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Introduction

In this paper we shall examine the properties of a certain class of projection
and Green's operators which are associated with the tangent bundle of a Sobolev
space Hk(X, Y) (defined below) of maps from a manifold X to a manifold Y.
In § 2 we use these results to describe a class of functions on Hk(X, Y) which
satisfy Condition C (in the sense of Palais and Smale). In § 3 we derive an
expression for the riemannian sectional curvature of Hk(X, Y). One might hope
that the property of having a sectional curvature of definite sign would be trans-
ferred from Y to Hk(X, Y). However, this is not the case. We shall construct
examples of spaces Y whose riemannian curvatures are non-negative (zero, non-
positive) such that the riemannian curvatures of Hk(S\ Y) are indefinite. (§ 3
does not depend on the results of § 2, and may be read immediately after § 1.)

1. A. Notation and basic definitions

Hereafter X and Y denote smooth finite dimensional riemannian manifolds,
X compact and without boundary. We shall suppose that Y is isometrically
and smoothly embedded in a euclidean space Rq (which we may always do by
a well-known theorem of Nash).

We recall some basic facts in global analysis: (For general references see
[1], [3], [4] or [5].) Let <(,> denote the standard inner product on Rq, dμ a smooth
measure on X,k a positive integer, and A a strictly positive strongly elliptic
self-adjoint operator (with smooth coefficients) of order 2k on C°°(Z, Rq), say

A = 1 + Δk. Let (u, v)k = I (Au, v}dμ, and let || ||fc denote the correspond-
X

ing norm. Two such operators A give rise to equivalent norms, and Hk(X, Rq)
is defined to be the completion of C°°(X, Rq) with respect to || \\k. For k = 0,
set A — 1. By a theorem of Rellich, for k < /, the natural injection Hι(X, Rq)
—> Hk(X, Rq) is dense and compact. A theorem of Sobolev asserts that the || ||fc
topology is larger than the Cb topology when k > \di(X) + t. Hence when
2k > di(X) the elements of Hk(X, Rq) are continuous maps and one may define
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Hk(X, Y) = {/ € H*(X, Rq) I f(x) € Y for all x e X}. #*(* , Y) with the induced
topology is in fact a smooth infinite dimensional manifold modeled on a hilbert
space, and inherits a riemannian structure from Hk(X, Rq). For / e # fc(Z, Y), let
TfH

k(X, Y) = {σe Hk(X, Rq) | *(*) € Γ/(a;)(Y) for all x e X). Then 7>fiP(Z, Y)
may be identified with the tangent space of Hk(X, Y) at /.

For u e C~(X, Rq), define ||«||_fc = sup {(K, v)0/||ι;!|* | v € #*(Z, Λ % and let
Hk(X, RQ) denote the completion of C°°(X, j?«) with respect to || -11 _ ̂  - It can
be shown that Hk(X, Rq) is a hilbert space, which is dual to Hk(X, Rq), the
bilinear pairing being given by ( , )0 i.e., for every continuous linear functional
/ on Hk(X, Rq) there exists a unique u e Hk(X, Rq) such that l(v) = (u, v\.
The proof of this and of certain other basic theorems involves the construction
of a Green's operator G satisfying the relation (w, v)0 = (Gw, v)fc for all w,
vzHk(X,Rq). One shows that G extends to an isometry H~k(X,Rq) ->
Hk(X, Rq) and defines (w, /y)_fe — (Gw, ̂ ) 0 . G and 4̂ are inverse isomorphisms
H~k(X, Rq) <-• Hk(X,Rq). In paragraph 1C, we shall construct analogous
operators G 7 and Af on the spaces TfH

k(X, Y).

By means of the spectral representation of A (or G), spaces Ha(X, Rq) are
defined for each α? 6 R, and the collection of spaces thus obtained are shown
to satisfy the theorems of Rellich and Sobolev.

