
J . DIFFERENTIAL GEOMETRY
4 (1969) 425-451

CURVATURE STRUCTURES AND CONFORMAL
TRANSFORMATIONS

RAVINDRA S. KULKARNI

By a curvature structure on a Riemann manifold (M, g) we mean any (1,3)
tensorίield which has the algebraic properties of the Riemann curvature tensor.
Some examples are given in § 1.

Let G2(M) denote the Grassmann bundle of 2-planes on M. A curvature
structure naturally defines the corresponding sectional curvature, which is a
real-valued function on G2(M). In this memoir we shall show that these sec-
tional curvature functions are of considerable geometrical interest.

Let (M, g), (M, g) be two Riemann manifolds, and let ^(resp. K) be the
usual sectional curvature functions canonically defined by g(resp. g). Call
(M, g), (M,g) isocurved if there exists a 1-1 onto sectional-curvature-perserv-
ing diffeomorphism /: M -+ M, i.e., for every p eM, σ e G2(M)P, K(σ) =
K(f^σ). The "theorema egregium" or what is essentially the "fundamental
theorem of Riemann geometry" asserts that isometric manifolds are isocurved.
The basic result of [8] is the converse.

Call (M, g) nowhere of constant curvature if there does not exist a nonempty
open subset on which K = constant. We have

Theorem A. Let (M, g), (M, g) be isocurved. Suppose that (M, g) is
nowhere of constant curvature and of dimension > 4. Then (M, g), (M, g) are
isometric.

In the following we use the techniques developed in the proof of this
theorem. All manifolds in this paper are assumed to be connected; and all
manifolds, metrics and maps are assumed to be C4.

PART I. CURVATURE STRUCTURES

Introduction

In this part, we first develop some generalities on curvature structure. These
are applied to two cases: conformal curvature structure which is defined by
the conformal curvature tensor, and the Ricci curvature structure which is
defined by a certain combination of the Ricci tensor.
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It turns out that the spaces of constant conformal curvature of dimension
> 4 are precisely the conformally flat spaces. We also obtain a criterion for
conformal flatness purely in terms of (Riemannian sectional) curvature.

Theorem A is partially generalized to: isoconformally curved, nowhere
conformlly flat manifolds of dimension > 4 are isometric.

In the case of Ricci curvature structure it turns out that the spaces of con-
stant Ricci curvature and of dimension > 3 are precisely the Einstein spaces.
Analogous results for iso-Ricci-curved nowhere Einstein spaces are so far only
partly established.

For considering the variation of these curvatures, we have found it useful
to find the critical point structure of curvature regarded as a function on the
Grassmannian. Later it is shown that in certain cases these are natural Morse
functions on the Grassmannian.

1. Definition oi a curvature structure

Let (M, g) be a Riemann manifold. Whenever convenient, we shall denote
by < , > the inner product defined by g.

Definition. A curvature structure on (M, g) is a (1, 3) tensor field T such
that for any vector fields X, Y, Z, W, we have

1) T(X,Y) = -T(Y,X),

2) <τ(z, γ)z, wy = <τ(z, w)x, y>,
3) T(X, Y)Z + T(Y, Z)X + T(Z, X)Y = 0.
Let G2(M) be the Grassman bundle of 2-ρlanes on M. A curvature structure

T defines the corresponding sectional curvature

via: if p € M and σ = {X, Y}, a 2-plane at p, then

KM =
<

(It is easy to check that the definition of Kτ(σ) does not depend on the choice
of the basis of σ.)

Examples, (a) Trivial curvature structure: Consider the curvature struc-
ture I defined by

i(x, Y)z = {<z, zyY - <Y, zyx).

Clearly KΣ = 1.
(b) Riemann curvature structure: This is the canonical curvature struc-

ture defined by the metric g, namely, if V denotes the corresponding covariant
derivative then
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R(X, Y)Z = PίXiY1Z - WxVy\Z .

We shall denote the corresponding KR simply by K. (Our choice of sign for
R ensures that the unit sphere has K = 1.)

(c) Rίcci curvature structure: Recall that the Riemann curvature tensor R
defines the Ricci tensor by Ric(Z, Y) = trace: Z -> R(X, Z)Y, for p e M and
X,Y <ε TP(M), the tangent space at p. We shall denote by Ric. the correspond-
ing linear transformation of T(M), the tangent bundle of M, defined by
<Ric. X, Y> = Ric. (X, Y). We recall that the scalar curvature Sc: M -> R is
defined as 5c = trace Ric.

Consider the following (1,3) tensor

, Y)Z = {Ric (Z, Z)Γ - Ric (Y,
+ <Jf, Z> Ric. Y - <Y, Z> Ric. X) .

It is easily seen that this is a curvature structure on M. We shall call it the
Ricci curvature structure. It is plain that for a 2-plane σ,

K*M = trace Ric|σ .

(d) Conformal curvature structure: Suppose that M is n-dimensional,
n > 2, andlet R, Ric, I, Sc be as defined above. It is obvious that the follow-
ing tensor

Sc

n _ 2 {n - 1) (n - 2)

is a curvature structure on M. This tensor is WeyΓs well known conformal
curvature tensor. We shall call Kc the "conformal curvature", and denote it

More generally it is clear that every curvature structure T gives rise to the
corresponding Ricci-curvature structure RicΓ and the conformal curvature
structure Cτ.

We finally remark that the notion of a curvature structure may be developed
in a more general set-up by replacing the tangent bundle of M by an arbitrary
vector bundle equipped with an inner product. However, the set-up which we
have adopted is sufficient for our purposes.

2. A general theorem

Let (M,g,T) be a Riemann manifold with a curvature structure T. Let π:
G2{M) -^Mbe the canonical projection of the Grassmann bundle of 2-planes,
and Kτ: G2(M) —• R the corresponding curvature function. Call a point p e M
isotropic (resp. nonisotropic) with respect to T if Kτ\π-Hp) Φ constant (resp.
κτ\,-np) Φ constant).

The following theorem is essentially Theorem 1 of [8]:
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Theorem 2.1. Let (M, g, T), (M, g, T) be Riemann manifolds with curva-
ture structures, and f.M^M be a curvature-preserving diβeomorphism.
Suppose that dimension M > 3, and that the set

{p ς.M\p is nonisotropic]

is dense in M. Then f is conformal, i.e., f*g = λ-g where λ: M —• R is a
positive real valued function.

For the proof see [8]. It is this theorem which generically reduces consid-
erations about curvature-preserving maps to those about conformal maps.

3. Conformal curvature structure

Let (M, g) be a Riemann manifold, and equip it with the conformal curva-
ture structure (cf. § 1 , Example (d)). Let {er -en) be an orthonormal frame
at*a point p eM, and a the 2-ρlane {e19 e2}. Denote by Kiά the (Riemannian)
sectional curvature corresponding to the plane {eu e3}iΦj. Then

Km{σ) = K(σ) - — 1 — {Ric (e19 ex) + Ric (e2, e2)} + S c

(n — 1) (n — 2)
( 3 1 } 1 5c= K{σ) - —^r{Σ Ku + Σ K2i} + - £ _ .

n — 2 ίΦi ίΦ2 (n — 1) (n — 2)

We define the corresponding Ricci tensor by

Ric-Kon (X, Z) = trace: Y -> C(X, Y)Z ,

and the corresponding scalar curvature by

Sc-Kon = trace Ric-Kon .

