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Introduction

In this paper we shall examine the properties of a certain class of projection
and Green’s operators which are associated with the tangent bundle of a Sobolev
space H*(X, Y) (defined below) of maps from a manifold X to a manifold Y.
In §2 we use these results to describe a class of functions on H*(X, Y) which
satisfy Condition C (in the sense of Palais and Smale). In §3 we derive an
expression for the riemannian sectional curvature of H*(X, Y). One might hope
that the property of having a sectional curvature of definite sign would be trans-
ferred from Y to H*(X, Y). However, this is not the case. We shall construct
examples of spaces Y whose riemannian curvatures are non-negative (zero, non-
positive) such that the riemannian curvatures of H*(S', Y) are indefinite. (§3
does not depend on the results of § 2, and may be read immediately after § 1.)

1. A. Notation and basic definitions

Hereafter X and Y denote smooth finite dimensional riemannian manifolds,
X compact and without boundary. We shall suppose that Y is isometrically
and smoothly embedded in a euclidean space R? (which we may always do by
a well-known theorem of Nash).

We recall some basic facts in global analysis: (For general references see
[1],[31,[4] or [5].) Let {,) denote the standard inner product on R?,dy a smooth
measure on X, k a positive integer, and A a strictly positive strongly elliptic
self-adjoint operator (with smooth coefficients) of order 2k on C~(X, R%), say

A =1+ 4% Let (u,v);, = f(Au, v)dp, and let |||, denote the correspond-
X
ing norm. Two such operators 4 give rise to equivalent norms, and H*(X, RY)

is defined to be the completion of C~(X, R?) with respect to ||-||,. For k = 0,
set A = 1. By a theorem of Rellich, for k£ </, the natural injection H'(X, R%)
— H*(X, R?) is dense and compact. A theorem of Sobolev asserts that the |||,
topology is larger than the C’ topology when k& > 1di(X) + ¢. Hence when
2k > di(X) the elements of H*(X, R?) are continuous maps and one may define
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H*X,Y) = {fe H"(X, R |f(x) e Y for all x e X}. H*(X, Y) with the induced
topology is in fact a smooth infinite dimensional manifold modeled on a hilbert
space, and inherits a riemannian structure from H*(X, R9). For fe H*(X, Y), let
T/HYX,Y) = {o¢ H"(X, R)|o(x) € T;,(Y) for all xe X}. Then T ,H*X,Y)
may be identified with the tangent space of H*(X,Y) at f.

For ue C~(X, R, define ||u|_, = sup {(u, v),/||v||; | v € H*(X, R?)}, and let
H~*(X, R%) denote the completion of C~(X, R?) with respect to ||-||_;. It can
be shown that H-*(X, R?) is a hilbert space, which is dual to H*(X, R%), the
bilinear pairing being given by ( , ),; i.e., for every continuous linear functional
lon H*(X, R there exists a unique ue H *(X, R% such that I(v) = (u, v),.
The proof of this and of certain other basic theorems involves the construction
of a Green’s operator G satisfying the relation (u, v), = (Gu, v), for all u,
ve H*(X,R?). One shows that G extends to an isometry H *(X, R%) —
H"(X R9Y) and defines (u, v)_, = (Gu, v),. G and A are inverse isomorphisms

H-*X, RY) < H“(X,R?). In paragraph 1C, we shall construct analogous
operators G, and 4, on the spaces T,H“(X, Y).

By means of the spectral representation of 4 (or G), spaces H«(X, RY) are
defined for each @ € R, and the collection of spaces thus obtained are shown
to satisfy the theorems of Rellich and Sobolev.

Finally, we remark that this theory is usually discussed in a more general
setting: Collections of spaces {H*(§)} and {H*(&")} are constructed where &' is
a fibre sub-bundle of a riemannian vector bundle & over X. The case we are
considering is £ = X X R?, & = X X Y, but the results of this paper can be
easily extended to the more general case.

1. B. The projection operators P, P

Hereafter we write H* = H*(X ,RY,H* = H*(X,Y). To avoid the appea-
rance of inessential constants, we choose the operators A so that |||, < ||-|I;
for k < 1. k will denote a fixed positive integer with 2k > di(X).