Finally, we remark that this theory is usually discussed in a more general
setting: Collections of spaces {Hk(ξ)} and {Hk(ξ1)} are constructed where ξ1 is
a fibre sub-bundle of a riemannian vector bundle ξ over X. The case we are
considering is ξ = X X Rq, ξι = X X Y, but the results of this paper can be
easily extended to the more general case.

1. B. The projection operators P°f, Pk

Hereafter we write Hk = Hk(X, Rq), Hk = Hk(X, Y). To avoid the appea-
rance of inessential constants, we choose the operators A so that || ||fc < || ||j
for k < I. k will denote a fixed positive integer with 2k > di{X).

For feHk, TfH
k can be identified with a linear subspace of Hk, and for

i = 0, & we let P} represent the projection Hk -> Γ ^ * which is orthogonal
with respect to ( , ) t . Let N} = I — P}; then the following relations are easy
consequences of the definitions and properties of orthogonal projections:

( 1 ) ^

( 2 ) (P>)2 - P> ( ί > , v), - (ίi, ! » < P 0 ^ - P^ Pk

fP°f = P°x .

( 3 ) | | N > | | 0 < \\Nku\\0 < \\Nku\\k < \\N°fu\\k .

( 4 ) P^iV* = Pk

fGN°f = 0 ,

where here, as always, A denotes the operator which defines the inner product
( , )fc, and G denotes the corresponding Green's operator. Note that (2) defines
Pk

f as the projection whose range is the range of P°f and which is orthogonal
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with respect to ( , ) k . The relations (3) are a direct consequence of (1). Also,
from (1) it follows that (P°fu)(x) = Pf{x)u{x) where for y e Y, Py is the ortho-
normal projection Rq —> Ty(Y).

To prove (4), we have (P°fANku,v)0 = (ANku,P°fv\ = (Nku,P°fv)k =
(Nku, Pk

fP°fv)k = 0. The other part of (4) is proved in the same way.
It is known that the map / —> P°f is continuous in the norm topology of Hk

i.e., / — Λ in Hk inplies \\P°f - P°fl\\k — 0, [4, p. 112].
Proposition. Let j : M —> H be a Ck+2 isometric embedding of a manifold

M into a hilbert space H, and let Px\ H —> H denote the orthogonal projection
of H onto Mx — TX(M) {identified with a closed subspace of H). Then x —> Px

is aCk map M-^L(H,H).
To prove the proposition let uεH,v zMx. Then Pxu — djxu

ι for some
uι € Mx, and (u\ v)Mχ = (djxu\ djxv)H = (Pxu, djxv)H = (u, Pxdjxv)H = (u, djxv)H

= (dj*u,v)Mχ. Hence uι = dj*u, and therefore

( 5 ) Pxu = d]xd)*u .

dj* dj
More precisely, if we write φ for the composition M x H > T(M) >M X H,
then Px = φ(x, •), and the differentiability of P is a consequence of the differ-
entiability of φ. (In writing out the details, one would use the fact that φ is
linear in the second variable, and that the maps x —> \\φ(x, ) | | x —> ||d0(jt, ) | |
are continuous.)

1. C. The spaces TfH
k

Let ||u\\_k = sup {(w, v\\v G Γ ^ , ||ι;||fc = 1}, and let Γ ^ - * be the com-
pletion of, say, TfH

k with respect to || ||_fc.
Theorem. Suppose the symbol of A is a multiple of the identity matrix.

