alpha)$:

$$
\begin{align*}
& L(\alpha, \alpha)= m^{m-1}\left(\nabla_{h} \beta^{h}{ }_{i_{2} \cdots i_{2 m}}\right) \beta^{i_{2} \cdots i_{2 m}} N^{l} \\
& \quad+H^{l}\left[m^{m-1} m^{m-1} \bar{\beta}_{i_{2} \cdots i_{2 m}} \bar{\beta}^{i_{2} \cdots i_{2 m}}+(2 m-1)(m-1)|\alpha|^{2 m-2} \bar{\alpha}_{i_{2}} \bar{\alpha}^{i_{2}}\right] \\
&-H_{i j}\left[(2 m-1) m^{m-1} \bar{\beta}^{i}{ }^{i} i_{3} \cdots i_{2 m}\right. \tag{3.19}\\
& \bar{\beta}^{j i_{3} \cdots i_{2 m}} \\
&\left.+(2 m-1)(m-1)|\alpha|^{2 m-2} \bar{\alpha}^{i} \bar{\alpha}^{j}\right], \quad\left(i_{2}<i_{3}<\cdots<i_{2 m}\right) .
\end{align*}
$$

Therefore from (3.18) and (3.19) we conclude the theorem:
Theorem II. Let M be a compact k-pinched Riemannian manifold with boundary B. If $k>\lambda$ given by (3.17), and the quadratic form $L(\alpha, \alpha)$ defined by (3.19) is semi-negative, then the second relative Betti number R_{2} of the manifold (mod. B) is zero.
4. In this section we use the same technique as in § 3 to improve the number λ if the dimension of the manifold is 5 . By estimating the norm $|\delta \beta|^{2}$ at the point P and using the inequality

$$
2(A B+C D)^{2} \leq A^{2}\left(3 B^{2}+D^{2}\right)+C^{2}\left(B^{2}+3 D^{2}\right)
$$

we obtain

$$
\begin{equation*}
|\delta \beta|^{2} \leq 5|\nabla \alpha|^{2}|\alpha|^{2} / 2 \tag{4.1}
\end{equation*}
$$

By means of (4.1) and $m=2$, the inequality (3.8) becomes

$$
\begin{equation*}
\frac{1}{5} \int_{B}\left(N, d\left(|\beta|^{2}\right)\right) \bar{\eta} \geq \int_{M}\left[-|\nabla \alpha|^{2}|\alpha|^{2}+\frac{8}{5} k|\beta|^{2}\right] \eta \tag{4.2}
\end{equation*}
$$

Moreover for $m=2$, (3.12) is reduced to

$$
\begin{equation*}
\frac{1}{2} \int_{B}\left(N,|\alpha|^{2} d\left(|\alpha|^{2}\right)\right) \bar{\eta} \geq \int_{M}\left[|\alpha|^{2}|\nabla \alpha|^{2}-\frac{8}{3}(1-k) \delta|\alpha|^{2}+6 k|\alpha|^{4}\right] \eta \tag{4.3}
\end{equation*}
$$

which together with (4.2) implies

$$
\begin{aligned}
& \int_{B}\left(N, 6 d\left(|\beta|^{2}\right)+15|\alpha|^{2} d\left(|\alpha|^{2}\right)\right) \bar{\eta} \\
& \quad \geq \int_{M}\left[180 k|\alpha|^{4}-80(1-k) \delta|\alpha|^{2}+48 k|\beta|^{2}\right] \eta
\end{aligned}
$$

or

$$
\begin{align*}
& \int_{B}\left[6\left(\nabla_{l} \beta_{h i_{2} i_{3 i} i_{4}}\right) \beta^{h i_{2} i_{s i} i_{4}} N^{l}+15|\alpha|^{2}\left(\nabla_{l} \alpha_{h i_{2}}\right) \alpha^{h i_{2}} N^{l}\right] \bar{\eta}, \quad\left(h<i_{2}<i_{3}<i_{4}\right) \tag{4.4}\\
& \quad \geq \int_{M}\left[90 k|\alpha|^{4}-40(1-k) \delta|\alpha|^{2}+24 k|\beta|^{2}\right] \eta
\end{align*}
$$

If the harmonic 2 -form α is tangential to B, then (4.4) takes the form

$$
\begin{aligned}
& \int_{B} 3 H_{i j}\left[8 \bar{\beta}_{i_{2} i_{3 i} i_{4}}^{\left.\bar{\beta}^{j i_{2} i_{3 i} i_{4}}+10|\alpha|^{2} \bar{\alpha}_{i_{2}}^{i} \bar{\alpha}^{j i_{2}}\right] \bar{\eta}, \quad\left(i_{2}<i_{3}<i_{4}\right)}\right. \\
& \quad \geq \int_{M}\left[90 k|\alpha|^{4}-40(1-k) \delta|\alpha|^{2}+24 k|\beta|^{2}\right] \eta
\end{aligned}
$$

If $k>10 / 58$, then the second member of the above inequality is positive. Thus we obtain the following theorem and corollary.