For fe H*, T H* can be identified with a linear subspace of H*, and for
i = 0,k we let P% represent the prolectlon H* — T H* which is orthogonal
with respect to (, );. Let N% = I — P%; then the following relations are easy
consequences of the deﬁnitions and properties of orthogonal projections:

(1) [INjull; = inf {|ju — &[|;|§ e T,H} .

(2) (P = Pi; (Piu,v); = (u, Piw),; PYP% = PY; PEPY = PO,
(3) [NGully < [[NFully < [|Njulle < [Njull; -

(4) PYAN%: = PKGN', = 0,

where here, as always, A denotes the operator which defines the inner product
(, )x, and G denotes the corresponding Green’s operator. Note that (2) defines
P% as the projection whose range is the range of P} and which is orthogonal
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with respect to (, ),. The relations (3) are a direct consequence of (1). Also,
from (1) it follows that (P%u)(x) = P,,u(x) where for ye Y, P, is the ortho-
normal projection R? — T,(Y).

To prove (4), we have (P}AN%u,v), = (AN%u, Pyv), = (Nku, PYv), =
(N%u, PXP%v), = 0. The other part of (4) is proved in the same way.

It is known that the map f — P} is continuous in the norm topology of H*;
i.e., f — f, in H* inplies | P} — P% ||, — O, [4, p. 112].

Proposition. Let j: M — H be a C*** isometric embedding of a manifold
M into a hilbert space H, and let P,: H — H denote the orthogonal projection
of H onto M, = T (M) (identified with a closed subspace of H). Then x — P,
is a C* map M — L(H, H).

To prove the proposition let ue H,ve M,. Then P,u = dj,u' for some
u'e M., and (u17 U)Mx: (djzul’ djxv)ll = (qu> d]:v’v)H: (ua de]xv)H: (u7 djxv)H
= (dj¥u, v)y,. Hence u' = dj¥u, and therefore

More precisely, if we write ¢ for the composition M X Hﬁ T (M)LM X H,
then P, = ¢(x, -), and the differentiability of P is a consequence of the differ-
entiability of ¢. (In writing out the details, one would use the fact that ¢ is
linear in the second variable, and that the maps x — ||¢(x, -) || x — || dp(x, -)||
are continuous.)

1. C. The spaces T H™*

Let |\u||_z = sup {(u, v),|v e T H* ||v|, = 1}, and let T ,H * be the com-
pletion of, say, T H* with respect to ||-||_z.

Theorem. Suppose the symbol of A is a multiple of the identity matrix.
Then T H™* is a hilbert space which is dual to T ;H*, the bilinear pairing be-
ing given by ( , ),.

Proof. We shall first prove the theorem for the case when f is smooth,
the more general statement being obtained by a limit process. Let A4, =
P%A|image (P%). Then if f is smooth we may consider A, to be an operator
on the smooth sections of the lifted bundle f*T(Y). 4 s is strongly elliptic
since, decomposing every ¢e C~(X, R? into a tangential and normal com-
ponent, we see that the symbol of A, is the symbol of 4 “cut down” to the
dimension of Y. From the relation (A4 U, v)y = (Au, v)y; u, v e T H*, it can
be seen that A ; is self-adjoint and strictly positive. Hence we can apply the
standard theory to obtain a Green’s operator G, satisfying the relation (u, v),
=G 74, V), for all u, v e T,H*, and the proof proceeds exactly as indicated in
Paragraph 4, T H* and T ,H~* now playing the roles of H* and H~*, respec-
tively. Before proceeding we note the following identity

(6) Pt =G,PY4 ,
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whose proof consists in verifying that this expression for P% satisfies the relation
(2) which define P% as the projection which is orthogonal with respect to ( , ),
and whose range is the range of PY.

Now let f be any element of H:. (We cannot now use the standard theory
since f*T(Y) may only be of class C°.) To complete the proof we have to con-
struct a Green’s operator G,. Let {f,} be a sequence of smooth maps in H*
which converge to f in H*-norm. Multiplying (6) on the right by G, we obtain
PEG = G 7P%, (f smooth). This motivates dgﬁning G s = lim P%_G|image (P%).
A simple calculation shows that (u, v), = (G ;u, v), for all u, v e T ;H*, and the
proof proceeds as before. Also, it is easy to see that (6) now holds for any
fe HE,