Proposition 3.1. Ric-Kon = 0.
Proof. Typically it suffices to show that Ric-Kon^, eλ) = 0. Now,

^ 9 et)}]
n — 2 ί>ι

+ ^ x (n - 1)
( n - l ) (n-2)

= Ricfe, ej 1—[(n - 2) Ricfo, ej + Sc] + S c

n-2 (n-2)

= 0 .

Corollary. Sc-Kon = 0.
Recall that a Riemann manifold (M, g) is called conformally flat if for every

point p e M, there exists a neighbourhood £/ such that g\v = 0 go where g0 is
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a flat (i.e., Euclidean) metric, and φ: U —» R a positive real-valued function
on U. Based on WeyΓs well known result, we enumerate below several
characterizations of a conformally flat space of dimension > 4. Note that the
last one is purely sectional-curvature-theoretic, which does not seem to have
been noticed before.

Theorem 3.2. Let (M, g) be a Riemann manifold of dimension n > 4.
Then the following are equivalent:

(1) (M, g) is conformally flat.
(2) C = 0.
(3) Kcon = 0.
(4) At every point peM, Kcon\π-Hp) = constant.
(5) At every point p eM, for every 4-dimensional subspace W (Z TP(M),

there exists a constant c = c(W) such that for any two mutually perpendicular
2-plane sections σ19 σ2 spanning W9

K(σλ) + K(σ2) = c .

(6) At every point p eM9 for every quadruple of orthogonal vectors {el9

&2> ^ 3 ? ^4J 5

where Ktj = Riemannian sectional curvature corresponding to the plane
spanned by {ei9 eό).

Proof. (1) 4=φ (2) is a famous theorem of Weyl (cf. [4]) which requires
n > 4.

(2) <=φ (3) is a consequence of a well-known generality about curvature
structures, which is sometimes expressed as 'sectional curvature determines
the curvature tensor' (cf. [3]).

Clearly (3) ^> (4). Conversely, if at p e M, Kcon = a constant a, then Sc-
Kon = n(n — \)a. As we showed above, Sc-Kon = 0. So a = 0.

(1) =̂> (5): Assume (M, g) conformally flat, so that given a point p e M,
there exists a neighbourhood U of p such that g\v = e2φg0, where ^0 is a flat
metric and φ: U —> R.

In § 7 we have collected together the formulas arising from a conformal
change of a metric. In particular, using the bilinear form Q defined by φ and
writing <Z, Y> for g(X, Y) and <Z, Y>0 for go(X, Y) and G = grad0 φ (the
gradient of φ defined with respect to g0), we have

R(X,Y)Z = {β(Y,Z) + <Γ,Z>0 | |G||?}Z - {Q(X,Z) + <X,Z

Consequently, if {e19 e2, e3, e4} is an orthonormal quadruple spanning W and
aι = {e19 e2) and σ2 = {e3, e4}, then
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K(σi) + K(σ2) = - {Qie^eJ + Q(e2,e2) + Q(e3,e,) + Q(e,,eA) + 2||G||2}

= - {trace Q\w + 2\\G\\2},

which is a constant depending on W alone. This proves 5).
Clearly 5) => 6).
6) => 4): Let {e19 , en] be an orthonormal frame at a point p € M. Typi-

cally it suffices to show that K^fa, e2) = Xcon(e1? e3). Using the formula (3.1)
for Kcon, and writing Ktj = K(et, e3) we have

Km(e19 e2) - Km(e19 ez) = K12 - Ku - 1 { Σ (Ki2 - Kί3)} .
(n — 2) 2Z

Using (6), Kl2 - K1Z = K42 - K43 = . . . = Ki2 - Ki3, i > 3. So the right
hand side of the above inequality clearly vanishes and the proof is finished.

q.e.d.
We shall call a Riemann manifold (M, g) nowhere conformally flat, if there

is no nonempty open subset c M which is conformally flat (in the inherited
Riemann metric).

The condition (4) of the above theorem easily shows the following
Proposition 3.3. Suppose that a Riemann manifold (Λf, g), dim M > 4, is

nowhere conformally flat. Consider the conformal curvature structure (M, g,
C). Then the set

{p e MI p is non-isotropic} (cf. § 2)

is dense in M.
We call two Riemann manifolds (M,g), (M,g) isoconformally curved if

there exists a 1-1, onto conformal-curvature-preserving difϊeomorphism F:
M —• M i.e., denoting the quantities related to M by a bar overhead we have,
for every p e M and every 2-plane σ at p,

Kcon(σ) = Kcon(F*σ) .

The following theorem generalizes Theorem A (cf. the introduction) in the
case of nowhere conformally flat manifolds:

Theorem 3.4. Let (M, g), (M, g) be isoconformally curved Riemann
manifolds of dim > 4, and suppose that (M, g) is nowhere conformally flat.
Then (M, g), (M, g) are isometric.

Proof. Let F:M-^M be a conformal-curvature-preserving diίfeomor-
phism. By Proposition 3.3, the set of nonisotropic points of M (with respect
to the conformal curvature structure) is dense. So by the general theorem of
§ 2, F is conformal. We identify M with M via F, and again write g for F*g,
so that g = φ-g where φ: M —> /£ is some positive real-valued function on M.

As is well-known, the conformal curvature tensor is invariant under a con-
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formal change of the metric. So C = C, and hence Kcon = φKCQn. By hypoth-
esis, Kcon = Kcon and also Kcon Φ 0 on an open dense subset, so φ = 1. It
follows that F is an isometry.

Remark. In the above theorem, in case g is analytic, the condition
"nowhere conformally flat" is equivalent to " C ^ 0" or Kcon -φ. 0", or (in view
of Theorem 3.1) "Kcon Ξ£ constant". This is immediate, since analyticity of g
implies analyticity of C and Kcon. If C(or Kcon) = 0 on a nonempty open
subset, C(or Kcon) = 0 everywhere by analyticity.

Remark. Call (M, g), (M, g) homoconformally curved if there exist a one-
one, onto diίϊeomorphism F: M -* M, and a function ψ: M -> R such that
for every p <εM, every σ, and a 2-ρlane at /?, we have

Kcon(σ) =

The general theorem of § 2, and the argument of the above theorem easily
imply the following result:

Two Riemann manifolds (M, g), (M, g) of dimension > 4 are homocon-
formally curved if and only if they are conformal.

4. Ricci curvature structure

Let (M, g) be a Riemann manifold. Equip it with the Ricci curvature
structure (cf. § 1, Example (c)). The corresponding curvature is given by: if
σ = {X, Y}, X, Y orthonormal, then

(4.1) Kmc{σ) = Ric(Z, X) + Ric(Y, Y) = trace Ric|σ .

Notice that Ric , , for X Φ 0, is the quantity which is clas-

^ II^ΊI IÎ ΠI I
sically called the Ricci curvature in the direction X. (M, g) is called an Einstein
manifold if there exists a constant a such that for any vector fields X, Y,
Ric(X, Y) = a<X, Γ>. (For a detailed discussion see §8.) The following
proposition shows that for the Ricci curvature structure, the Einstein manifolds
play a role of constant curvature spaces.

Proposition 4.1. Let (M, g) be a Riemann manifold of dimension > 3.
Then KmίQ = constant if and only if (M, g) is an Einstein manifold.

