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CONFORMAL TRANSFORMATIONS OF
RIEMANNIAN MANIFOLDS

MORIO OBATA

Introduction

Let (M, g), or simply M, be a Riemannian n-manifold with Riemannian
metric g throughout this paper manifolds are always assumed to be connected
and C°°. For any C°°-function p the Riemannian metric g* = e2pg is said to be
conformal or conformally related to g, and for constant p it is said to be
homothetic to g.

Let /ι be a C°°-mapping of (M,g) into another Riemannian manifold
(M*,g*). If the Riemannian metric h*g* induced on M by h is conformal
(homothetic) to the original metric g, then h is called a conformal {homothetic)
mapping of (M, g) into (M*, g*). (Under a conformal mapping the angle
between two vectors is preserved.) h remains to be conformal under any
conformal changes of metrics on M and M*. If h is a diίϊeomorphism, then h
is called a conformal diffeomorphism or briefly a conformorphism, and (M, g)
is said to be conformally diffeomorphic or briefly conformorphic to (Λf, g*)
through h. If /ι is a conformorphism of (M, g) onto itself, then /z is called a
conformal transformation of (M, g).

For a group G of conformal transformations of (M, g), if there exists a
conformally related metric g* = e2/)g with respect to which G is a group of
isometries, then G is said to be inessential, otherwise essential.

Let C(M, g), or simply C(M), be the group of the conformal transformations
of (M, g), and I(M, g), or simply I(M), the group of the isometries of (M, g)
they both are known to be Lie groups with respect to the compact-open
topology. It is known [4] that any compact subgroup of C(M) is inessential.
Therefore a maximal compact subgroup of C(M) may be considered as a
subgroup of I(M) by a suitable conformal change of metric. In particular, if
M is compact, so is I(M). Hence there is a conformally related Riemannian
metric g* such that the group I(M, g*) is a maximal compact subgroup of
C(M, g) = C(M, g*). It follows that on a compact Riemannian manifold M,
C(M) is essential if and only if it is not compact.

In this paper, we are mainly concerned with a 1-parameter group of
conformal transformations of a Riemannian manifold M, and so we may
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assume that the connected component C0(M) of C(M) is essential. As was
mentioned above, in case M is compact, this assumption is equivalent to that
C0(M) is not compact. However for a non-compact M, the condition for C0(M)
to be essential is not known.

Let ft be a 1-parameter group of conformal transformations of M. The
vector field on M induced by ft is called a conformal vector field, and is
denoted by u. If ft is essential, then u is said to be essential. It is known [16]
that a vector field u is conformal if and only if

&u8ji = Vfr + FiUj = 2φgjt

for some function φ, where J?u denoted the Lie derivation with respect to u.
u is homothetic or isometric according as φ is constant or identically zero.
Since we have nφ = F\ul, we call φ the divergence of u. A fixed point of ft, or
a zero of the vector field u, is called a fixed point or a singular point of w. As
we shall see in § 2, the value of the divergence of a vector field u at a singular
point, if exists, is unchanged by any conformal change of metric and is
therefore not zero only when u is an essential conformal vector field.

If u is induced by a global 1-parameter group ft, — oo < t < oo, of global
transformations of M, u is said to be complete. On a compact manifold
M, every vector field is complete.

The main purpose of the present paper is to prove the following theorem:
// a Riemannian n-manifold, n > 2, admits a complete conformal vector

field u with singular points at each of which its divergence does not vanish,
then the manifold is conformorphic to either a Euclidean n-sphere Sn or a
Euclidean space En (or a punctured Euclidean sphere Sn — {/?«>}). In the latter
case the vector field u is homothetic with respect to the Euclidean metric
conformally related to the original Riemannian metric.

It should be remarked that in a Euclidean space any global conformal
transformation is automatically homothetic and therefore is an affine trans-
formation preserving angles. Thus the latter case of the above theorem is
reduced to a study of those affine transformations mentioned above, and
therefore is not specially important for our general purpose of studying
conformal transformations. Furthermore it is well-known that a homothetic
transformation on a compact Riemannian manifold must be isometric.

Now we can state a well-known conjecture as follows:
Conjecture I. A compact Riemannian n-manifold, n > 2, admitting an

essential conformal vector field is conformorphic to a sphere.
Our result is a step to this conjecture without assuming the compactness of

the manifold. Indeed the assumption in the theorem is satisfied only by an
essential conformal vector field (§ 2). On a sphere or rather on a Mobius space
the vector field under consideration in our theorem is conformally equivalent
to the one which leaves the origin and the point at infinity fixed. A conformal
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vector field corresponding to the one which does not leave fixed the point at
infinity in the Mobius space is not considered in our theorem.

A. Avez [1] announced that Conjecture I was true by using a lemma, given
in the first paper of [1], on the behavior of singular points of an essential
conformal vector field. Unfortunately this lemma is not true [see MR 31 (1966),
# 1635], and a counter example will be naturally shown by some discussions
to be given in §3. However the method of Avez employed in the second
paper of [1] can be applied to prove our theorem here, and our proof is
simpler and more direct than his given in [1] although both proofs have
similar basic ideas.