1. D. The gradients I'*E, J°E

Let E be a C* function on H*. The gradient F*E(f) of E at f is defined by
the relation dE (v) = (V*E(f), v), for all v ¢ T H*. Now the map v — dE (v)
is a continuous linear functional on 7 H*, hence there exists an element of
T H"*, denoted by V°E and called the formal H’ (or L?) gradient of E, which
satisfies the relation dE (v) = (V°E(f), v),. Hence

(7) PE(f) = G 7°E(f) = P*GIE(f) ;
and for C' functions E, F,

(8) V*E(f), V*F()). = WEW), V'F() 7 ,
and therefore

(9) IEED | = I7EG) % -

For later application it is important to note that although 7' H~* D H-* (since
TH*C H*), we can write P°E(f) e H™*; i.e., we can extend the map v —
(P°E(f),v), to a continuous linear functional on H*: for ve H*, define (P°E(f), ),
= (F*E(f), v)¢-

2. Condition C

A. Following Palais and Smale we say that a C' function F on H* satisfies
Condition C iff every sequence of points {f,} in H* for which {F(f,)} is bounded
and ||[F*F(f,) |, is not bounded away from zero contains a convergent subse-
quence (converging to a critical point of F). We say that F satisfies Condition
H iff every component of H* contains a critical point of F. This is the same
as saying that every fe H* is homotopic to a critical point of F. Suppose F is
bounded below on each component of H*, say, F > 0, and that F satisfies
Condition C. Then Palais [3] has shown that every component of H* contains
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a point at which F assumes an absolute minimum. Hence, if F > 0, Condition
C implies Condition H.
F will be said to satisfy Condition I" iff f — F°F(f) is a weak-strong continu-

ous map H* — H-* in the sense that fr M f implies V°E(f,) ﬂ» P°E(f).
(Cf. the remarks at the end of Paragraph 1D.) For examples, see Paragraph
2D below.

Remark 1. Note that as a consequence of the theorems of Rellich and
Sobolev, H* is a weak closed subspace of H*. For weak convergence in H*
implies strong convergence in H*~« for any & > 0, and if « satisfies 2(k — a)
> di(X), strong convergence in H*~ implies C° convergence.

Remark 2. Using (7) it is easy to show that F satisfies Condition [ iff the
map f — F*F(f) is a weak-strong continuous map from H* to H*. Suppose that
F is a positive C* function on H*, and consider the heat equation df(¢)/dt =
— V¥ F(f(¢)), with initial condition f(0) = f. It is known that this equation has
infinite positive escape time, so that ||F*F(f,)||, is not bounded away from
zero along the trajectory (Palais [3]). Therefore we get the following proposi-
tion: If F is a positive C* function on H* which satisfies Condition /", and if
the solution to the heat equation df/(f)dt = —F*F(f,) with initial condition
f(0) = f is bounded in A* norm, then § is homotopic to a critical point of F.
(Cf. Eells [1]. The condition he imposes on F is that the map: f — F*F(f) be
compact.)

B. A strongly elliptic self-adjoint of order 2k on C (X, R?) will be said to
be admissible, if 2k > di(X), and either A is strictly positive or Y is compact.
The following theorem was proved by Saber [4], [6].

Theorem. Let A be admissible, and for f ¢ H* let F(f) = W(Af, 1), Let F
= F|HF*. Then F satisfies Condition C.

An easy proof of this theorem is provided by a result of K. Uhlenbeck [4.
p. 113], which asserts that a bounded sequence {f,} in H* contains a sub-
sequence {f;,} for which ||NY, (f,, — f.)|lx — O as m, n — co. From (3), we see
that N° can be replaced by N* in this statement. Now if A is strictly positive,
we may write F(f) = £||f|;. Hence I'*F(f) = P%f. Suppose {f,} satisfies the
hypothesis of Condition C; i.e., ||f,||; < constant and P% f,—0. Then (f,, f»
_fn)k: (fm’ P,}m(fm_'fn))k + (.fm’ N’;’m(fm_fn))k: (Pl}mfm, f/n _fn)'l' (fm’ Nl}m(fm
— ), and it is easy to see that {f,} contains a Cauchy subsequence. (The other
case will be treated below. Also, note that the symbol of A is not required to
be a multiple of the identity matrix.)