Theorem III. Let M be a compact k-pinched Riemannian manifold of dimension 5 with boundary B. If $k>10 / 58$ and the second fundamental form on B is semi-negative, then $A_{2}=0$.

Corollary II. For a compact k-pinched Riemannion manifold M of dimension 5 with a totally geodesic boundary, if $k>10 / 58$, then $A_{2}=0$.

If the harmonic 2 -form α is normal to the boundary B, then (4.4) becomes

$$
\begin{align*}
& \int_{B} 3\left[8\left(\nabla_{n} \beta^{h}{ }_{i_{2} i_{3} i_{4}}\right) \beta^{i_{2} i_{3} i_{4}} N_{l}+H^{l}{ }_{l}\left(8 \bar{\beta}_{i_{2} i_{3} \mathcal{S}_{4}} \bar{S}^{i_{2} i_{3} i_{4}}+10|\alpha|^{2} \bar{\alpha}_{i_{2}} \bar{\alpha}^{i^{2}}\right)\right. \\
& \left.-H_{i j}\left(24 \bar{\beta}^{i}{ }_{i 3 i_{4}} \bar{\beta}^{j i_{3} i_{4}}+10|\alpha|^{2} \bar{\alpha}^{i} \bar{\alpha}^{j}\right)\right] \bar{\eta}, \quad\left(i_{2}<i_{3}<i_{4}\right) \tag{4.5}\\
& \geq \int_{M}\left[90 k|\alpha|^{4}-40(1-k) \delta|\alpha|^{2}+24 k|\beta|^{2}\right] \eta .
\end{align*}
$$

From the relation (4.5) and the quadratic form

$$
\begin{align*}
G(\alpha, \alpha)= & 8\left(\nabla_{h} \beta^{h}{ }_{i i_{3} i_{4}}\right) \beta^{i_{2} i_{3} i_{4}} N_{l}+H_{l}^{l}\left(8 \bar{\beta}_{i_{2} i_{i} i_{4}} \bar{\beta}^{i_{2} i_{3} i_{4}}+\right. \\
& \left.-H_{i j}|\alpha|^{2} \bar{\alpha}_{i_{2}} \bar{\alpha}^{i_{2}}\right) \tag{4.6}\\
& \quad\left(i_{2}<i_{3}<i_{4}\right),
\end{align*}
$$

we thus have
Theorem IV. Let M be a compact k-pinched Riemannian manifold of dimension 5 with boundary B. If $k>10 / 58$ and the quadratic form $G(\alpha, \alpha)$ defined by (4.6) is semi-negative, then the second relative Betti number R_{2} of the manifold M (mod. B) vanishes.
5. If the boundary $\partial M=B=\phi$ and the dimension of the manifold is 5 , then from the relation (4.4) we obtain the following theorem and corollary:

Theorem V. Let M be a compact orientable k-pinched Riemannian manifold of dimension 5 without boundary. If $k>10 / 58$, then $H^{2}(M, \boldsymbol{R})=0$.

Corollary III. If a compact orientable k-pinched Riemannian manifold M of dimension 5 without boundary is homeomorphic to $S^{2} \times S^{3}$, then $k \leq 10 / 58$.

References

[1] M. Berger, Sur les variétés (4/23)-pinchées de dimension 5, C. R. Acad. Sci. Paris 257 (1963) 4122-4125.
[2] P. E. Conner, The Green's and Neumann's problems for differential forms on Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 40 (1954) 1151-1155.
[3] G. F. D. Duff, Differential forms in manifolds with boundary, Ann. of Math. 56 (1952) 115-127.
[4] G. F. D. Duff \& D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952) 128-156.
[5] C. C. Hsiung, Curvature and Betti numbers of a compact Riemannian manifold with boundary, Politec. Torino Rend. Sem. Mat. 17 (1957/58) 95-131.
[6] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Cremonese, Rome, 1955.
[7] -, Géométrie des groupes de transformation, Dunod, Paris, 1958.
[8] G. Tsagas, An improvement of the method of Lichnerowicz-Bochner on the Betti numbers nad curvature of a compact manifold, Ann. Mat. Pura Appl. (IV) 83 (1969) 227-234.
[9] K. Yano, On harmonic and Killing vector fields in Riemannian spaces with boundary, Ann. of Math. 69 (1959) 588-597.
[10] --, Harmonic and Killing tensor fields in Riemannian spaces with boundary, J. Math. Soc. Japan 19 (1958) 430-437.

[^0]: Communicated by W. P. A. Klingenberg, February 6, 1970. This paper was prepared with support from the S. F. B. grant.