It is remarked that the completeness of a Riemannian metric is not of
conformal nature, and is not assumed in our theorem. However it is true that on
any manifold there exists a complete metric conformal to a given metric [8].

Another result concerning Conjecture I is a theorem of Ishihara & Tashiro
[5], [13] that the conjecture is true if the conformal vector field under
consideration is a gradient field; their proof is based on an interesting
geometrical consideration of the hypersurfaces defined by the gradient field.
However, the assumption is not of conformal nature in the sense that a gradient
field does not remain to be a gradient field under a conformal change of metric
unless the change is homothetic.

The following is another well-known conjecture:
Conjecture II. // a compact Riemannian n-manifold, n>2, with constant

scalar curvature admits a nonisometric conformal vector field, then it is
isometric to a Euclidean n-sphere Sn.

If Conjecture II is true, so is Conjecture I by means of a theorem of
Yamabe [15] that any Riemannian metric on a compact n-manifold, n > 2,
is conformally related to one with constant scalar curvature. However, the
converse implication is not known to be true in general, even though it is true
when the conformal vector field is a gradient field.

As for Conjecture II there are published many results, most of which reduce
the conjecture with an extra condition to the case of a gradient conformal
vector field; some remarks on this will be given in the last section, § 5.

In § 1 notation and terminology are given for later use. § 2 is devoted to
the establishment of the main theorem and its related results. In § 3 the
behavior of singular points of essential vector fields on a Euclidean sphere will
be considered. It will be seen that such vector fields fall into two classes, one
having exactly two singular points with non-vanishing divergence and one
having exactly one singular point with vanishing divergence; such a
phenomenon must be a model of Conjectures I and II. In § 4 several sufficient
conditions will be given for a vector field to satisfy the assumption of our main
theorem. § 5 will consist of remarks on the above two conjectures.

The author would like to thank Professors S. L. Gulden, C. C. Hsiung,
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S. A. Khabbaz and G. A. Stengle for many profitable conversations regarding

subjects treated here.

1. Preliminaries

Let u be a conformal vector field on a Riemannian rc-manifold (M, g), and
j£?tt denote the Lie derivation with respect to u. Then we have

(1.1) &ugji = FjUt + PiUj = 2φgJt ,

φ being a scalar. Since we have

(1.2) nφ = Fiu
ί,

we call φ the divergence of w. Denoting the curvature tensor, Ricci tensor and
the scalar curvature of the manifold M respectively by Kkji

h, Kμ = Khji

h and
K — Kjigji, it is known (see, for example, [16]) that (1.1) implies

(1.3) Fftu* = -u*Kkjί

h + φfr* + φtδjh - φh

gjί

(1.4) (n - 2)Fjφi = ukVkLoi + LkiFjU* + LJkFiUk

where we put φό = Fjφ, φh — ghίφi and

d 5) L)l=-Kjl+ ^^Kgji-

Thus, when dim M — n > 2, u exists if and only if the following system of
partial differential equations for (n + I)2 unknowns φ, φp uh, uf admits a
solution (φ, φi9 uh, Uih):

(1.6)

#Z —
Lkiuf

Hence by virtue of the theorem of the unique existence in the theory of
differential equations, a conformal vector field u is uniquely determined by the
values of φ, Ftφ, uh, FtUh at a point of M.

On M, the WeyΓs conformal curvature tensor field W(= Wkjί

h) is defined by
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(1.7) "

and the tensor field C(=Ckji) by

ft — 2

It is well-known that M is conformally flat, i.e., locally conformorphic to
a Euclidean space, if and only if W = 0 for n > 3, and C = 0 for n — 3. It
is also known that

(1.9) &uWkji

h = 0 , J?uCkji - WkJt

hφh .

In case W = 0, which is automatically true for n = 3, we have

(1.10) ^ « C Λ i < = 0 .

Let T be a tensor field of type (r, j) on M, and |Γ | denote the length of T
so that

Π l l " ) I 7 Ί 2 — Q . . . P oh** . . . QJsbsTίi~ irTai'~ar

Since

(1.12) J^^*= - W ,

we then have

(1.13) J2ftt|Γ|2 = 2(r - j)^ |Γ | a + 2<ifwT, T> ,

where <(, > denotes the inner product defined by the Riemannian metric g. If,
in particular, T is invariant by u, i.e., £?UT = 0, then we have

(1.14) &u\T\ = (r-s)φ\T\.

If T is further of type (r, r), then | Γ | is invariant by u, i.e.,

(1.15) J? t t | Γ | = O.

Now on M let w be a complete vector field, i.e., a vector field generating a
global 1-parameter group ft, — oo < t < oo, of diffeomorphisms of M onto
itself. Assume that w has a singular point /?0, i.e., up = 0. At a point p at
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which up Φ 0 there exists a unique integral curve ft(p), — oo < t < oo, through
p such that fo(p) = /?; such a curve is called the orbit of u though p. The set

Wo = {peM\lim ft(p) = p0}
£->• — o o

is called the unstable manifold of u at p0, and the set

the stafo/e manifold of u at p0. Obviously the stable (unstable) manifold of u
is the unstable (stable) manifold of — u.

