GEOMETRY OF MANIFOLDS WITH STRUCTURAL GROUP $\mathscr{U}(n) \times \mathscr{O}(s)$

D. E. BLAIR

K. Yano [12], [13] has introduced the notion of an f-structure on a C^{∞} manifold $M^{2 n+s}$, i.e., a tensor field f of type $(1,1)$ and rank $2 n$ satisfying $f^{3}+f=0$, the existence of which is equivalent to a reduction of the structural group of the tangent bundle to $\mathscr{U}(n) \times \mathcal{O}(s)$. Almost complex $(s=0)$ and almost contact ($s=1$) structures are well-known examples of f-structures. An f-structure with $s=2$ has arisen in the study of hypersurfaces in almost contact spaces [3]; this structure has been studied further by S. I. Goldberg and K. Yano [4].

The purpose of the present paper is to introduce for manifolds with an f structure the analogue of the Kaehler structure in the almost complex case and of the quasi-Sasakian structure [2] in the almost contact case, and to begin the study of the geometry of manifolds with such a structure. In § 1 we introduce the Kaehler anologue and its geometry and in $\S 2$ we study f-sectional curvature. $\S 3$ discusses principal toroidal bundles and $\S 4$ generalizes the Hopffibration to give a canonical example of a manifold with an f-structure playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry.

1. Let $M^{2 n+s}$ be a manifold with an f-structure of rank $2 n$. If there exists on $M^{2 n+s}$ vector fields $\xi_{x}, x=1, \cdots, s$ such that if η_{x} are dual 1-forms, then
(*)
(*)

$$
\begin{aligned}
\eta_{x}\left(\xi_{y}\right) & =\delta_{x y} \\
f \xi_{x} & =0, \quad \eta_{x} \circ f=0 \\
f^{2} & =-I+\sum \xi_{x} \otimes \eta_{x}
\end{aligned}
$$

we say that the f-structure has complemented frames. If $M^{2 n+s}$ has an f-structure with complemented frames, then there exists on $M^{2 n+s}$ a Riemannian metric g such that

$$
g(X, Y)=g(f X, f Y)+\sum \eta_{x}(X) \eta_{x}(Y)
$$

where X, Y are vector fields on $M^{2 n+s}$ [13], and we say $M^{2 n+s}$ has a metric fstructure. Define the fundamental 2 -form F by

$$
F(X, Y)=g(X, f Y)
$$

Further we say an f-structure is normal if it has complemented frames and

$$
[f, f]+\sum \xi_{x} \otimes d \eta_{x}=0
$$

where $[f, f]$ is the Nijenhuis torsion of f [9]. Finally a metric f-structure which is normal and has closed fundamental 2 -form will be called a \mathscr{K}-structure and $M^{2 n+s}$ a \mathscr{K}-manifold,

It should be noted that since $\eta_{1} \wedge \cdots \wedge \eta_{s} \wedge F^{n} \neq 0$, a \mathscr{K}-manifold is orientable.

Two cases will be of special interest.

1) Let $M^{2 n+s}$ be a Riemannian manifold with global linearly independent 1 -forms $\eta_{1}, \cdots, \eta_{s}$ such that $d \eta_{1}=\cdots=d \eta_{s}$ and

$$
\eta_{1} \wedge \cdots \wedge \eta_{s} \wedge\left(d \eta_{x}\right)^{n} \neq 0
$$

Let $\mathscr{L}(m)=\left\{X \in M_{m}^{2 n+s}, m \in M^{2 n+s} \mid \eta_{x}(X)=0, x=1, \cdots, s\right\}$; then \mathscr{L} determines a distribution which together with its complement reduces the structural group to $\mathcal{O}(2 n) \times \mathcal{O}(s)$. Now if ξ_{1}, \cdots, ξ_{s} are vector fields dual to $\eta_{1}, \cdots, \eta_{s}$ and $X_{1}, \cdots, X_{2 n}$ linearly independent vector fields in \mathscr{L}, then

$$
\begin{aligned}
& \left(\eta_{1} \wedge \cdots \wedge \eta_{s} \wedge\left(d \eta_{x}\right)^{n}\right)\left(\xi_{1}, \cdots, \xi_{s}, X_{1}, \cdots, X_{2 n}\right) \\
= & \left(d \eta_{x}\right)^{n}\left(X_{1}, \cdots, X_{2 n}\right) \neq 0
\end{aligned}
$$

giving \mathscr{L} a symplectic structure. Thus the structural group can be reduced to $\mathscr{U}(n) \times \mathcal{O}(s)$ and $M^{2 n+s}$ has a metric f-structure with complemented frames η_{1}, \cdots, η_{s} and fundamental 2 -form $F=d \eta_{x}$. If this structure is a \mathscr{K}-structure, we will call it an \mathscr{S}-structure.
2) Let $M^{2 n+s}$ be a manifold with a \mathscr{K}-structure with $\eta_{1}, \cdots, \eta_{s}$ denoting the complemented frames. If $d \eta_{x}=0, x=1, \cdots, s$, we call it a \mathscr{C}-structure.