Then TfH~k is a hilbert space which is dual to TfH
k, the bilinear pairing be-

ing given by ( , )0.
Proof. We shall first prove the theorem for the case when / is smooth,

the more general statement being obtained by a limit process. Let Af =
P°fA I image (P°f). Then if / is smooth we may consider A f to be an operator
on the smooth sections of the lifted bundle f*T(Y). Af is strongly elliptic
since, decomposing every σ € C°°(Z, Rq) into a tangential and normal com-
ponent, we see that the symbol of Af is the symbol of A "cut down" to the
dimension of Y. From the relation (Afu, v)0 — (Au,v\; u, v e TfH

k, it can
be seen that Af is self-adjoint and strictly positive. Hence we can apply the
standard theory to obtain a Green's operator Gf satisfying the relation (u, v)0

= (Gfu, v)k for all u, v e TfH
k, and the proof proceeds exactly as indicated in

Paragraph A, TfH
k and TfH~k now playing the roles of Hk and H~k, respec-

tively. Before proceeding we note the following identity

( 6 ) Pk
f =
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whose proof consists in verifying that this expression for Pk

f satisfies the relation
(2) which define Pk

f as the projection which is orthogonal with respect to ( , ) k ,
and whose range is the range of P°f.

Now let / be any element of Hk. (We cannot now use the standard theory
since /*Γ(Y) may only be of class C°.) To complete the proof we have to con-
struct a Green's operator Gf. Let {fn} be a sequence of smooth maps in Hk

which converge to / in # fc-norm. Multiplying (6) on the right by G, we obtain
Pk

fG = GfP°f, (f smooth). This motivates defining Gf = lim Pk

fnG\image (P°f).
A simple calculation shows that (u, v\ — (G/W, v)k for all u,v € TfH

k, and the
proof proceeds as before. Also, it is easy to see that (6) now holds for any

1. D. The gradients PkE, F°E

Let E be a C1 function on Hk. The gradient PkE(f) of E at / is denned by
the relation dEf(v) = (PteE(f), v)k for all v € TfH

k. Now the map v -> dEf(v)
is a continuous linear functional on TfH

k, hence there exists an element of
TfH

k, denoted by F°E and called the formal H° (or U) gradient of E, which
satisfies the relation dEf{v) = (F°E(f), v)0. Hence

( 7 ) FkE(f) = GfF°E(f) = PkGF°E(f)

and for C1 functions E, F,

( 8 ) (FkE(f), FkF(f))k = (F°E(f), FΨ(f))_-k ,

and therefore

( 9 ) W*E(J)\\* =

For later application it is important to note that although TfH~kZ)H~k (since
TfH

k C Hk), we can write F°E(f) e H~k\ i.e., we can extend the map v -+
(F°E(f),v\ to a continuous linear functional on Hk: toiveHk, define (F°E(f),v)0

= (FkE(f),v)k.

2. Condition C

A. Following Palais and Smale we say that a C1 function F on Hk satisfies
Condition C iff every sequence of points {fn} in Hk for which {F(fn)} is bounded
and | |F*F(/n)| |Λ is not bounded away from zero contains a convergent subse-
quence (converging to a critical point of F). We say that F satisfies Condition
H iff every component of Hk contains a critical point of F. This is the same
as saying that every / € Hk is homotopic to a critical point of F. Suppose F is
bounded below on each component of Hk, say, F > 0, and that F satisfies
Condition C. Then Palais [3] has shown that every component of Hk contains
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a point at which F assumes an absolute minimum. Hence, if F > 0, Condition
C implies Condition H.

F will be said to satisfy Condition Γ iff / —> F°F(j) is a weak-strong continu-

ous map Hk->H~k in the sense that fn

 W C a k ? H*> f implies F°E(fn) ^X P°E(f).

(Cf. the remarks at the end of Paragraph ID.) For examples, see Paragraph

2D below.
Remark 1. Note that as a consequence of the theorems of Rellich and

Sobolev, Hk is a weak closed subspace of Hk. For weak convergence in Hk

implies strong convergence in Hk~a for any a > 0, and if a satisfies 2{k — a)
> di(X), strong convergence in Hk~a implies C° convergence.