Proof. The 'if' part is obvious. Conversely, if KΛic — 2a, it is easy to see
from (4.1) and the hypothesis 'dimension > 3' that Ric(X,X) = a for every
unit vector X. From this, it easily follows that (M, g) is an Einstein manifold.

q.e.d.
We shall call (M, g) nowhere Einsteinian if there does not exist a nonempty

open subset of M, which is an Einstein manifold (in the inherited Riemann
metric).
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Proposition 4.2. Let (M, g) be a Riemann manifold of dimension > 3
which is nowhere Einsteinian. Then the set of points

{p ζ MI p non-isotropic with respect to Ricci curvature structure]

is dense in M.
Proof. To say that p e M is isotropic with respect to the Ricci curvature

structure amounts to, for X, Y e TP(M), Ric(Z, Y) = a<X, Y} for some a =
a(p) depending on p. However, a well-known Schur's theorem-type argument
(cf. [4]) shows that if every point of an open subset of M is isotropic (with
respect to the Ricci curvature structure) then a{p) is constant over the con-
nected components of the open subset. q.e.d.

Call two manifolds (M, g), (M,g) iso-Ricci-curved if there exists a KΛlc-
preserving diίfeomorphism F: M —> M. The above proposition and the general
theorem of § 2 imply

Theorem 4.3. Let (M, g), (M, g) be iso-Ricci-curved manifolds of
dimension > 3. Suppose that (M, g) is nowhere Einsteinian. Then (M, g),
(M, g) are conformal.

How does the notion "a difϊeomorphism F is X^-preserving" compare with

( X X \
, , i.e., the

11*11 11*11 /
classical Ricci curvature in the direction X Φ 0"? For short, in the latter
case we shall say that F is Ric-preserving. In case the manifolds are
Einsteinian, every diffeomorphism is both K^-preserving and Ric-preserving.
In case the diffeomorphism F is conformal and the dimension of M > 3 it is
easily seen that F is K^-preserving if and only if it is Ric-preserving. So in
view of the Theorem 4.3, ̂ i c-preserving always implies Ric-preserving. The
converse also holds generically, as is shown by the following theorem (recall
that as in § 1, Ric. denotes the linear transformation induced by Ric).

Theorem 4.4. Let (M, g) be a Riemann manifold of dimension n > 3 such
that the set

{p e MI Ric. at p has n distinct eigenvalues)

is dense in M. Then every Ric-preserving diffeomorphism F: M —> M of
Riemann manifolds (M,g), (M,g) is conformal.

Proof. This proof follows the pattern of the proof of the general theorem
of §2(cf. [8]).

We denote the quantities corresponding to (M, g) by a bar overhead. Choose
an orthonormal frame e19 , en at p e M, consisting of eigenvectors of Ric.
and assume that Ric. at p has distinct eigenvalues. Write Ric fe ,^) = Rυ.
Then Rij = 0 if i Φ /, and Ru Φ RJJ if i Φ j . Let

= dij , Ric(eί5βj) = Rij
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For x, y e R, (x, y) φ (0,0), i φ /,

\ = R i c / * ^ + ye,

V || ||llΛt^ T yej\

implies

x2R,

aHx2 + 2atjxy + ^ , , >;2 x2 + y2

Cross multiplying and equating coefficients of like powers of x, y we have

(4.1) Ru = oitRit ,

(4.2) Λ€, = α , ^ = OtjRjj ,

(4.3) Λ« + RJJ = Oί*/?^ + fl^Λ<t .

Since i^^ ^ jR̂ ^ for i Φ /, (4.2) implies a o = 0. (4.1) and (4.3) together
imply (au — aάj){Ru — Rjό) — 0. Since Ru Φ Rjj9 we have au = ajά.

It follows that {ej are mutually orthogonal, and have the same length. So
F is a homothety at p. Since the set {p \ Ric. at p has n distinct eigenvalues} is
dense in M, it follows by continuity considerations that F is conformal.

q.e.d.
It now follows that under the hypotheses of Theorem 4.4, the concepts "a

difϊeomorphism is K^ic-preserving" and "a diffeomorphism is Ric-preserving"
are equivalent.

Now we consider the question: when is a ^ i c-ρreserving diffeomorphism
necessarily an isometry? In view of Theorem A and Theorem 3.4, we would
like to settle this question for all nowhere Einstein manifolds. Unfortunately
we have been able to settle it only under further hypotheses.

An important case of conformally flat manifolds (which are more susceptible
to admit nonisometric conformal maps) is settled in the following

Theorem 4.5. Let (M, g), (M, g) be iso-Rίcci-curved, and (M,g) be a
conformally flat, nowhere Einsteinian manifold of dimension > 4. Then (M,
g), (M, g) are isometric.

Proof. Let F: M -^ M be a A^ic-preserving diffeomorphism. Then it is
conformal by Theorem 4.3, and equation (3.1) reads

^ K K +
n-2 *"- (n - l)(/i - 2)

Now ^ i c-preserving => Ric-preserving => *Sc-preserving. So a ^ i c-preserving
diffeomorphism is K-preserving if and only if it is i^con-preserving. But (M, g)
is conformally flat, so F is automatically Xcon-ρreserving hence F is K-
preserving.
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By Theorem A, F is an isometry if (M, g) is nowhere of constant (Rieman-
nian sectional) curvature—which is indeed the case, since (M, g) is nowhere
Einsteinian. q.e.d.

The results of § 12 will show that the conclusion of Theorem 4.5 is valid
also under the hypothesis: (M, g) is locally homogeneous, nowhere Einsteinian
manifold of dimension > 4. Some cases when (M, g) is assumed to be
compact will also be settled later.

5. Critical points of curvature on a fiber

We follow the notation of § 2. Let p e (M, g, Γ), and write K for Kτ\x-Hp).
In this section we shall evaluate the gradient and hessian of K at a point σ in
the fiber π~\p). This calculation is important in itself. We shall use it in Part
II.

Let {e19 , en} be an orthonormal basis at p, and a be the 2-plane spanned
by {e19 e2}. Denote (T(ei9 ej)ek, eLy by Tίjkl, and Tίjίj by Kυ. It is easy to see
that

(x, y) ΞΞ (*3, xA, , xn9 yZ9 y4, , yn)

gives a coordinatization of a neighbourhood of σ such that σ is given by (0,0).
Par abus, we shall denote a 2-plane in this neighbourhood by (x, y), and also

n

write x for J] x^.

Now, by the definition of K, for x Φ 0, y Φ 0,

n n n

(5.1) = Tm2 + 2 J ] TUi2χί ~\~ 2 Σ T12uyi + Σ Ti2i2Xi

n

+ Σ ^Hiί}7? + ^ Σ. Ti2j2χίχj + ^ Σ. Tuijyiyj

+ 2 Σ (Γi2ίi + T^Xtyj + third and higher order terms.

Proposition 5.1. 77*e gradient of K at σ is given by

\σ — ^i2ϊ2 ? dK/dyi\σ = Tmj .
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Proof. Differentiate the above identity (5.1) with respect to xt to get

2{JC,(I + Σ yd - ( Σ xjyMWix,y) + {• •} dκ/dχt

= 2Γ12ί2 + first and higher order terms.