Theorem 1.1. On a \mathscr{K}-manifold the vector fields ξ_{1}, \cdots, ξ_{s} are Killing.
Proof. Denoting Lie differentiation by \mathscr{L} we

$$
\begin{aligned}
\left(\mathscr{L}_{\xi_{x}} F\right)(X, Y) & =\xi_{x} F(X, Y)-F\left(\left[\xi_{x}, X\right], Y\right)-F\left(X,\left[\xi_{x}, Y\right]\right) \\
& =\xi_{x} g(X, f Y)-g\left(\left[\xi_{x}, X\right], f Y\right)-g\left(X,\left[\xi_{x}, f Y\right]\right) \\
& =\left(\mathscr{L}_{\xi_{x}} g\right)(X, f Y)
\end{aligned}
$$

where we have used the fact that $\mathscr{L}_{\xi x} f=0$ (see [9]). But $\mathscr{L}_{\xi x} F=d i_{\xi x} F+$ $i_{\xi x} d F=0$ since $\left(i_{\xi x} F\right) X=F\left(\xi_{x}, X\right)=0$. On the other hand,

$$
\begin{aligned}
\left(\mathscr{L}_{\xi_{x}} g\right)\left(X, \eta_{y}(Y) \xi_{y}\right)= & \xi_{x}\left(\eta_{y}(Y) \eta_{y}(X)\right)-\eta_{y}(Y) \eta_{y}\left(\left[\xi_{x}, X\right]\right) \\
& -\eta_{y}(Y) g\left(X,\left[\xi_{x}, \xi_{y}\right]\right)-\xi_{x}\left(\eta_{y}(Y)\right) \eta_{y}(X) \\
= & \eta_{y}(Y) \xi_{x} \eta_{y}(X)-\eta_{y}(Y) \eta_{y}\left(\left[\xi_{x}, X\right]\right) \\
& -\eta_{y}(Y) g\left(X,\left[\xi_{x}, \xi_{y}\right]\right)=0,
\end{aligned}
$$

since $\mathscr{L}_{\xi x} \eta_{y}=0$ and $\mathscr{L}_{\xi_{x} \xi_{y}}=0$ (see [9]). Therefore

$$
\left(\mathscr{L}_{\xi x} g\right)\left(X, f Y+\sum \eta_{y}(Y) \xi_{y}\right)=0
$$

but $f+\sum \xi_{y} \otimes \eta_{y}$ is non-singular, hence $\mathscr{L}_{\epsilon x} g=0$.
Lemma 1.2. On a \mathscr{K}-manifold $d \eta_{x}(X, Y)=-2\left(\nabla_{Y} \eta_{x}\right)(X)$ where ∇ denotes covariant differentiation with respect to the Riemannian connexion. In the case of an \mathscr{S}-structure

$$
\nabla_{Y} \xi_{x}=-\frac{1}{2} f Y
$$

and in the case of $a \mathscr{C}$-structure

$$
\nabla_{Y} \xi_{x}=0
$$

Proof. $\quad d \eta_{x}(X, Y)=\left(\nabla_{X} \eta_{x}\right)(Y)-\left(\nabla_{Y} \eta_{x}\right)(X)=-2\left(\nabla_{Y} \eta_{x}\right)(X)$ since η_{x} is Killing. In the case of an \mathscr{S}-structure we have $F=d \eta_{x}$ and hence $g(X, f Y)=$ $-2 g\left(X, \nabla_{Y} \xi_{x}\right)$, whereas in the case of a \mathscr{C}-structure $0=d \eta_{x}(X, Y)=$ $-2 g\left(X, \nabla_{Y} \xi_{x}\right)$.

We now discuss the meaning of $\nabla_{X} F$ for \mathscr{K}-structures.
Proposition 1.3. On a \mathscr{K}-manifold

$$
\left(\nabla_{X} F\right)(Y, Z)=\frac{1}{2} \sum\left(\eta_{x}(Y) d \eta_{x}(f Z, X)+\eta_{x}(Z) d \eta_{x}(X, f Y)\right)
$$

The proof is a very lengthy computation but similar to that given by Sasaki and Hatakeyama [10] for a Sasakian manifold.