Lemma 1.1 [1], [2], [10]. On α Riemαnniαn manifold M let u be a
complete conformal vector field with a singular point pQ, T be a tensor field,
invariant by u, of type (r, s), and W denote the stable {or unstable) manifold
of u at p0. Then

(i) the length \T\ of T is constant on the closure W of W if r = s and

(ii) T vanishes identically on W if r < s.
Proof, (i) If r = s, then from (1.15) we have seu \ T\ = 0. It follows that

along each orbit ft(p), p e M, we have —!—L — 0, which implies that | Γ | is
dt

constant along each orbit. Since lim ft(p) = p0 for p e W and |Γ | is constant
ί-»oo

along ft(p), we have

By cotinuity \T\ is constant on W.
(ii) If T < s, then we consider the tensor field T* of type (s, s) defined by

s — r

Since T and u itself are invariant by ft, so is T*. It thus follows from (i) that
IT* I is constant on W, which contains p0. Since UPQ = 0, we must have | T* | = 0
on ΪV. Since up Φ 0 for p e W - {p0}, we have Tp = 0 for p e W - {p0}. By
continuity of T, T = 0 on W.

Lemma 1.2. Let u be a complete conformal vector field with a singular
point p0 on a Riemannian n-manifold M, n > 3. Then the WeyΓs conformal
curvature tensor field W and the tensor field C vanish identically on the
closures of the stable and unstable manifolds W* and Wo of u at pQ.

Proof. Since W is of type (1.3) and is invariant by any conformorphism

of M, by Lemma 1.1 it vanishes identically on ΪV0 and Wf. Then by (1.10)

C is invariant by the vector field u, and therefore by Lemma 1.1 again C,

being of type (0, 3), vanishes identically on ΪV0 and Wf.
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2. Main theorems

Lemma 2.1 [1]. Let u be a complete conformal vector field on a
Rίemannian n-manijold M, n > 2. // u has a singular point p0 at which its
divergence φ is positive (negative), then

(i) p0 is an isolated singular point, and
(ii) the unstable (stable) manifold WQ(Wf) of u at p0 is an open set diffeo-

morphic to a Euclidean n-space En.
Proof. We need only to consider the case φ (pQ) > 0, because the other

case φ(p0) < 0 can be reduced to this one by considering — u.
From (1.1), the matrix of the first partial derivatives of u at pQ in local

coordinates has an eigenvalue φ(pQ) > 0 with multiplicity n. Therefore (i) of
this lemma is almost obvious. However, in order to see a geometrical meaning
of the lemma for our special case, we shall give a proof as follows.

From the assumption φ(p0) > 0, there is an open geodesic ball B of radius
r such that φ(p) > a > 0 for all p e B for some positive constant a, and each
point of B is covered by one and only one geodesic issuing from p0 in B,
denoted by γ(s), where s is the arc length from pQ, and γ(0) = p0. Let v(s) be
the unit tangent vector of γ(s). Then ι>(s) = dγ/ds, and along γ(s) we bave

ds

in B, because of (1.1) together with

dujds = vΨjU1 , dv/ds = 0 .

Since up = 0, we have (up , v(0)> = 0. Hence along γ(s) in B, we have

(2.1) <u,v) > as,

which implies at once that up Φ 0 at p e B — {p0}. Thus p0 is an isolated
singular point, and (i) of our Lemma 2.1 is proved.

Let dB denote the boundary of B, which is the geodesic sphere of radius r
centered at p0. Then the vector v(r) is the unit outer normal to dB, and for
the unit outer normal vp of dB at p e dB we have, by (2.1),

(2.2) <up, vpy >ar>0 for p € dB .

Denoting by θp the angle between up and vv, there exists a positive constant

ΘQ such that

(2.3) 0<θp<θ0< π/2, cos θp > cos θo > 0 for p e dB ,

since dB is compact and u never vanishes on dB.
By the action of the 1-parameter group ft, — oo < t < oo, generated by u,
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we put Bt = ft(B), Bo = B. Then obviously we have dBt = ft(dB). It follows
from (2.2) that

(2.4) Bt(ZBt, for t < f .

It is remarked that Bt is an open ball containing p0 but not necessarily a
geodesic ball for t Φ 0.

Take any point p in dB and consider the orbit ft(p) through p. Then, by
(2.3), {f(p), t < 0} is contained in 5, and from (1.14) we have, along ft(p),
t< 0,

\u\ φ\u\
at

Therefore we have

«ί| < \up\eat for ί < 0 ,

where we have put ut — uftip), and it follows that

limlw l = 0 .
ί-»-oo

Since pQ is the only singular point in B we also have

lim ft(p) = pQ .

Thus dB and therefore B are contained in the unstable manifold Wo of u at p0.
Hence we have

(2.5) Wo = U B«

From (2.4), ^Fo is an open set diffeomorphic to a Euclidean rc-space E71.
Lemma 2.2. // « Riemannian n-manifold M, n > 2, admits a complete

conformal vector field u with singular points at each of which its divergence
does not vanish, then M is homeomorphic to either a Euclidean n-sphere Sn or
a Euclidean n-space En (or a punctured Euclidean n-sphere Sn — [pj]).