C. The following theorem is the principal result of this section.

Theorem. Let A be an admissible operator whose symbol is a multiple of
the identity matrix, and J be a C' function on H* which is bounded below and
satisfies Condition I". Let F(f) = 1(Af, ), + J(f). Then F satisfies Condition C.

Proof. First suppose that A4 is strictly positive, so that, as in B, we can
write F(f) = L |[f|li + J(f) and F*F(f) = P%f + P*J(f). Then, using (7), we
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can write V*F(f) = Pi(f + GV"J(f)). Suppose {f,} is a sequence in H* such
that |F(f,)| < constant and F*F(f,) — 0. Then, since J is bounded below,

Ifolls < constant. Hence, by extracting a subsequence, we may suppose that
£, 2 HY 4 for some f, and using Condition I, GPOJ(f,) o & for some &.
Therefore, since || P% || =1, we have P% (GPJ(f,) — E)ﬂ 0. Hence I'*F(f,)
= P% (f, + &) + o(1). Now write f¥ = f, + &, and let Y* be the translated
manifold ¥ + &. Since P} = P, it follows that P%, = P% for all f. Therefore,
we have ||f¥||, < constant and P%,.f¥ — 0, and we can apply Saber’s theorem
to obtain a convergent subsequence of {f¥}.

Now suppose that A is not necessarily strictly positive, but that Y is compact.
By a well-known theorem of Garding [5], there exists a 2 > 0 such that 4 + I
is strictly positive. Let 4, = A + I, and write F(f) = 1(4.f, N+ @ — L[If[2).
It is easy to show that the map f — ||f|2 satisfies Condition I", so that J(f) —
$1IfIk is a C" function which is bounded below and satisfies Condition .

Remark. Cf. Eells [1, p. 786]. We note that the theorem he gives here
does not apply in our case since, among other things, the map f — Ntf is not
compact.

D. Examples. 1. The following are examples of functions which satisfy
Condition I

(i) Ifl <k, then f — ||f|? satisfies Condition I.

(ii) If F satisfies Condition /", and g is a C' function on R, then goF satis-
fies Condition [.

(iii) If V is a C" function on Y, then f — fVofdy satisfies Condition .
X

2. LetX =84 = —d*/df, and F(f) = 1(4f, ), — fVofdt. It is easy
St

to see that V°F(f) = —PY(d*f/dt*) — V'V (f) = —D*f|d* — 'V (f). Hence, inter-
preting V as the potential of a conservative dynamical system, we get the follow-
ing result: If Y is compact, then every homotopy class of maps from S' to Y
contains at least one solution to the dynamical equation D*f/dt* = —FV. For
the case ¥V = 0, we get the well-known theorem of Fet: If Y is compact, then
every map S' — Y is homotopic to a geodesic.

3. The following example shows that the boundedness condition on J is
necessary. Let X = S, Y = R, A = 1 — d*/dr’. Let F(f) = (41, ), — 3 |fI}.
Then J(f) = —||f| is not bounded below. Let f,(£) = n + n~*cosnt (0 <
t < 2x). Writing everything down in terms of Fourier series (so that one
obtains a simple expression for G) it can be shown that |F(f,)| < constant,

V'F(f,) N 0, and that | f, — f.|| > |m — n|. Hence F does not satisfy Con-
dition C.
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3. The curvature structure of H*

A. Let M — H be a smooth isometric embedding of a (possibily infinite
dimensional) riemannian manifold M into a hilbert space H, and for each x e M,
let P, be the orthogonal projection H — T ,(M). Hereafter we delete the ap-
pearance of the variable x in P and dP. Let 3, £, 6, - - - denote vector fields on
M. Then, generalizing some well-known facts about finite dimensional mani-
folds, the Riemannian affine connection I/ and curvature form R are given by

(11) R(7], §)0 = [Vé’Vv]e - ‘7[6,77]0 .

From these last two relations one obtains
(12) R(y, 80 = [dP(&)dP(n) — dP(p)dP(£)16 .