Remark 2. Using (7) it is easy to show that F satisfies Condition Γ iff the
map / —> FkF(f) is a weak-strong continuous map from Hk to Hk. Suppose that
F is a positive C2 function on Hk, and consider the heat equation df(ί)/dt =
— FkF(f(t)), with initial condition /(0) = /. It is known that this equation has
infinite positive escape time, so that \\FkF(ft)\\k is not bounded away from
zero along the trajectory (Palais [3]). Therefore we get the following proposi-
tion: If F is a positive C2 function on Hk which satisfies Condition Γ, and if
the solution to the heat equation df/(f)dt = —FkF(ft) with initial condition
/(0) = / is bounded in Hk norm, then / is homotopic to a critical point of F.
(Cf. Eells [1]. The condition he imposes on F is that the map: / —> FkF(f) be
compact.)

B. A strongly elliptic self-adjoint of order 2k on C (X, Rq) will be said to
be admissible, if 2k > di(X), and either A is strictly positive or Y is compact.
The following theorem was proved by Saber [4], [6].

Theorem. Let A be admissible, and for f € Hk let F(f) = \(Aj, /)0. Let F
= F\Hk. Then F satisfies Condition C.

An easy proof of this theorem is provided by a result of K. Uhlenbeck [4.
p. 113], which asserts that a bounded sequence {fn} in Hk contains a sub-
sequence {fn} for which H Λ ^ i ^ — fn)\\k —> 0 as m, n —> oo. From (3), we see
that N° can be replaced by Nk in this statement. Now if A is strictly positive,
we may write F(f) = i\\f\\l. Hence FkF(f) = Pk

ff. Suppose {fn} satisfies the
hypothesis of Condition C; i.e., ||/n | | fc < constant and Pk

fJn->0. Then (fm9fm

in)k — UrnJ PfmSJm fn))k + (/m? ^ftJJm /n))A; ^= (* fmfm? / ;/ι — /TO) + v/m? ^fm\fm

— / J ) , and it is easy to see that {/„} contains a Cauchy subsequence. (The other
case will be treated below. Also, note that the symbol of A is not required to
be a multiple of the identity matrix.)

C. The following theorem is the principal result of this section.

Theorem. Let A be an admissible operator whose symbol is a multiple of
the identity matrix, and J be a C1 function on Hk which is bounded below and
satisfies Condition Γ. Let F(f) = %(Af, /)„ + /(/). Then F satisfies Condition C.

Proof. First suppose that A is strictly positive, so that, as in B, we can
write F(f) = ^\\f\\l + US) and FkF(f) = Pk

ff + FkJ(f). Then, using (7), we
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can write FkF(f) = Pk

f(f + GF°7(/)). Suppose {fn} is a sequence in Hk such
that \F(fn)\ < constant and FkF(fn) -> 0. Then, since J is bounded below,

constant. Hence, by extracting a subsequence, we may suppose that
7-fk

/ for some /, and using Condition Γ, GF°J(in) > ξ for some ξ.
ffk

Therefore, since | | P * n | | = 1, we have Pk

n(GP°J(fn) - ξ) • 0. Hence FkF(fn)
= P*fn(fn + ξ) + o(l). Now write /* = /„ + ξ, and let Y* be the translated
manifold Y + ξ. Since P°/+ = P°f, it follows that P** = P* for all /. Therefore,
we have \\f*\\k < constant and Pk*J* —> 0, and we can apply Saber's theorem
to obtain a convergent subsequence of {/J}.

Now suppose that A is not necessarily strictly positive, but that Y is compact.
By a well-known theorem of Garding [5], there exists a λ > 0 such that A + λl
is strictly positive. Let Aλ = A + λI, and write F(f) = \(Aj, f)0 + (J(f) - il |/|β).
It is easy to show that the map / -> ||/||jj satisfies Condition Γ, so that J(f) —
\ 11/112 is a C1 function which is bounded below and satisfies Condition Γ.

Remark. Cf. Eells [1, p. 786]. We note that the theorem he gives here
does not apply in our case since, among other things, the map / —> Nkf is not
compact.

D. Examples. 1. The following are examples of functions which satisfy
Condition Γ.

( i ) If / < k, then / -> ||/||J satisfies Condition Γ.
(ii) If F satisfies Condition Γ, and g is a C1 function on R, then goF satis-

fies Condition Γ.