Proof. Let p0 be a singular point of u. We may assume that the divergence
φ is positive at p0. Then by Lemma 2.1 the unstable manifold Wo of u at p0

is diffeomorphic to En.
Case /. dW0 φ 0. We first show that 3W0 consists only of singular points

of u. We assume the contrary. Let q0 be a point in 3W0 at which u does not
vanish so that uq Φ 0, and choose a sequence {qn} in Wo converging to qQ so
that l i m ^ = q0. Then by (2.4) and (2.5) each qn lies on one and only one

dBtn. Taking the outer unit normal vn to 3Btn at qn, and choosing a
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subsequence if necessary, we may assume that lim vn exists, and denote it by
n — o o

v0 so that lim vn = v0. v0 is normal to the tangent vectors of dWQ if there exist
n-*oo

any, and by continuity we obtain, since lim uqn = uq ,
71—*°o

(2.6) lim (uqn, vn} = <uq. v0} .
71 — oo

On the other hand, we have

(2.7) <Xn>»»> = cosθn\uqj ,

where θn denotes the angle between uqn and vn. Since ft preserves the angle,
θn is the same as the angle between uPn and the unit outer normal vPn to dB
at pn, where pn = f_tn{qn) e dB. Thus we have, by (2.3),

(2.8) cos#n > cos#0 > 0 ,

and from (2.6), (2.7) and (2.8) it follows that

(2.9) <iι voy - lim cos 0 n | κ β J > cos Θ0\UQQ\ > 0 .
n-»oo

However, from (2.5) we must have

ft(dw0) c 3Wo, <wίo, vo> - o ,

contradicting (2.9). Hence qQ is a singular point, and dJV0 consists only of
singular points which are denoted by pλ, λ e A. From (2.4), we have lim uftip)

= 0 for p ζ. WQ — {po} It follows that lim ̂ (p) exists in 3W0 and is one of pλ.

Then by our assumption φ(pλ) ψ 0 and the stable manifold W* at pλ is non-
empty since p e Wλ. Therefore φ(pλ) < 0 and W* is diίϊeomorphic to En by
Lemma 2.1, Since lim ft(p) exists in 3W0 for any p € Wo — {p0}, we have

w^o- W = u (wonw*),

or WQ — {Po} is a union of open sets. Furthermore, if λ Φ λ', then the
intersection

In fact, if there is a point p in the intersection, we must have lim ft(p) = pλ

and lim ft(p) — pλ,, contradicting each other. Therefore Wo — {p0} is a disjoint
ί-00

union of open sets. Since for at least one λ, say λ — 1, Wof] Wf Φ 0 and
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WQ — {Po} is connected for n > 2, we have

w0 - {p0,pλ) = *Fonwf , wonw* = 0 for

Thus the set M' = {/?0} U (Wo Π »Ί*) U {pj is homeomorphic to an rc-sphere Sn.
Since Mf can be written as

Λf' = ^ 0 = FFoUFFx* ,

it is open and closed in M, which is connected. Therefore we have M = M',
and M is homeomorphic to Sn.

Case II. 3W0 = 0. In this case, Wo is open and closed in the connected
manifold M, and hence M = Wo, which is diίfeomorphic to En. q.e.d.

It is noted that Lemmas 2.1 and 2.2 are true even for n = 2, and therefore
are applicable to a holomorphic vector field on a Kahler manifold of complex
dimension 1.

Theorem 2.3. // a Riemannian n-manίjold M, n > 2, admits a complete
conformal vector field u with singular points at each of which its divergence
does not vanish, then M is conformorphic to either a Euclidean n-sphere Sn

or a Euclidean n-space En {or a punctured n-sphere Sn — {/?«,}).
Proof. Since by Lemma 1.2 the WeyΓs conformal curvature tensor field

W vanishes on the closure WQ of the unstable manifold Wo of the vector field
u at a singular point, W vanishes identically on M = ΪVQ by Lemma 2.2, and
therefore also the tensor field C. By Lemma 2.2, being simply connected and
conformally flat, M is conformorphic to an open set of a Euclidean sphere Sn,
[6]. If M is compact, it is conformorphic onto Sn. If M is not compact it is
conformorphic to a region of Sn, which is diίfeomorphic to En and therefore
conformorphic to Sn — {p^}, where p^ is a point on Sn.

Remark. On Sn a conformal transformation, which leaves a pair of
antipodal points {p09 pj\ invariant, can be expressed as a homothetic trans-
formation on Sn — {p^} with Euclidean metric; this will be seen in § 3 .
Therefore, if M is not compact, then the conformal vector field in Theorem
2.3 is homothetic with respect to a Euclidean metric which is conformal to the
original Riemannian metric.

The assumption of the existence of a singular point is not a restriction in
the following sence:

Theorem 2.4 [1], On a Riemannian manifold every essential conformal
vector field has a singular point.

Proof. Let u be a conformal vector field with no singular point on a
Riemannian manifold (M, g). Then the length \u\ of u is positive everywhere
on M and satisfies J?u\u\ — φ\u\, where 3?ug — 2φg. Thus

J?u(\u\~2g) = 0 ,
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and u is an infinitesimal isometry with respect to the Riemannian metric \u\~2g
conformally related to g. Hence u is not essential. q.e.d.