This and similar identities prove the proposition.
Corollary, σ is a critical point of K if and only if Tuί2 = 0 = T121j for

i , / > 3.
Proposition 5.2. The Hessian of K at σ is given by

\. = 2(Kί2 - Ku); d'Kjdyll = 2(KH - Ku);

]. = 2Tί2j2 , iφj; d'K/dyfiyjl = 2Tmj , i φ j ;

d2Kldxt3yjl = 2(Tl2ίj + Tιji2) , 3 < i, j < n .

Proof. Differentiate (5.2) with respect to xt and evaluate at σ to get

i.e., d2K/dxl\σ = 2(X i2 — K12). The rest follows similarly.

6. Curvature as a Morse function on the Grassmannian

It is natural to ask whether some of these curvature functions are canonical
Morse functions on the Grassmannian of 2-planes in n-space. We shall show
that such indeed is the case and in fact, one can construct curvature-like
Morse functions on the Grassmannian of / -planes in n + k space over reals,
complexes or quaternions.

The author wishes to thank Professor R. Bott for asking this question. The
calculations presented here are essentially those in [8, Theorem 7], and they
generalize the well-known Morse functions on projection spaces. Recently
J. C. Alexander [1] constructed some different curvature like Morse functions
on Grassmannians which have other novel features.

We shall exhibit the Morse functions on the Grassmannian of λ -planes in
Rn+lc, the real vector space of dimension n + k. By putting appropriate bars
for complex conjugation and quaternionic conjugation, one gets Morse func-
tions on the complex or quaternionic Grassmannians.

Let σ be a &-ρlane in Rn+k, and τ its any complementary subspace. Fix a
basis {e19 , ek) of σ, and consider

given by (w19 , wk) -> (eλ + w19 , ek + wk). It is easily seen that
{ei + Wi> , ek + wk} indeed span a / -plane, and the ^-planes spanned by
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{eι + Wi> , ek + wk} and {eλ + w^, , ek + wk

1} are identical if and only
if wt — wt\ i = 1, , k. Hence the above correspondence F is indeed a well
defined map, and in fact gives a coordinate neighbourhood at σ with σ given
by(0, . . . , 0 ) .

Let A: Rn+k —> jRw+Λ; be a symmetric operator. Consider the corresponding
bilinear map gA: Rn+k x Rn+k -+ R given by g^Ov, w) = ζAv, w} where <( , )
denotes the Euclidean inner product in Rn+k, and the function K: GnΛ —> R
defined by K(σ) = trace gA\σ.

Note. A will be taken to be a Hermitian operator in the complex case,
and to be a Hermitian quaternionic operator in the quaternionic case. (A
matrix [atj] of such an operator with respect to a quaternionic orthonormal
basis has the property atj = aoi.) In every case, A has real eigenvalues (cf.
[12, Theorem 4.4] for the quaternionic case), so we get a real-valued function
K on Grassmannians.

Proposition 6.1. σ is a critical point of K iff A{σ) C σ.
Proof. By [v, w, ] we shall denote the subspace spanned by the vectors

v, w, . Let {e19 , en + k} be an orthonormal basis of Rn+k such that σ =
[e19 - , ek]. Let τ = [ek+1, , ek+n], and consider the coordinate neighbour-
hood of σ described by the map F defined above.

k+n k+n

Let Wί = 2 xr%er-> / = 1, , Λ; ^4eQ = 2 apqep- We wish to show that

(7 is a critical point of K iff apq = 0 for q < k, p > k. Consider the λ -plane
a' — [e1 + wl9 - , ek + wk], and let us calculate ^(^O- Consider the Gram-
Schmidt orthogonalization:

ί~1 ζβ + w f Λ

j=i ll/̂  ll2

Let ^ t = - < y 4 / " P , i = 1, - , Λ. Clearly K(</) = Σ ^ , .

We are interested in small values of xri\ which describe the /:-planes in a
neighbourhood of σ. An easy induction shows that

(et + M^, /j> = ζwi9 Wj} + 0(x4) , 1 < j < i < k .

So

/, = et + wt - %^<wi9wjyfj + 0(x4) .

Hence

Aι = au + 2 kΣ airxri + 0(x2) .
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It follows that

dAi = \2air , if i = / , r > Λ ,

3*ri * I 0 , if i Φ I , r>k,

and so also

= 2 aίr , if i < k , r > k .

The proposition is now clear.
Proposition 6.2. £ Λαs on/ y nondegenerate critical values iff A has n + k

distinct eigenvalues.
Proof. By Proposition 6.1 it follows that the ^-planes spanned by k

linearly independent eigenvectors of A are precisely the critical points of K.
Let {e19 - - -, en + k\ be an orthonormal frame of Rn+k such that Aet — / ^ .

Introduce coordinates and notations as in Proposition 6.1. Then

*Σ
k + n

Σ •
r = k + l

So

Hence

if i = / , r > A: .

i — I — m , r y k ,

i = / = m , r > t̂ .

From these formulas the assertion of the proposition is obvious. q.e.d.
It thus follows for instance that if Ric. has distinct eigenvalues (at a point

p of a Riemann manifold M) then Kala, restricted to the fiber of G2{M) at p,
is a Morse function on G2t7l.

It follows

and so

dΛ _ (

that

32Λ<

3Λ r l 3Λ r w

32K
dxridxrm

Mr
0(x2)

a

a

- λdXri + O(X2)

, otherwise.

il(λr — λi) , if

Ό , otherwise,

|2U r - λt) , if

Ό , otherwise.
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PART II. CONFORMAL TRANSFORMATIONS

In this part we shall deal with a classical problem: when is a conformal
map of a Riemann manifold into itself necessarily an isometry (or a homo-
thety)? We cannot expect an affirmative answer without some hypothesis about
uniformity of curvature. Indeed, if (M,g) admits an isometry group / Φ {1},
and g is a conformal deformation of g, then (M, g) admits a conformal group
Ξ> /, but its isometry group may be smaller than /.

To the other extreme, if curvature is very degenerate (e.g. the unit sphere)
the manifold is more likely to admit nonisometric (or nonhomothetic) con-
formal transformations. The case of two-dimensional manifolds has again to
be excluded since, as is well known, every complex analytic diffeomorphism
of a Riemann surface is conformal.

A general feeling is that these are typical situations. A well known classical
result in this direction is due to Liouville, which says that every conformal
map of Rn, n > 3, is a homothety. A significant partial generalization of this
result was obtained by Yano and Nagano [13], who proved: a complete
Einstein manifold admitting a 1-parameter group of nonhomothetic conformal
transformations is compact, simply connected and in fact isometric to a stand-
ard sphere. One of our main observations is that this result is essentially local;
one need not invoke completeness. Moreover "a 1-parameter group •" may
be replaced by "a single, nonhomothetic, conformal transformation".

Various results which were based on Yano-Nagano's result, e.g., an
important result on conformal transformations of a homogeneous manifold
due to Goldberg and Kobayashi [5], and other results depending on signs of
certain curvatures, e.g., Lichnerowicz [9, § 83], Obata [10], are also improved
in a similar fashion.

Some particular cases of these results have been obtained previously.
Professors M. Berger and Alfred Gray kindly referred me to the papers of
C. Barbance [2] and C. C. Hsiung [6]. The treatment given here is in the
spirit of curvature structures, and the arguments are essentially geometric.