(iii) If V is a C1 function on Y, then / —> j Vofdμ satisfies Condition Γ.
X

2. Let X = S\A = -d2/dt2, and F(f) = HAf,f)t - Jv°fdt. It is easy
Si

to see that F°F(f) = -P°f(d2f /dt2) - PV(f) = -D2f/dt2 - PV(f). Hence, inter-
preting V as the potential of a conservative dynamical system, we get the follow-
ing result: If Y is compact, then every homotopy class of maps from Sι to Y
contains at least one solution to the dynamical equation D2i/dt2 = — FV. For
the case V = 0, we get the well-known theorem of Fet: If Y is compact, then
every map Sι —> Y is homotopic to a geodesic.

3. The following example shows that the boundedness condition on J is
necessary. Let X = S\ Y = R, A = 1 - d2/dt2. Let F(f) = i(Af, i\ - \ ||/||J.
Then /(/) = —J II/H3 is not bounded below. Let fn(i) = n + n~A cos nt (0 <
* < 2τr). Writing everything down in terms of Fourier series (so that one
obtains a simple expression for G) it can be shown that \F(fn)\ < constant,

FιF{in) • 0, and that ||/TO — /n | | > \m — n\. Hence F does not satisfy Con-
dition C.
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3. The curvature structure of Hk

A. Let M —> H be a smooth isometric embedding of a (possibily infinite
dimensional) riemannian manifold M into a hilbert space H, and for each xeM,
let P .̂ be the orthogonal projection H —> TX(M). Hereafter we delete the ap-
pearance of the variable x in P and dP. Let η,ξ,θ, - - - denote vector fields on
M. Then, generalizing some well-known facts about finite dimensional mani-
folds, the Riemannian aίfine connection V and curvature form R are given by

(10) Fξθ = Pθ*(ξ) ,

(11) R(q,ξ)θ= [Fξ,Fv]θ-Fίζ^θ .

From these last two relations one obtains

(12) R(q, ξ)θ = [dP(ξ)dP(η) - dP(v)dP(ξ)]θ .

To derive this last result note that dP = d(PP) = {dP)P + P(dP). Hence (i)
(dP)P = NdP and (ii) (dP)N = PdP where N = I - P. Similarly, from the
relation Pθ = θ one obtains (iii) dP(ξ)θ = Nθ*(ξ) where θ+ denotes the differ-
ential of θ. We identify TX(M) with a subspace of H, so that θ^ is a map from
T(M) to T(H) IM. By abuse of notation, we let θ^ also represent to composi-
tion of the two maps T(M) -» T(H) \M and T(H) \M -> H where this latter
map is the natural injection. Also, from (i) and (ii) we see that dP(ξ)dP(η)θ
= dP(ξ)dP(v)PΘ = dP(ξ)NdP(η)PΘ = PdP(ξ)NdP(rj)PΘ = PdP(ξ)dP(η)θ so that
the right hand side of (12) is actually a vector tangent to M. Now, from (10)
and (iii) a direct calculation shows that (iv) [F f , Fv]θ = P(dP(ξ)dP(η) —
dP(η)dP(ξ))θ + PW+oφ^ξ) - (θ*oξ\(η)) and that (v) V^ β = Pθ*[ξ,η\. If
F is a function on H, we have θ*[ξ,η]F = [ξ,η](Foff) = f ί F ^ o ^ o ^ ) ) —

f)) = F^o(β*oη)+(ξ) - F ^ o ( ^ o f ) ^ ( ^ ) . This shows that F[ζ^θ =
η)^(ξ) — (θ*oξ)^η), which with (iv) and (11) yields the desired result.