The values of the divergence φ of a conformal vector field u may vanish at
its singular points, and an inessential conformal vector field may have a
singular point. However, the divergence of an inessential conformal vector
field vanishes at each of its singular points. In fact, in general let g and g* =
e2pg be conformally related, and u a conformal vector field, and let φ and
φ* denote the divergences of u with respect to g and g* respectively. On
account of the fact that

where F* denotes the covariant differentiation with respect to g* and p5 — Vόρ
= Ffp, we then obtain

(2.10) φ* = F*u*/n = φ + pau* = φ + &up ,

from which it follows that at a singular point p0 of u we have

Φ(po) = Φ*(Po) ,

which means that the values of the divergence at singular points remain the
same under any conformal change of metric. If u is inessential, then u is
isometric and hence has vanishing divergence with respect to some conformally
related Riemannian metric. Hence we have

Theorem 2.5. On a Riemannian manifold the values of the divergence of
a conformal vector field at its singular points are unchanged by any conformal
change of metric. If a conformal vector field has non-vanishing divergence at
one of its singular points, then it is essential. An inessential conformal vector
field has vanishing divergence at each of its singular points.

Remark. There is, however, an essential conformal vector field with
vanishing divergence at each of its singular points; this will be seen in § 3.

3. Conformal vector fields on a sphere

In this section we shall consider a Euclidean sphere Sn of radius 1 as a
model of Riemannian manifolds admitting the essential conformal transfor-
mation group (this seems to be the only known example of such compact
Riemannian manifolds up to conformal changes of metric), and shall study
particularly the behaviors of the singular points of conformal vector fields and
their divergences at the singular points.

It is convenient to imbed Sn into the real projective (n + l)-space Pn+1 in
the following standard manner. Let En+ι be a Euclidean (n + l)-space with
a coordinate system (y°, y\ , yn), and Sn be given by the equation
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Let En+2 be a Euclidean (n + 2)-sρace with a coordinate system

(X°, X\ -',Xn, X00), and Pn+ι the projective (n + l)-space with a homo-

geneous coordinate system (X°, X\ , Xn,X°°). We give Pn+1 the Riemannian

metric with sectional curvature 1/2; this means that the natural projection π

of En+2 — {0} onto Pn+1 gives a local isometry of the sphere Sn+1 of radius

Λ/T centered at 0 in En+2 onto P n + 1 . The isometric embedding of Sn into Pn+1

is given by the equations

(3.2) X° = (l+ /)/V T, X* = yHl<i< n), X- = (1 - /)/ VT,

and the image of Sn in Pn+1 is the quadric β called the Mδbius space and
defined by

(3.3) (X1)2 + + (ZΌ2 - 2X°X°° = 0 .

In £ n + 2 , β is nothing but the intersection of the cone defined by (3.3) with
the sphere Sn+1

(3.4) (X0)2 + (Z 1 ) 2 + . . . + (X71)2 + (X00)2 = 2 ,

or the hyperplane defined by

(3.5) X° + X- = VT .

Then the group O(n + 2) of the linear transformations of En+2 leaving the
quadratic form

(3.6) (X1)2 + + (X71)2 - 2X°X~

invariant is a transformation group acting on Q with kernel {e, —e},e being
the identity, the effective group O(n + 2)/{e, —e} = CO(n) is called the
Mδbius group or the conformal transformation group of Q, and the Lie algebra
COL of CO(n), and hence of O(n + 2), consists of (n + 2 ) χ ( « + 2) matrices
of the form:

(3.7)

where A is a skew symmetric n x n matrix, a and b are column ^-vectors,
and a is a real number.

In particular, the Lie algebra GL of the isotropy group G at the point Po

= (1,0, , 0) consists of the matrices of the form

(3.8) 0 A a] , A -i- *A = 0 ,
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and the isotropy group G itself as a subgroup of O(n + 2) consists of the
matrices of the form:

(3.9) 10 T

0

where T <= 0(n), \a\ is the length of a, and λ is a nonzero real number.
On account of (3.7), a conformal vector field U at each point

P = (Z°, X1, , Z w , X00) on β has the following form:

(3.10) U = E/*| = t?P =

x=

Although C/ is defined in Pn+ι, it is tangent to Q at P because of

(3.11) *t/*Z - C/°Z°° - U°°X° = 0 .

C/ vanishes at P if and only if, for some real number μ,

(3.12) V = μP .

Thus we have
Lemma 3 1. P w a singular point of U if and only if P, considered as a

vector in En+2, is a real eigenvector of the matrix U corresponding to U.
Now assume that U has a singular point, which may be assumed, without

loss of generality, to be the point Po = (1, 0, , 0).
Then by (3.8), U takes the form

(3.13)

Let Ft, — oo < t < oo, be the 1-parameter group generated by U. Then we
have

Lemma 2.1. // a vector field U in (3.13) has a singular point P* Φ Po,
then there is an element σ eG such that σ~Ψtσ leaves Po and PM =
(0, 0, , 0, 1) invariant.
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Proof. Put P* = (b°, b\ , bn, 1), b° = — f] (6*)*. Then the element σ
2 i=l

given by

I b , b =

0 0

I being the identity matrix, has the property that σ(P0) = Po, σ(PoJ = P*.
Therefore σ e G and σ~Ψtσ leaves both Po and PM invariant. q.e.d.