7. Conformal change of a metric

Our basic interest is in the following situation: let (M, g) be a Riemann
manifold, and F: M -* M be a conformal diffeomorphism into itself. A more
functorial situation of a conformal correspondence between two Riemann
manifolds can essentially be reduced to this situation. We identify two copies
of M via F and consider the conformal deformation g -^ g = F*g = f-g
where / is a positive real valued function on M. In several cases we shall
conclude / = constant (or / = 1) which will imply that F is a homothety (or
isometry).
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We collect together relevant formulas arising from the conformal deforma-
tion g —> g = f-g. We shall denote the quantities related to g by a bar over-
head, and use the notation of § 1. F(resp. F) denotes the covariant derivatives
with respect to g (resp. g), and g(X, Y) (resp. g(X, Y)) will be abbreviated to

Write / = e2φ (which is valid since / is positive real-valued), and let G =
grad φ = the gradient of φ with respect to g. The function φ defines the sym-
metric bilinear form Q on the tangent bundle T(M), viz.,

Q(X, Y) = XYφ - (FxY)φ - XφYφ = Hess φ(X, Y) - XφYφ

(cf. [8, §2]). Let Q. denote the corresponding linear transformation denned
by <β. X, Γ> = Q(X, Y)._

Proposition 7.1. VXY = VXY + S(X9 Y) ,

where

S(X, Y) = XφY + YφX - <Z, Y}G .

Proposition 7.2. R(X, Y)Z = R(X, Y)Z + T(X, Y)Z ,

where

T(X, Y)Z = {Q(Y,Z) + <F,Z>||G||2}Z - {Q(X,Z) + (X,zy\\G\f}Y

+ <Y,Z>Q.X - <X,Z>Q.Y .

Proposition 7.3. Rlc(Z, Z) = Ric(Z, Z) + £Γ{X, Z) ,

where

3-{X,Z) = - { ( / » - 2)Q(X,Z) + (n- 1 ) < Z , Z > | | G | | 2 + <X,Z> trace Q.) .

Proposition 7.4. e^ Ric. X = Ric. X - (n - 2)Q.X

- { ( n - 1)||G||2 + trace Q.}X .

Proposition 7.5. e^Sc = Sc - {n(n - 1)||G||2 + (2n - 2) trace Q.} .
These formulas are classical; see, e.g., Eisenhart [4], where calculations

are made in local coordinates.
Proposition 7.6.

{VXR){Y,Z)W = (VXR){Y,Z)W + {VXT){Y,Z)W

+ {- 2XφR{Y,Z)W + YφR(Z,X)W + ZφR(X, Y)W)

- {WφR(Y,Z)X} + {(R(Y,Z)X,WyG)

+ KX, Y>R(G,Z)W - ζX,Z}R(G, Y)W]

+ (R{Y,Z)W,GyX + (X, W)R(Y,Z)G .



440 RAVINDRA S. KULKARNI

Proof. Observe that both sides of the equation are tensors. So to prove it,
fix a point p <= M, choose a normal coordinate system at p. Next, extend by
linearity the vectors Xp e TP(M), the tangent space at /?, to vector fields X in
a neighbourhood at /? so that

i) [X,Y] = 0 , ii) (

Now,

= FX(R(Y,Z)W) - R(FXY,Z)W - R(Y,FXZ)W - R(Y,Z)FXW .

Using Proposition 7.1, the first term on the right hand side becomes

FX(R(Y,Z)W) = FX(R(Y,Z)W) + S(X,R(Y,Z)W)

= FARCY, Z)W) + FAT(Y,Z)W) + S(X,RCr,Z)W)

by ii).

Similarly, R(FXY,Z)W = R(S(X,Y),Z)W, etc., and finally substituting the
formula for S in Proposition 7.1, we get the required result.

Proposition 7.7. Let Σ c y c l denote a cyclic sum over X, Y, Z.

Σcyci<*> W}R(Y,Z)G .

Proof. Take a cyclic sum over X, Y, Z in the formula in the above prop-
osition. The terms involving FR and FR, and the terms in { } vanish by the
Bianchi identity and the usual properties of the curvature tensor.

8. Einstein manifolds (Generalities)

As in § 4, we call a Riemann manifold (M, g) an Einstein manifold if there
exists a constant a such that Ric(Z, Y) = a(X, Y>, which are the gravitational
field equations for the empty universe with the Lorentz metric.

We may note: Sc = trace Ric — na — constant for an n-dimensional
Einstien manifold. From this, it easily follows that if a Φ 0, homothety of M
into itself is necessarily an isometry.

If dimM = 2(resp. 3), an elementary calculation shows that M is of con-
stant curvature a (resp. a/2).

Proposition 8.1. A conformally flat Einstein manifold is of constant cur-
vature.

Proof. Let K, Kcon, KBic denote the Riemannian, conformal and Ricci
sectional curvature as in Part I, § 1. For an Einstein manifold with Ric(Z, Y)
= a(X, Y> and dimension n, K^ = 2a. So
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c o n ~ ~~ n -2 miQ (n - 1) {n - 2) = ~ w - 1 '

For n < 3, the manifold is already of constant curvature. For n > 4 con-
formal flatness amounts to ^Ccon = 0, so K = #/(n — 1). q.e.d.

The local situation of conformal maps of constant curvature spaces is well
known. So in view of the above observations our interest is the case where
(M, g) is an Einstein manifold of dimension > 4 which is nowhere of constant
curvature (i.e., there does not exist a nonempty open subset of constant
curvature in the induced metric). In case dimension = 4, we shall show that
the Einstein manifold which is nowhere of constant curvature does not admit
a nonhomothetic conformal map. In case dimension > 5, we have been able
to assert the validity of the same result only if the curvature is not too
degenerate.

9. Conformal transformations of an Einstein manifold (Local case)

We consider a conformal diffeomorphism F of an ^-dimensional Einstein
manifold (M, g) into itself, and shall assume n > 4 and Ric (X, Y) = a(X, Y>.
As explained at the beginning of § 7, we shall consider the corresponding con-
formal deformation g —> g — e2φg. Notice that both (M, g), (M,g) are
Einstein manifolds with the same constant a. We shall use the notation intro-
duced in § 7 in particular, G = grad φ, Q is the bilinear form: Q(X, Y) =
XYφ — (VxY)φ — XφYφ, and Q. is the corresponding linear transformation.

Proposition 9.1. Q. = βE where E is the identity transformation and β:

M -^R given by β = — _ | ^ ~ l^a + \\G\\2

Proof. By Proposition 7.4, we have

(9.1) e^ Rίc. = Ric. - (n - 2)Q. - {n - 1)| |G||2 + trace Q.}E.

In our case, Ric. = Ric. = aE, so Q. = βE for some β: M —> R. Taking
trace of both sides of (9.1) we have the formula for β.

Proposition 9.2. T = a^e ~ ^ / where T= R — R (cf. Proposition 7.2)
n — 1

and I is the trivial curvature structure (cf. § 1).
Proof. Plug the formula in Proposition 9.1, in the expression for T.

Proposition 9.3. // Y, Z are two vector fields such that (Y, G) = 0 =
<Z, G>, then R(Y, Z)G = 0 = T(Y, Z)G = R(Y, Z)G.