B. For later calculations we have to specialize these results to the finite
dimensional case. Let the embedding Y —• Rq (see Paragraph 1A) be given
locally by vector-valued functions w = w(y\y2, >yn) where (y1, v2, ,yn)
are local coordinates on Y. Let wt = dw/dy\ and let w{J denote the coefficientes
of the second covarient differential of w. For a tangent vector ξ we write ξ =
ξKdjdy1) = ξιWi (summation convention), so that the second fundamental form
of Y is given by the symmetric bilinear vector-valued form B(ξ, η) — Wi^rf.
For each y € Y, let P°y represent the orthogonal projection Rq -^ Ty(Y). Then
for v e Rq, P°yv — (v, wiS)Wi = (v, w^w1 where indices are raised and lowered
in the usual tensorial fashion via the metric tensor on Y. A direct calculation
shows that

(13) dP\ξ)v = <v, wυyξW + {v, wΐywtjξJ ,

where <(,> is the standard inner product on Rq. Note that if P°f is the operator
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discussed in Paragraph IB, then (P°fv)(x) = P°f(x)v(x).
Let S denote the curvature form on Y. Then from (12) and (13) one obtains

the well-known result (one of the equations of Gauss and Codazzi, see [2]).

(14) S(η, ξ)η, ξ = B(η, η), B(ξ, ξ) - B(η, £), B(η, ξ) .

C. We now apply these results to the embedding Hk —> Ήk. Our main
result is the following

Theorem. Let R denote the curvature form on Hk. Then for η, ξ e TfH
k,

(15) dP*(ξ)η = NkdP°f(ξ)y ,

(16) (R(η, ξ)η, ξ)k = (NkB(η, η\ NkB(ξ, ξ))te - \\Nk

fB(η, ξ) \\

Hereafter we delete the appearance of the variable / in Pk, P°, dPk, dP°. From
(2) we have dP° = d(PkP°) = (dPk)P° + PkdP°. Hence (dPk)P° = Nk(dP°).
Multiplying on the right by P° we get (dPk)P° = Nk(dP°)P\ which proves (15).

Using (12), we have

(R(η, ξ)η, ξ)k = (dPk(ξ)dPk(η)rj, ξ) - (dPk(rj)dPk(ξ)V, ξ)k

+ (dPk(η)V, dPk(ξ)ξ)k - (dP*(ξ)η, dPk{rj)ξ)k .

But from (13) and (15) we get dPk(v)v = NkdP°(η)v = NkB(q,η). Similarly,
dPk(ξ)η = NkB(ξ, η) = NkB(η, ξ) (since B is symmetric) = dPk(η)ξ, which
proves (16).

Before continuing we note the following relation (which will not be used in
the sequel):

(17) dPk = (Nk + PkG)dP\Pk + ANk) .

Proof. Applying d to the relation (4) PkGN° = 0, we obtain (dPk)GN° =
PkGdP°. In the derivation of (15) we obtained (dPk)P° = NkdP°. Hence
(dPk)(P° + GN°) = (Nk + PkG)dP°. But from (2) and (4) we have (P° + GN°)
• (Pk + ANk) = I.

D. Examples. General Remarks: As mentioned in the Introduction, one
might hope that the functor Y —• Hk(X, Y) preserves the property of having
Riemannian sectional curvature of definite sign. We shall show by specific ex-
amples (the loop spaces of spheres and cylinders) that this is not the case. For
computations we use (16), and we must therefore be able to compute ||Λ^w||fc
for a general ue Hk. Now Nk

fu = u — Pk

fu, and setting v = Pku = GfP°fAu
(from (6)), and multiplying on the left by P°fA, we obtain

Pk

fu — v, where v is the unique element of Hk

(18) f

satisfying P°fv = v and P°fAv = P°fAu .

The relations (18) can be obtained in another way: They are the Euler-
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Lagrange equations for variationalproblem \\Nk

fu\\k = inf {||u — ξ\\k |ξ e TfH
k}.

There is one special case in which these computations are especially easy
viz., the case / = constant; for if / is constant, then, from the relation P°fu =
<w, wl}Wi (see Paragraph B), we see that P°fA = AP°f. Therefore, from the
remarks following (2), we get the following statement:

(19) If / is constant, then Pk

f = P°f .