In this case σ~Ψtσ gives the vector field of the form

To study the singular points of U in (3.13), we consider the following two
cases.

Case I: a Φ 0. By Lemma 3.1, the singular points of U correspond to
the real eigenvalues of ϋ, which are a and — a, both of multiplicity 1.
Therefore the vector field U has exactly two singular points, namely, Po and
some other point P*. By Lemma 3.2, we may assume, by transforming Ft by
an element of G, that Ft leaves Po and P.. invariant and U takes the form

( a 0

0 0 -a

Thus the orbit Ft(P) through a point P is expressed by

( eta 0 0 \/X°

0 exp tA 0 jl X
0 0 e~tal \ X"

ifPeQ- {Po, P 4 , then we have

(3.16) lim Ft(P) = Po , lim Ft(P) = PTO ,

provided that a > 0.
If U is restricted to the open subset Q — {Poo}, which is conformorphic to

En, then by taking the coordinate system (JC1, , xn) with xι = Z ' / Z 0 , [/ is
expressed as a vector field with coordinates

(3.17) u = (A-aI)X, where X = X/X° ,
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and the orbit jt{p) has the coordinates:

(3.18) Uip) =

325

which shows that ft is a l-parameter group of homothetic transformations on En.
Case II: a = 0. In this case, if there is a singular point P* different from

Po, then we may assume that U takes the form

and Ft is a 1-parameter group of isometries. Therefore an essential conformal
vector field U with a = 0 cannot have a singular point other than Po, and at
Po it takes the form:

/0 *a 0\/z°
(3.19) U = 10 Λ all X

\θ 0 0/\ X~!

By Lemma 3.1, U of the form (3.19) is essential if and only if the linear
equation

(3.20) AX + aX" = 0

has no solution for X°° Φ 0. Therefore A is a singular matrix, and we may
assume, without loss of generality, that A has the form

(3.21) A =
0 0

A" + ιA" = 0 .

Corresponding to this decomposition of A, we write a and X in the form:

(3.22)
V\ / 0 \

a = a! + a" =

la1 v

α*

0

\ o /

/ ° \
0

ak+1

\ an /

= X' + X" =

\ o / \^κ /

Since (3.20) has no solution, we have

(3.23) α' Φ 0 .
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Now let Ft(P) be the orbit through P(φP0), and (Y°(ί), Y'(β), Y"{t), Y"(ί))
represent the coordinates of Ft(P) corresponding to (3.21) and (3.22). Then
from (3.19) we obtain

JΛ" = wx' + wx" ,

= a'X" ,

= A"X" + a"X~ ,

dt

dY'
dt

dY"
~dT

"v°° = o ,
dt

with the initial condition (Y°(0), Y'(0), Y"(0), Y"(0)) = {X\ X', X", X").
Since P Φ Po, we may assume Y°°(ί) = I = X°°. Then we have

Y'(t) = a't + X' ,

Y\t) = i\Y'(t) + Y"{t) |2 > J|α'ί + X'\2 ,

and therefore

lim 0 , lim

Hence we conclude that

lim Ft(P) = Po ,
ί—±oo

which shows that the stable and unstable manifolds are both Q itself.
Summarizing the above results we arrive at
Proposition 3.3. Let U be an essential conformal vector field on Q.
(i) Then U has either exactly two distinct singular points or exactly one

singular point.
(ii) // U has two singular points, then they may be assumed to be Po and

P^ by a suitable conformal transformation of Q so that a is nonzero and the
orbit Ft(P) through a point P e Q — {Po, P^} has the property

lim Ft(P) = PQ , lim Ft(P) = P^ ,

or

lim Ft(P) = P . , lim Ft(P) = Po .
t-*-oo t-* + oo
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(iii) / / U has just one singular point Po, then a = 0, and the orbit Ft(P)
through P € Q has the property

lim Ft(P) = Po .
ί-»±oo

Next we consider Sn as a Riemannian manifold of sectional curvature 1.
It is well-known [16] that on Sn, n > 2, a conformal vector field u is uniquely
decomposed into the sum of an infinitesimal isometry v and a gradient vector
field, namely,

(3.24) u = v — grad^ ,

provided n > 2. The divergence φ satisfies

(3.25) FjFtφ + φgJt = 0 .

As was remarked in § 1, a conformal vector field u with V^ + VtUj = 2φgόi

is uniquely determined by the values of φ, Vtφ, uh and F\uh at a point, and at
a point p we make u correspond to an element of the Lie algebra COL of
0{n + 2) in the following manner:

I φ φt 0\

(3.26) u <-> I — wΛ 05? — VιUh φι I evaluated at p .

\ o - u , -φl

It is not difficult to verify [7] that this correspondence is an isomorphism
between the Lie algebra L of the conformal vector fields on Sn and COL.