Proposition 1.4. On an \mathscr{S}-manifold

$$
\begin{aligned}
\left(\nabla_{X} F\right)(Y, Z)= & \frac{1}{2} \sum\left(\eta_{x}(Y) g(X, Z)-\eta_{x}(Z) g(X, Y)\right) \\
& -\frac{1}{2} \sum_{x, y} \eta_{y}(X)\left(\eta_{x}(Y) \eta_{y}(Z)-\eta_{x}(Z) \eta_{y}(Y)\right)
\end{aligned}
$$

Proof. In this case $F=d \eta_{x}, x=1, \cdots, s$, hence Proposition 1.3 becomes

$$
\begin{aligned}
\left(\nabla_{X} F\right)(Y, Z)= & \frac{1}{2} \sum\left(\eta_{x}(Y) g(f Z, f X)-\eta_{x}(Z) g(f X, f Y)\right) \\
= & \frac{1}{2} \sum_{x}\left(\eta_{x}(Y) g(X, Z)-\eta_{x}(Y) \sum_{y} \eta_{y}(X) \eta_{y}(Z)\right) \\
& -\frac{1}{2} \sum_{x}\left(\eta_{x}(Z) g(X, Y)-\eta_{x}(Z) \sum_{y} \eta_{y}(X) \eta_{y}(Y)\right),
\end{aligned}
$$

which except for arrangement of terms is the desired formula.
Theorem 1.5. $A \mathscr{K}$-structure is a \mathscr{C}-structure if and only if $\nabla F=0$.
Proof. $\quad \nabla F=0$ implies $[f, f]=0$ and hence by normality $\sum d \eta_{x}(X, Y) \xi_{x}$ $=0$, but ξ_{1}, \cdots, ξ_{s} are linearly independent therefore $d \eta_{x}=0, x=1, \cdots, s$ giving us a \mathscr{C}-structure. Conversely if $d \eta_{x}=0, x=1, \cdots, s$, then by Proposition 1.3 it is clear that $\nabla F=0$.

Let \mathscr{L} denote the distribution determined by $-f^{2}$ and \mathscr{M} the complement
distribution; \mathscr{M} is determined by $f^{2}+I$ and spanned by ξ_{1}, \cdots, ξ_{s}. Let $p=$ $2 f^{2}+I$ be the difference of the projection maps $f^{2}+I$ and $-f^{2}$.

Theorem 1.6. $A \mathscr{C}$-manifold $M^{2 n+s}$ is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold $M_{1}^{2 n}$ and an Abelian Lie group M_{2}^{s}.

Proof. $\quad \nabla_{X} f=0$ implies $\nabla_{X} f^{2}=0$ and hence $\nabla_{X} p=0$ which is the condition for $M^{2 n+s}$ to be locally decomposable [14, p. 221] and in turn locally the product of Riemannian manifolds $M_{1}^{2 n}$ and M_{2}^{s}. Now restricting f, g to $M_{1}^{2 n}$ and again denoting them by f, g we have $f^{2}=-I$ and $g(f X, f Y)=g(X, Y)$. Further since $\nabla_{X} f=0$ we have $[f, f]=0$, and from $d F=0$ on $M^{2 n+s}$ we have on $M_{1}^{2 n}$, $d F=0, F^{n} \neq 0$ where F also denotes the fundamental 2-form on $M_{1}^{2 n}$. Thus $M_{1}^{2 n}$ is Kaehlerian.

To show that M_{2}^{s} is an Abelian Lie group we show that $M^{2 n+s}$ is locally the product of $M_{1}^{2 n}$ and s 1-dimensional manifolds. The integrability condition for such a structure is $h=0$ [11] where in our case

$$
h=\frac{1}{2} \sum\left(\xi_{x} \otimes \eta_{x}\right)\left[\xi_{x} \otimes \eta_{x}, \xi_{x} \otimes \eta_{x}\right]-\frac{1}{2} f^{2}\left[f^{2}, f^{2}\right] .
$$

Since $\left[f^{2}, f^{2}\right]=0$, from $\nabla_{X} f^{2}=0$ we have

$$
\begin{aligned}
h(X, Y)=\frac{1}{2} \sum & \eta_{x}\left(\eta_{x}([X, Y]) \xi_{x}+\left[\eta_{x}(X) \xi_{x}, \eta_{x}(Y) \xi_{x}\right]\right. \\
& \left.\quad-\eta_{x}\left(\left[\eta_{x}(X) \xi_{x}, Y\right]\right) \xi_{x}-\eta_{x}\left(\left[X, \eta_{x}(Y) \xi_{x}\right]\right) \xi_{x}\right) \xi_{x} .
\end{aligned}
$$