To derive this last result note that dP = d(PP) = (dP)P + P(dP). Hence (i)
(dP)P = NdP and (ii) (dP)N = PdP where N = I — P. Similarly, from the
relation P = @ one obtains (iii) dP(§)§ = NO,(§) where 6, denotes the differ-
ential of . We identify T,(M) with a subspace of H, so that ¢, is a map from
T(M) to T(H)|M. By abuse of notation, we let 4, also represent to composi-
tion of the two maps T(M) — T(H)|M and T(H)|M — H where this latter
map is the natural injection. Also, from (i) and (ii) we see that dP(£)dP(y)d
= dP(&)dP(y)P0 = dP(§)NAP(y) P9 = PAP(§)NdP())P6 = PdP(§)dP(y)6 so that
the right hand side of (12) is actually a vector tangent to M. Now, from (10)
and (iii) a direct calculation shows that (iv) [V,,F,10 = P(dP(£)dP(y) —
dP(p)dP(£))0 + P((040n) (&) — (040°8),(n) and that (v) V. .0 = PO,[&, 7). If
F is a function on H, we have 0,[&, 9]F = [§, 9](Fo0) = &(F,o(f,07) —
PF08)) = Fyyo@y0n)(§) — Fyyo(0,08) (). This shows that V.0 =
P((0401) (&) — (0,°8),7), which with (iv) and (11) yields the desired result.

B. For later calculations we have to specialize these results to the finite
dimensional case. Let the embedding ¥ — R? (see Paragraph 14) be given
locally by vector-valued functions w = w(y', y?, - - -y*) where (',y% ---,y")
are local coordinates on Y. Let w;, = ow/dy¢, and let w,; denote the coefficientes
of the second covarient differential of w. For a tangent vector & we write & =
£4(9/ay?) = &'w, (summation convention), so that the second fundamental form
of Y is given by the symmetric bilinear vector-valued form B(§, ) = w, ,;&47.
For each y e Y, let P represent the orthogonal projection R? — T,(Y). Then
for v e R?, Pjv = (v, wHw, = (v, w;)w’ where indices are raised and lowered
in the usual tensorial fashion via the metric tensor on Y. A direct calculation
shows that

(13) dP'(&)v = (v, w; 8wt + (v, wihHw, ;&7

where {,) is the standard inner product on R?. Note that if P} is the operator
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discussed in Paragraph 1B, then (P}v)(x) = P}, v(x).
Let S denote the curvature form on Y. Then from (12) and (13) one obtains
the well-known result (one of the equations of Gauss and Codazzi, see [2]).

(14) S(n, &), & = B(y,9),B&,8) — B(y,8),B(,%) .

C. We now apply these results to the embedding H* — H*. Our main
result is the following
Theorem. Let R denote the curvature form on H*. Then for y,& e T HF,

1s) dP%(&)n = NLdPY(&) ,
(16) R(n, )9, )i = (N5B(y, 1), N5B(E, ). — |N5B(, )i -

Hereafter we delete the appearance of the variable f in P*, P°, dP*, dP°. From

(2) we have dP’ = d(P*P") = (dP*)P® + P*dP°. Hence (dP*)P* = N*(dP").

Multiplying on the right by P° we get (dP*)P’ = N*(dP°)P°, which proves (15).
Using (12), we have

(R(p, &), &) = (dP*(E)dP*(p)y, §) — (dP*(ndP*(£)n, &),
+ (dP*(p)y, dP*(§)&), — (dP*(&)y, dP*()$) -

But from (13) and (15) we get dP*(p)n = N*dP'(y)y = N*B(y, 7). Similarly,
dP*(&)y = N*B(&, ) = N*B(y, &) (since B is symmetric) = dP*(»)§&, which
proves (16).

Before continuing we note the following relation (which will not be used in
the sequel):

an dP* = (N* + P*G)dP(P* + AN¥*) .

Proof. Applying d to the relation (4) PEGN°® = 0, we obtain (dP¥)GN® =
P GdP®. In the derivation of (15) we obtained (dP*)P° = N*dP°. Hence
(dP¥)(P* + GN®) = (N* + P*G)dP’. But from (2) and (4) we have (P° + GN")
-(P* + AN*) = I.

D. Examples. General Remarks: As mentioned in the Introduction, one
might hope that the functor ¥ — H*(X,Y) preserves the property of having
Riemannian sectional curvature of definite sign. We shall show by specific ex-
amples (the loop spaces of spheres and cylinders) that this is not the case. For
computations we use (16), and we must therefore be able to compute || N%u/|;
for a general u ¢ H*. Now Niu = u — P%u, and setting v = Piu = GfP"Au
(from (6)), and multiplying on the left by P%A, we obtain

(18) Ptu = v, where v is the unique element of H*
satisfying P}v = v and P{Av = PYAu .