In the computations below we use the notation of Paragraph B. We let {e19

e2, e3} be the standard basis for R3 and write (a, b, c) for aeλ + be2 + ce3.
Example 1. X = S\ Y = S2 = unit sphere x2 + y2 + z2 = 1, A = 1 - d2/dt2,

f = constant. Then B(η, ξ) = _<f?^>>v(/). Using (16), (19), and integrating
by parts, we get

Let f(t) = (0,0,1) η = -ηxeγ, ηλ = constant; ξ = ξγeλ + ξ2e2. Then

at
at.

Hence we see that (R(η, ξ)η, ξ)λ may be positive, negative, or zero.
Example 2. X = S\ Y = cylinder x2 + y2 = 1, A = 1 - d2/dt2, f = con-

stant. We describe the cylinder by the parametric equations w(β, z) = (cos θ,
sin θ, z). Let wx = dw/dθ = (-sin θ, cos θ, 0) and w2 = dw/dz = (0,0,1). For
tangent vectors ξ, η write ξ = ξ1w1 + ξ2w2, η = ηιw1 + η2w2. Note that P°v =
(v, wiywι + ζy,w2yw2. Now, in general, wtj = dwjdy3 — ΓkjWk where Γ\s

are the Christofϊel symbols; in our case Γ\5 — 0. Hence

( i ) B(η, ξ) = ξiηi(d2w/dθ2) = -ξιVι (cos θ, sin θ, 0) .

It turns out that, for / = constant,

(R(v,ξ)η,ξ\ - - J Mdξjdt) - Udyjdt)\2dt .

Hence the sectional curvature may be negative or zero. In the next example
we shall show that for / Φ constant the sectional curvature may be positive.
Hence we have an example of a manifold Y of zero curvature such that the
curvature of H\Sι, Y) is indefinite.

Example 3. X, Y and A as above; j(t) = (cos t, sin t, 0), 0 < t < 2π. Let
u(t) = φ(f) d2w/dθ2 = —φ(f) (cos ί, sin t, 0) be a general element of H satisfying
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P°fu — 0. We want to compute \\N\u\l. Writing v — vίw1 + v2w2 equations (18)
reduce to

_ = _df dt

v2 0.
dt2

Hence vz = 0, since v2 = v2(t) is periodic in t. The remaining equation in (ii)
can be solved explicity by the use of Fourier series. Writing φ(t) = Σ Φneint

where here, as always, all sums run from — oo to +00, it turns out that
(l/2 f f)| |P /H||ϊ = 8 Σ (n2/(n2 + 2))\φn\\ and that (1/2*) \\N\u\\l = ΣJΛΦnf
where Jn = 2(n4 + 4)/(n2 + 2), —00 < n < +00. Itfollows that if u1 is
another element of H satisfying P° M1 = 0, then

(iii) (N^N^^ΣJnΦnψn1 •

Referring to (i) of Example 2, we see that B(η, ξ) = — gh (cos θ, sin θ, 0) where
g = <τ], MΊ>, h = <f, w,}. Writing R for (1 /2π)(R(η, ζ)η, f)15 we obtain

(iv) R = Σ U(82Uh% ~ \(gh)nf} ,

where (g2)n, (h2)n and (gh)n are the Fourier coefficients of the indicated
functions. Using the convolution law (gh)k = Σ in-kK = Σ 8nhn+k> we get

(V) R = Σ h\\Σ 8n-kgn

n

. 2

k

This is the general expression for the sectional curvature. Let g(f) = l/(2ττ).
Then going back to (iv) and using the relation (Λ2)0 = 2] I^I2> we get

(Vl) R = JoΣ\hn\2 ~ ΣJn\K\2

If hif) = eil - e~u, we have R = 2/0 - 7_x - Λ = 2(J0 - JJ > 0. Hence
this sectional curvature is positive.
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