If u is an essential conformal vector field on Sn, then it has a singular point
p0 by Theorem 2.4, and corresponds, by the correspondence (3.26), to the
element of GL of the form

( φ(Po) ΦiiPo)

0 -PiVh(p0)

0 0 -φ(pQ)/

where v = u + grad φ, and we assume gυ = δtj at p0. Since φ(p0) is the
divergence of u at /?0, the number α appearing in the matrix expression of a
conformal vector field U on β is considered as the value of the divergence of
U at p0.

By Proposition 3.1, if φ(p0) Φ 0, then the antipodal point p^ of the singular
point pQ of u may be assumed to be a singular point of u as well. Furthermore,
we then have Vόφ — 0 at both p0 and p^. If φ(pQ) > 0, then φ takes the
maximum and minimum at p0 and p^ with the same absolute value but opposite
singns [9], [10].
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If φ(p0) = 0, then p0 is the only singular point of u, and the gradient of φ
cannot vanish at p0.

Theorem 2.3 corresponds to the Case 1 in the above discussion. A result
including both Cases I and II will be given in a forthcoming paper.

4. Sufficient conditions

Ishihara and Tashiro [5], [13] proved that if a compact Riemannian n-
manifold M, n > 2, admits a gradient conformal vector field u, then M is
conformal to a Euclidean ^-sphere. However, since a gradient field may not
be a gradient field by a conformal change of metric. The assumption is not of
conformal nature and can be replaced by a conformal one. In fact, let ξ be the
1-form corresponding to u by means of the Riemannian metric g, and assume
that at each point of M there are a neighborhood V and a 1-form η on V
such that

(4.1) dξ = , Λ ξ .

This assumption is of conformal nature and obviously weaker than the above
one. Moreover, if u satisfies (4.1), then it automatically satisfies the assumption
of Theorem 2.3.

Proposition 4.1. Let u be a conformal vector field with singularities on a
Riemannian n-manifold M, n > 2, and ξ the 1-form corresponding to u by
means of the Riemannian metric. If there is a 1-form η in some neighborhood
of each singular point of u satisfying (4.1), then u has nonvanίshing divergence
at each singular point.

Proof. If u has a vanishing divergence at its singular point pQ, then u = 0,
φ = 0 at p0. From our assumption, in a neighborhood of p0 we have

(4.2) Ftuh = φgίh + ηtuh - ηhut ,

from which it follows that

(4.3) Ftuh = 0 at p0 .

Covariant differentiation of (4.2) gives

(4.4) FjFiUh = φjgih at pQ .

On the other hand, by (1.3) we have

(4.5) FjFiU,, = φjgίh + φigJh - φhgμ at p0 .

From (4.4) and (4.5) we then obtain, by contravecting with gίj,

φh = (2 - n)φh at p0 ,
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which implies φh = 0 at p0. Thus φ, φj9 uh, Vtu
h all vanish at the point p0,

and u becomes the zero vector field. Hence φ cannot vanish at its singular
points. q.e.d.

Since a gradient conformal vector field obviously satisfies the assumption of
Proposition 4.1, Theorem 2.3 generalizes the result of Ishihara and Tashiro.

Tanno and Weber [12] considered a conformal vector field u with dξ = 0;
such u also satisfies the assumption of Proposition 4.1, and hence a compact
manifold admitting such a vector fieled u is conformorphic to a sphere, and
u is a gradient vector field.

As a conformal vector field on the Mobius space, a vector field u with
dξ = 0 corresponds to a vector field of the form

without the rotation part, which is nothing but a gradient vector field satisfying
(3.25). Furthermore, on En a complete conformal vector field u with the
property in Proposition 4.1 is automatically a gradient field.

On account of the above facts we know that if u is a complete conformal
vector field on a Riemannian manifold, then the property (4.1) is equivalent
to the condition

(4.6) dξ = dpΛξ

for some scalar p on the whole M. In fact, if (4.1) is satisfied, then M is
conformorphic to a sphere or a punctured sphere, and in either case the
corresponding vector field is a gradient vector field. If h is the conformorphism
of M onto Sn with Λ*g* = e2pg, g* being the standard Riemannian metric on
Sn, then the function p can be used in (4.6). The verification of this is a
routine computation, since the corresponding vector field w* on Sn may be
assumed to be dξ* = 0, ξ* being the 1-form corresponding to w* on Sn.

5. Final miscellany

In this section we shall give several remarks on the two conjectures
mentioned in the introduction and some results related to them.

5.1. Conjecture I is an implication of Conjecture II by means of Yamabe's
theorem [15]. However, the converse is not known. In fact, under the
additional conditions i) M is compact and ii) the scalar curvature of M is 1,
the conformorphism established in Theorem 2.3 is not known to be an isometry
of M to Sn.

If the conformal vector field under consideration is a gradient vector field,
then the above diffeomorphism can be taken as an isometry [5], [13], [18].
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Since the existence of a gradient conformal vetor field on such M is a necessary
and sufficient condition for M to be isometric to a Euclidean sphere [5], [9],
[10], the Conjecture II follows from Conjecture I if and only if a Riemannian
manifold M, with constant scalar curvature and conformorphic to Sn, always
admits a gradient conformal vector field. Although the existence of such a
field is obvious on Sn with the standard Riemannian metric, the above equiva-
lence of Conjectures I and II is not so clear.