The relations (18) can be obtained in another way: They are the Euler-
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Lagrange equations for variational problem || N%u||, = inf {||u — &||; | & € T H*}.

There is one special case in which these computations are especially easy;
viz., the case f = constant; for if f is constant, then, from the relation Pu =
{u, wyw; (see Paragraph B), we see that P94 = APY. Therefore, from the
remarks following (2), we get the following statement:

(19) If f is constant, then P% = P5 .

In the computations below we use the notation of Paragraph B. We let {e,,
e,, e;} be the standard basis for R® and write (a, b, c) for ae, + be, + ce,.

Example 1. X =S5',Y = $*=unitsphere X’ +y*+ =1, A =1—d*/dr,
f = constant. Then B(y, &) = —<&, ppw(f). Using (16), (19), and integrating
by parts, we get

R 7,8, = [ 18,8 — <,
f{ <77n7> <€ & — \Z@,wﬁdz.

Let f(t) = (0,0, 1); y = 7€, 7 = constant; § = &,e, + &,e,. Then

(RG, €07,8), =7t &t — jit}} dt .

Hence we see that (R(y, &)y, £), may be positive, negative, or zero.

Example 2. X =S, Y =cylinder x* + y* = 1,4 = 1 — d*/df*, f = con-
stant. We describe the cylinder by the parametric equations w(d, z) = (cos 6,
sin 4, z). Let w, = ow/06 = (-sin 4, cos 6,0) and w, = ow/dz = (0,0, 1). For
tangent vectors £, » write § = §w, + &w,, » = p,w, + p,w,. Note that P'v =
(v, wpw, + (v, w,)w,. Now, in general, w;; = ow,/dy’ — ['¥;w; where I'¥;
are the Christoffel symbols; in our case I'¥; = 0. Hence

(i) B(n, &) = &m(0°w/06*) = —& ), (cos ,5sin 6,0) .

It turns out that, for f = constant,

(RG, )7, 8), = — f Ipu(de,dt) — &(dyy/de) Pt .

Hence the sectional curvature may be negative or zero. In the next example
we shall show that for f + constant the sectional curvature may be positive.
Hence we have an example of a manifold Y of zero curvature such that the
curvature of H'(S!, Y) is indefinite.

Example 3. X, Y and A as above; f(f) = (cos t,sin¢,0),0 < t< 2z. Let
u(t) = ¢(1) ?*w/a6* = —¢(t) (cos t, sin ¢, 0) be a general element of H satisfying
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PSu = 0. We want to compute || Nju|,. Writing v = v,w, + v,w, equations (18)
reduce to

dzvl —_ ’vl e —-2@ ,
. ar dt
(ii) &
— 7)2 p—
de

Hence v, = 0, since v, = ,(¢) is periodic in ¢. The remaining equation in (ii)
can be solved explicity by the use of Fourier series. Writing ¢(t) = 3, ¢,
where here, as always, all sums run from — o to + oo, it turns out that
(1/22) || Pyuli = 8 X (*/(n* + 2)) @[, and that (1/27) |Njuli = 2 Ju|¢.[
where J, = 2(n* + 4)/(n* + 2), —o0 < n < +oo. Itfollows that if u' is
another element of H satisfying Piu' = 0, then

(iii) (NEu, Nku), = 33 1,6 .

Referring to (i) of Example 2, we see that B(y, §) = —gh(cosd, sind, 0) where
g = <{p,w),h =& w. Writing R for (1/27)(R(y, £)y, £),, we obtain

(iv) R = 3 1.{(g).(h), — (e[} ,

where (g?),, (h®), and (gh), are the Fourier coeﬁigients of tlle indicated
functions. Using the convolution law (gh), = 3 8,_1h, = 3, &uhin.x, We get

]
This is the general expression for the sectional curvature. Let g(f) = 1/(2x).
Then going back to (iv) and using the relation (h%), = )] |h, [}, we get

(vi) R=1J,>|hf— ST, |h.[J .

If h(®) = e* — e, wehave R =2J, —J_, — J, = 2(J, — J) > 0. Hence
this sectional curvature is positive.

(v) R=31{(2 8ot (S o ih) —

Z gn—kﬁn
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