Proof. T(Y, Z)G — 0 is clear from the above proposition. On the other
hand, if J]cγcl denotes a cyclic sum over X, Y, Z, then by the above proposi-
tion and Proposition 7.7 we have
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(9.2)
n - 1

/_ιcyc]

Let <Y,G> = 0 = <Z,G> and put X = W = G, then (9.2) reduces to
R(Y, Z)G = 0. Since J? = 7? + T, the proof is complete.

Proposition 9.4. Let p e M and suppose that Gp Φ 0. Then for every
2-plane a containing Gp, K{σ) — K(σ) = a/(n — 1).

Proof. In (9.2) of the above proposition, assume X, Y,Z to be linearly
independent and all perpendicular to W, then we get (R(Y, Z)W, G> = 0.
In particular, if Y, W, G are mutually orthogonal, then <#(Y, G)W, G> = 0.
It follows that the bilinear form (Y, W) -> <R(Y, G)W, G> defined on the
orthogonal complement of G is a scalar multiple of < , > so if X is perpen-
dicular to G, then (R{X, G)X, G> = constant | |Z| |2. It follows that if Gp Φ
0, then for every 2-plane σ containing Gp, K(σ) = constant = csay. However
RΓc (G, G) = a\\G\\2 = {n - 1) c\\G\\\ So c = a\(n - 1). Since clearly by
using R — R + T and Proposition 7.2, we have

KV^Λ i (^ 1) _

n - 1

and also K(σ) — a/(n — 1). q.e.d.
This proposition shows that if (M, g) does admit a nonhomothetic conformal

map (so that G ^ 0), then at points /? where Gp Φ 0, the sectional curvature
K is very degenerate. To see how exactly it is degenerate we apply the results
of §5.

Let p e M such that Gp Φ 0. Choose an orthonormal frame {e1 = GP/\\GP\\9

e2, , en) at p, and say σ = the 2-ρlane spanned by {e19 e2}. Then in the no-
tation of §5 Proposition 9.3 says that Rl2i2 = 0 = Rmi, i > 3. So a is a
critical point of K\π-1(p). Also using Proposition 9.4 and Proposition 5.2, its
hessian at σ looks like

d2K
dXidXj

0

0

0

So nullity > n — 2. Moreover,

ΔK(σ) — trace of the hessian = 2 (̂ 2* — ̂ 12)

= Σ ^ " ( » - 1)̂ 12 = a - a = 0.

In view of this discussion, we have the following
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Theorem 9.5. Let (M, g) be an Einstein manifold such that the set

(9.3) S = {p e M\K\π-Hp) has only nondegenerate critical points]

is dense in M. Then every conformal map of (M, g) into itself is a homothety.
Proof. By the above discussion, if p e S, then Gp = 0. Since S is dense

in M, G = 0.
Remark. It is clear from the above discussion that the condition (9.3)

may be replaced by a still weaker condition:

The set S' = {p e M\ If σ is a critical point of K\π-Up)9

then either nullity of σ < n — 3 or else

(9.4) ΔK(σ) Φ 0, where Δ is the laplacian de-

termined by the canonical metric on the

grassmannian}

is dense in M.
We have been able to get rid of the condition (9.3) or (9.4) in case

dimension M = 4. This is because of the following general lemma on curvature
structures which is of some interest in itself. This was kindly pointed out to me
by Professor M. Berger.

Lemma on curvature structures. Let (M, g) be a ^-dimensional Rίemann
manifold equipped with a curvature structure T, and RicΓ be the correspond-
ing Ricci tensor (cf. § 1, Part I). Suppose that RicΓ = ag for some a: M —>R.
Then for every peM and two mutually orthogonal 2-plane sections σ19 σ2 at p,

Kτ(σ^) = Kτ(σ2).

Proof. Choose an orthonormal frame {el9 e2, e3, e4} at p, and write Kυ =
KT(et, e3). We typically show K12 = Ku. We have

(9.5)

which implies

(9.6)

Similarly,

(9.7)

(9.8)

Subtracting (9.

K.H

7) and

-κn

\-κn

(9.8)

+ κu =

— κ23 +

= κ32 +

from (9.

a(p) = Kn + K2i +

Ku

κi3.

6) implies Kl2 = Ku.
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Corollary. Let (M, g) be a 4-dimensional Riemann manifold. Then for every
p € M and two mutually orthogonal 2-planes σ19σ2 at p, Kcon(σι) = Keon(σ^).

Proof. This is because Ric-Kon = 0 (cf. § 3).
Corollary. Let (M, g) be a A-dimensional Einstein manifold. Then for

every p e M and two mutually orthogonal 2-planes σ19 σ2 at p, K{σd = K{σ2).
We return to the standard situation of this section.
Theorem 9.6. Let (M, g) be a A-dimensional Einstein manifold which is

nowhere of constant curvature. Then every conformal map of (M, g) into itself
is a homothety.

Proof. We use the by now standard notation. Suppose there exists p e M
such that Gp Φ 0. As shown in Proposition 9.4 for every 2-plane σ at p con-
taining Gp, K(σ) = a/3. By the above lemma, for the orthogonal complement
σ' of σ we also have K(σ') = a/3. From this it easily follows that K = a/3 at
p. The set {p \ Gp Φ 0} is open. So K = a/3 on an open set contradicting the
hypothesis that (M, g) is nowhere of constant curvature.

10. Conformal transformations of an Einstein manifold (complete case)

We continue to use the notation of last section.
Proposition 10.1. Trajectories of G are (pointsetwise) geodesies.
Proof. The formula in Proposition 9.1 written in full reads: for any

vector fields X, Y,

XYφ - (FxY)φ - XφYφ + 1 < * , Γ>||G||2

(10.1)

The assertion of our proposition is trivial if G = 0. So suppose there exists
p zM such that Gp Φ 0, and let Xp = Gp. Consider a geodesic γ through p
with the initial velocity Xp, and let X be the tangent vector field of γ. Let
Yp <= TP(M) such that Ypφ = <YP, G> = 0, and extend Yp to a vector field
Y by parallel translation along γ. Then VXY = 0, <Z, Γ> = 0, and (10.1)
becomes

XYφ - XφYφ = 0 .

Treating this as an ordinary differential equation for Yφ, we see that Yφ = 0
is the unique solution with the initial condition Ypφ = 0. This means that a
vector Yp orthogonal to G at p remains orthogonal to G under parallel trans-
lation along γ. It follows that G is tangential to γ.

Corollary. Let p be a critical point of φ. Then φ is constant on circles
centered at p.

Proof. Indeed by the above proposition, φ is a function of the radial
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distance from p in a normal coordinate neighbourhood of p.
Corollary. Suppose φ ̂  constant. Then the critical points of φ are isolated.
Proof. Suppose not. Then clearly the set

S = {p € M\ p is a non-isolated critical point of φ}

is*a nonempty closed set. We show that it is also open. This would imply,
since M is connected, that S = M, and so φ = constant, contradicting the
hypothesis.

Let p e S, B{p, ε) be a ball of radius ε > 0 centered at p on which normal
coordinates are valid, and d denote the distance defined by the Riemannian
metric. Since p is a nonisolated critical point, there exists a critical point
q e B(p, ε). Let d(p, q) = εf < ε. Since φ is a radial function in B(p, ε), the
circle S(p, εθ of radius ε' centered at p consists of critical points of φ. Now
we can apply the same argument to every point of S(p, εf), which shows that
B(p, εθ consists of critical points of φ. So S is open and the proof is finished.