5.2. As for Conjecture II, there have been published many papers, most
of which, however, have given sufficient conditions for the existence of a
gradient conformal vector field under the assumption that M is a compact
Riemannian manifold of constant scalar curvature.

In general, if the scalar curvature is a constant k, then for any conformal
vector field u with divergence φ, we have [16]

(5.1) Δφ = nkφ,

where

(5.2) Δ = -gjΨ/ί .

This property seems to have been most used in the papers just mentioned. In
the following we shall assume that k = 1.

On the Euclidean sphere Sn of radius 1, the eigenfunction of Δ belonging
to the eigenvalue n is the divergence of a conformal vector field, indeed of
— grad^ = grad( — φ). However, this is not true in general. In fact, the
following is an example showing the existence of a compact Riemannian
manifold with scalar curvature 1, which admits eigenf unctions of Δ with
eigenvalue n but no nonisometric conformal vector field:

Example 5.1. Let V and W be compact Riemannian manifolds with scalar
curvature 1 of dimension nλ and n2 respectively. For example, V and W may
be spheres of radius 1 of dimension nλ and n2. Let V(a), 0 < a < 1, denote
the Riemannian manifold with the same underlying manifold V and the
Riemannian metric g/a, g being the metric of V. Then Via) has the scalar
curvature a. Similarly, we can define the manifold W(β), 0 < β < 1. Let
M(a) = Via) X W(l — a) be the Riemannian product. Then Mia) has the
scalar curvature 1.

Now let / be a non-constant function on V with ΔJ = λf, where Δγ is the
Laplacian on V and λ a real number > n — nx + n29 and put

/*(*,y) = /(*), xzV,yeW.

Then /* is a function on M = V x W. Let Δ(a) and Δλ{a) denote the
Laplacians on M(a) and Via) respectively. Then we have

Δiaψ = Δ,ia)f = aΔf = aλf = aλf* ,
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and therefore J (<*)/* = «/* for a = n/λ. But such a product manifold M(a)
cannot admit a non-isometric conformal vector field [11], [14]. This shows
that a condition is needed for a function / with Δf — nkf to be the gradient of a
conformal vector field on a Riemannian manifold with constant scalar
curvature k. However, only a sufficient condition is known for compact M in
the following theorem [9], [10]:

Let M be a compact Riemannian n-manifold, n>2. If on M a non-constant
junction φ satisfies Δφ = nkφ, k > 0, then

where the equality holds if and only if

+ kφgji = 0 ,

and hence if and only if M is isometric to a sphere of radius 1 / V k .
It should be noted that the scalar curvature of M in the above theorem is

not assumed to be constant. Therefore in Example 5.1 we must have

J[Kji - (n _ l)gji]fψdM(a) < 0
M(a)

5.3. In the set of all the compact Einstein n-spaces with scalar curvature
1, the possible minimum eigenvalue of the Laplacian is just n, and n is attained
only on Sn [9], [10]. However, in the set of all the compact Riemannian
π-manifolds with scalar curvature 1, there does not exist such a minimum
eigenvalue.

In fact, in Example 5.1 we consider the family of Riemannian manifolds
M(a), 0 < a < 1, with scalar curvature 1. Then for any eigenvalue λ of Δx on
V, there is an eigenvalue aλ of Δ(a) on M(a). As a —• 0, aλ tends to zero and
hence there is no minimum eigenvalue in the set {M(a)}.

5.4. With regard to Conjecture II, there have been published many results,
in some [3], [17], [19] of which the following types of assumptions have been
made:

( i ) <£UF = c = const.,

(ii) ^u^u F < 0 (or > 0 ) ,

for a conformal vector field u and a certain function F on a compact
Riemannian manifold M. However, each of the assumptions (i), (ii) is
equivalent to ££}

UF = 0 for any vector field u on any compact manifold M,
and has nothing to do with the conformal vector fields or the Riemannian
metric of M.
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In fact, for (i) since M is compact, u generates a global 1-parameter group

ft, — oo < t < oo, of diffeomorphisms of M. Along each orbit ft(p) through

a point p, we have dF/dt = c, or F(t) = ct + c0, which gives that limFO)

= ± oo unless c = 0. Hence S£UF = 0. Or we can say in the following way:

Since F takes a maximum at a point on M, Jδ^F = 0 at that point, and

therefore <£UF = 0.

For (ii), assume that there is a point pQ on M, at which 3?UF Φ 0. Then p0

is not a singular point of u, and we can consider the orbit ft(p0) of u through

pQ. Without loss of generality, we may assume £έ\F = c < 0 at p0, for

otherwise we use — u and the assumption 3?US£UF < 0. Then along the orbit

ft(Po), we have dΨ/dt2 < 0, and therefore for t > 0, dF/dt < c < 0 or F(f)

< ct + F(p0), which gives limF = — oo, a contradiction. Hence Jδf^F Ξ 0.
ί —oo

From (ii) we see immediately that it is impossible to assume (iii).
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