Proposition 10.2. Suppose that φ ̂  constant, and let p be a critical point
of φ. Then there exists a neighbourhood of p on which K = a\(n — 1).

Proof. Let p be any point of the standard space (S, g) of constant curva-
ture a\{n - 1). Choose any isometry u: TP(M) -* TP(S). Let Xp e TP(M) and
Xp — u(Xp). Let γ be the geodesic consisting of pt = expptXp, and γ be the
correspoding geodesic consisting of pt = txpptXp. Let σ be a 2-plane contain-
ing Xp, and let σt denote the 2-plane at pt obtained by parallel translation of
σ along γ. Correspondingly, let σ — u(σ), and let σt denote the 2-plane at pt

obtained by parallelly translating σ along f.
σt clearly contains GPt, so using the previous proposition K(σt) — a/(n — 1)

= K(σt), i.e., sectional curvature is preserved under parallel translation along
geodesies. It follows by a well known criterion of Eli Cartan (cf. [3]) that u
extends to an isometry of a neighbourhood of p onto a neighbourhood of p.
On this neighbourhood of p, K = a/(n — 1). q.e.d.

After these preliminaries we state the principal result of this section which
is a common generalization of the result of Liouville and that of Yano-Nagano.

Theorem 10.3. Let (M, g) be a complete Einstein space which admits a
nonhomothetic conformal diβeomorphism F onto itself. Then (M, g) is com-
pact, simply connected and in fact isometric to a standard sphere.

The proof is divided into several steps. Many thanks to Alan Weinstein for
his help in the final global argument. First we prove

Proposition 10.4. A complete Einstein (M, g) with a < 0 does not admit
a nonhomothetic conformal dίβeomorphism onto itself.

Proof, ( i) First consider the case a — 0. Using the standard notation of
this and the last section, suppose there exists p € M such that Gp Φ 0. Let
Xp = GPI\\GP\\9 and γ be a geodesic through p with initial velocity Xp. By
completeness, γ extends infinitely. Let X be the tangent vector field to γ.

Since a = 0 and VXX = 0, by Proposition 9.1, φ satisfies the differential
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equation

(10.2) XXφ = (XφY - 11 |G ||2 = λ(Xφ)2 .

By considering this as an ordinary differential equation for Xφ with the initial
condition Xpφ = \\GP\\ > 0, obviously its solution has a singularity at finite
positive time. Since this is not possible, Gp must be 0.

(ii) Next suppose a < 0. With the above notation, φ satisfies the differ-
ential equation

(10.3) XXφ = 1 (Xφγ - a_ (e>* - 1) .

Xp Φ 0 so σ ^ constant. Since we have supposed that the conformal diffeo-
morphism F (which gives rise to φ) is onto, the conformal deformation of
metric with respect to Fι is obviously g -* e~2φg. Hence considering F or F1

we may suppose φ(p) > 0.
Since a < 0, (10.3) shows that Xpφ = | | G P | | > 0 and Xφ is monotonically

increasing along γ, and therefore φ also monotonically increases along γ. It
follows that the right hand side of (10.3) majorizes the right hand side of
(10.2). Since (10.2) has a singularity at a finite positive time, so does (10.3).
So again we must have G = 0.

Remark. In case a < 0, we have made essential use of the fact that F is
a 1-1 onto diffeomorphism. Restriction to 1-1 onto diffeomorphism is clearly
elegant and sufficient for group theoretical purposes. However, as a point of
geometric interest we wish to remark that Theorem 10.3 as stated is not valid
if we merely assume that F is a 1-1 into diffeomorphism. Indeed in the usual
open disc model for the hyperbolic space the map X —> λX, 0 < λ < 1, which
is a contracting homothety for the flat metric, is a 1-1 into, nonhomothetic
conformal diffeomorphism with respect to the hyperbolic metric.

We return to the situation of the theorem. Because of the above proposi-
tion, a must be > 0. Consequently the Ricci tensor is positive definite. Hence
by the well known argument of Meyers, (M, g) has finite diameter, and more-
over it must be compact, since it is complete.

We have assumed φ ^ constant. So φ has at least two critical points p and q
say. Let d(p, q) = I.

Lemma. Every geodesic from p and of length I has q as its endpoint.
Indeed, let

Sf = {Xp e TP(M)\ \\Xp\\ = 1 and the geodesic with initial velocity

Xp reach q after time /} .

Since d(p, q) = I and the manifold is complete, by the theorem of Hopf and
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Rinow there is at least one geodesic of length / from p to q. So if is nonempty.
It is manifestly closed. It now suffices to show that £f is also open.

Let Xp 6 <¥*, and γ be the corresponding geodesic. Let m be the midpoint
of γ, and consider the arc Ap (resp. Ap) of the circle S(p, 1/2) (resp. S(q, 1/2)).
Ap and Aq must coincide in a neighbourhood of m; for, the normal coordi-
nates at p (resp. q) are valid in a neighbourhood of m, and so by the first
corollary of Proposition 10*1, φ is constant on Ap U Aq. It Ap andAq do not
coincide, m must be a critical point of φ, and so Ap U Aq consists of critical
points. This contradicts the fact that the critical points of φ are isolated (cf.
the second corollary of Proposition 10.1). Thus Sf is also open, and the
lemma is proved.

We can now set up a homeomorphism of M with the n-dimensional sphere
in the obvious way: map B(p, 1/2) on the northern hemisphere, and B(q, 1/2)
on the southern hemisphere. The lemma says that the equators match.

The normal coordinates at p (resp. g) are valid in M — {q} (resp. M — {/?}).
So by Proposition 10.2, (M,g) is of constant curvature K = a/(n — 1). By
the fact about constant curvature spaces, (M, g) is isometric to the standard
n-dimensional sphere of constant curvature a/(n — 1). This finishes the proof
of the theorem.

11. Conformal transformations of a compact manifold

Let (M, g) be a compact manifold admitting a conformal diffeomorphism
F: M —• M, and g —> g = e2φg be the corresponding conformal deformation.
Compactness guarantees that φ has critical points on M. If a geometric condi-
tion of negativity of certain curvatures is satisfied, then looking at the behav-
iour of φ at its critical points we can conclude that ^ Ξ O . A typical result is
the following:

We recall that π: G2(M) —> M is the canonical projection and K: G2(M) —> &
is the sectional curvature function.

Proposition 11.1. Let (M, g) be a compact manifold, denote inf K(σ)
ίgn-ί(p)

= λ(p), and suppose that λ = a negative constant = λ0. Then a conformal
diffeomorphism of M onto itself is necessarily an isometry.

Proof. Let F : M - ^ M b e a conformal diffeomorphism, and g —• e2φg = g
the corresponding conformal deformation. Note that both (M, g) and (M, g)
have the same λ = λ0.

Assume φ ^ 0. Conformal deformation of the metric corresponding to F~ι

is clearly g —> e~2φg, so considering F of F1 we may assume that φ attains its
maximum at a point p and φ(p) > 0.

Denoting the quantities related to g by a bar overhead, and using Proposi-
tion 7.2 we see that for a 2-plane σ at p spanned by {Xp, Yp, orthonormal},

= K(σ) - {XpXpφ + YpYpφ} .
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If K attains the minimum λ0 at σ, we have

(11.1) e2^λ0 = K(σ) - {XpXpφ + YPYPΦ} .

The left hand side < λ0, while on the right hand side K{σ) > λ0, and XPXPΦ
< 0, YpYpφ < 0 since p is a maximum. Thus (11.1) cannot hold. So φ = 0.

Remark. Similar arguments will also show the following:
Let (M, g) be compact. Then under any of the following conditions (M, g)

does not admit a nonisometric conformal diίϊeomorphism onto itself.

(11.2) sup K(σ) = constant (independent of p) < 0 .

(11.3) inf Ric (Xp,Xp) = constant (independent of p) < 0 .
A>€ Tp(M)

(11.4) inf KRic(σ) — constant (independent of p) < 0 .
σζπ~l(p)

We may replace inf by sup in (11.3) and (11.4).

(11.5) Let μv denote a density π~\p) which depends differentiably on p, and

assume

I K(σ)dμ(σ) = constant (independent of p) < 0 .
σζ.π~l(p)

A particular case of (11.5) is the one when μp is defined canonicallyftby the
Riemann metric. In this case, the integral in (11.5) is the scalar curvature.

This result for scalar curvature was obtained by Lichnerowicz for an infini-
tesimal conformal difϊeomorphism (cf. [9, p. 134]) and by Obata [10] for a
(finite) conformal difϊeomorphism.

Remark. A more functorial formulation of Proposition 11.1 would be:
Let (M, g) and (M, g) be compact manifolds, and F: M -^ M a conformal

diίϊeomorphism such that for every p e M,

inf K(σ) = inf K(σ) < 0 .

Then F is an isometry.
Similar generalizations may be made in cases listed in the above remark.

In particular, in view of the results of Part I, these generalizations apply to
sectional curvature preserving, A^ic-ρreserving or Ric-preserving diffeomor-
phisms of compact manifolds.

12. Conformal transformation of a locally homogeneous manifold

Recall that a Riemann manifold (M, g) is called locally homogeneous if for
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any two points p, q e M, there exists an isometry of a neighbourhood of p
onto a neighbourhood of q carrying p into q. It is called homogeneous if for
any two points p,q e M, there exists a (global) isometry carrying p into q.

Using the result of Yano-Nagano and a theorem of Kuiper, Goldberg and
Kobayashi [5] prove the following beautiful result:

A compact homogeneous (M,g) of dimension > 4 admitting a 1-parameter
group of nonisometric conformal transformations is isometric to a standard
sphere.

We shall replace "a 1-parameter group- •" by "a single nonisometric con-
formal transformation", and try to get rid of compactness.

Proposition 12.1. Let (M,g) be a nowhere conformally flat (cf. §3)
Riemann manifold of dim > 4. Suppose moreover that either

i) inf Kcon(σ) = constant (independent of p) = a ,

or

ii) sup KCOΐi(σ) = constant (independent of p) = b ,
σζπ-l(p)

Then a conformal map F: M —> M into itself is an isometry.
Proof. Consider the corresponding conformal deformation g —• g — e2φg.

Then both (M, g) and (M, g) together satisfy (i) (or (ii)) with the same con-
stant a (or b). Since (M,g) is nowhere conformally flat, by Theorem 3.2 and
the corollary to Proposition 3.1 we see that a Φ 0 in case i) or b Φ 0 in case ii).

On the other hand, using the fact that the conformal curvature tensor is a
conformal invariant (and denoting the quantities related to g by a bar over-
head) we see that

= K
con

However, the inf of the left hand side in case i) is e2φa and that of the right
side is a. So φ = 0. Similary the case ii) is treated. q.e.d.

Since both i) and ii) clearly hold for a locally homogeneous space, we have
Theorem 12.2. A locally homogeneous nowhere conformally flat (M, g)

of dimension > 4 does not admit a nonisometric conformal map.

Leaving aside the case of 3-dimensional manifolds, a natural question is:
Is a locally homogeneous conformally flat Riemann manifold admitting a

nonisometric conformal map onto itself necessarily of constant curvature?
Unfortunately, the answer is no in general. Consider the following example:

Let v e Rn, v Φ 0, and consider M = Rn — {0, ± v, ± 2v, •}. Equip M
with the metric g = gjr2 where r is the radial distance from 0, and g0 is the
flat metric. This is so arranged that on Rn — {0}, rotations and homothetics
with respect to g0 become isometries with respect to g. So Rn — {0} is a homo-
geneous space, and consequently M i s a locally homogeneous space. It may
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be checked that (M, g) is not of constant curvature, but the map F: M —> M
defined by X —• X + v is a nonisometric conformal map of M onto itself.

The author does not know whether the answer to the above question is
affirmative for complete (but non-compact) Riemann manifolds.

The answer is affirmative for locally homogeneous Einstein manifolds due
to the fact that 3-dimensional Einstein manifolds and conformally flat Einstein
manifolds are of constant curvature (cf. § 8). Similarly the answer is affirma-
tive for £Mc-preserving difϊeomorphism (cf. § 4).

We shall end this section by the following generalization of the result of
Goldberg-Kobayashi.

Theorem 12.3 Let (M, g) be a compact locally homogeneous manifold of
dim > 4 admitting a nonisometric conformal diffeomorphism. Then it is
isometric to a standard sphere.

C. Barbance [2] has also obtained this result by a different method using a
theorem of Obata [10]. We shall present here a more geometric argument
which is closer to that of Goldberg and Kobayashi.

Lemma. Under the hypothesis of the theorem, the Rίcci tensor must be
positive definite.

Proof. By using Proposition 11.1 we see that K > 0. So the Ricci tensor
is certainly positive semidefinite. Suppose the Ricci tensor is not positive defi-
nite. Then by local homogeneity, at each point p there exists a vector Xp such
thatRic (Xp9Xp) = 0.

Let F: M —• M be the nonisometric conformal diffeomorphism. Then as in
Proposition 11.1, we can assume that the corresponding function φ takes a
positive value at its maximum p.

Let Xv € TV(M) be such that

0 = Έte(Xp,Xp) = Ric(Xp,Xp) - {n - 2)XpXpφ + trace Q.} .

Since Ric is positive semidefinite and Q. is negative semidefinite, we see that
trace Q. = 0, so Q. = 0. But then for any 2-plane σ at p, σ = {Xp, Yp

orthonormal},

e^K(σ) = K(σ) - {XpXpφ + YpYpφ} = K(σ) .

Since K and K take the same range of values, φ(p) = 0 unless K = 0 (at p
and hence everywhere by local homogeneity). But if K = 0, then the space is
Einsteinian, and so by Theorem 10.3, this cannot happen. q.e.d.

Let (M, g) be the covering space of (M, g). Since (M, g) also has positive
definite Ricci curvature, M is also compact. It is simply connected and locally
homogeneous, so it is actually homogeneous (cf. [11]).

Because of Proposition 12.1 we can also assume that (M,g) and hence
(M, g) to be conformally flat. Following [5], we invoke a theorem Kuiper [7]
to assert that (M, g) is conformal to a standard sphere.
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Let C be the group of all conformal difϊeomorphisms of M, and / the

transitive group of isometries of M. Let 0 be a maximal compact subgroup of

C which contains /, and let g denote the constant curvature metric on the

sphere which is invariant under 0. Since g is conformal to g, g = fg where /

is a positive real-valued function on M. But / is transitive and / (Z 0. If easily

follows that / must be constant. This finishes the proof of the theorem.
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