Now if $X, Y \in \mathscr{L}$, then $[X, Y] \in \mathscr{L}$ since the distribution \mathscr{L} determined by $-f^{2}$ is integrable, and it is easy to see that $h(X, Y)=0$. If $X, Y \in \mathscr{M}$ it suffices to take $X=\xi_{y}, Y=\xi_{z}$ since ξ_{1}, \cdots, ξ_{s} can be taken as part of a basis, but $\left[\xi_{y}, \xi_{z}\right]=0$ and $h\left(\xi_{y}, \xi_{z}\right)=0$ follow easily. Finally if $X=\xi_{y}$ and $Y \in \mathscr{L}$, we have

$$
h\left(\xi_{y}, Y\right)=\frac{1}{2} \sum_{x}\left(\eta_{x}\left(\left[\xi_{y}, Y\right]\right) \xi_{x}-\eta_{x}\left(\eta_{x}\left(\xi_{y}\right)\left[\xi_{x}, Y\right]\right) \xi_{x}\right),
$$

but from the coboundary formula $d \eta_{x}(X, Y)=X \eta_{x}(Y)-Y \eta_{x}(X)-\eta([X, Y])$ we have $\eta_{x}\left(\left[\xi_{y}, Y\right]\right)=0$; hence $h\left(\xi_{y}, Y\right)=0$.

Theorems $1.5,1.6$ should be compared with the corresponding results for for cosymplectic manifolds ($s=1$) [2].

We close this section with some results on the curvature of \mathscr{K}-manifolds.
Theorem 1.7. In both the \mathscr{S}-structure and \mathscr{C}-structure cases the distribution \mathscr{M} is flat, i.e., all sectional curvatures $K(X, Y)$ for sections spanned by $X, Y \in \mathscr{M}$ vanish. In the \mathscr{S}-structure case sectional curvatures $K(X, Y)$ with $X \in \mathscr{L}, Y=\xi_{x}$ have value $1 / 4$. In the \mathscr{C}-structure case sectional curvatures with $X \in \mathscr{L}, Y \in \mathscr{M}$ vanish.

Proof. In the \mathscr{S}-structure case using Lemma 1.2 and $\mathscr{L}_{\xi_{x}} f=0$ we have

$$
\begin{aligned}
R_{\xi_{x} x} \xi_{y} & =\nabla_{\left[\xi_{x}, X\right]} \xi_{y}+\nabla_{X} \nabla_{\xi_{x}} \xi_{y}-\nabla_{\xi_{x}} \nabla_{X} \xi_{y} \\
& =-\frac{1}{2} f\left[\xi_{x}, X\right]+\frac{1}{2} \nabla_{\xi_{x}} f X \\
& =-\frac{1}{2} f\left[\xi_{x}, X\right]+\frac{1}{2} \nabla_{f X} \xi_{x}+\frac{1}{2}\left[\xi_{x}, f X\right] \\
& =-\frac{1}{4} f^{2} X=\left\{\begin{array}{l}
\frac{1}{4} X, X \in \mathscr{L}, \\
0, X \in \mathscr{M},
\end{array}\right.
\end{aligned}
$$

from which the results for this case follow. For the \mathscr{C}-structure case, $\nabla_{Y} \xi_{x}=0$ for every Y gives $R_{\xi_{x} x} \xi_{y}=0$ immediately.

Corollary 1.8. $A \mathscr{C}$-manifold $M^{2 n+s}, s \geq 2$, of constant curvature is locally flat.

Corollary 1.9. There are no \mathscr{S}-manifolds $M^{2 n+s}, s \geq 2$ of constant curvature of strictly positive curvature.

These results should be compared with those in the cases of $s=0, s=1$ (see e.g. [1], [2], [5]).
2. A plane section is called an f-section if it is determined by a vector $X \in \mathscr{L}(m), m \in M^{2 n+s}$ such that $\{X, f X\}$ is an orthonormal pair spanning the section. The sectional curvature $K(X, f X)$, denoted $H(X)$, is called an f sectional curvature.

Define a tensor P of type (0,4) as follows (cf. [8]):

$$
\begin{aligned}
P(X, Y ; Z, W)= & F(X, Z) g(Y, W)-F(X, W) g(Y, Z) \\
& -F(Y, Z) g(X, W)+F(Y, W) g(X, Z) .
\end{aligned}
$$

The following properties of P follow directly from the definition.
Lemma 2.1. a) $P(X, Y ; Z, W)=-P(Z, W ; X, Y)$. b) Let $\{X, Y\}, X$, $Y \in \mathscr{L}$, be an orthonormal pair, and set $g(X, f Y)=\cos \theta, 0 \leq \theta \leq \pi$. Then $P(X, Y ; X, f Y)=-\sin ^{2} \theta$.
Lemma 2.2. On an \mathscr{S}-manifold $M^{2 n+s}$,
a) $g\left(R_{X Y} Z, f W\right)+g\left(R_{X Y} f Z, W\right)=(s / 4) P(X, Y ; Z, W)+Q(X, Y ; Z, W)$, where

$$
\begin{aligned}
Q(X, Y ; Z, W)= & \frac{1}{4} g(W, f Y)\left(s \sum \eta_{x}(X) \eta_{x}(Z)-\sum_{x, y} \eta_{x}(Z) \eta_{y}(X)\right) \\
& -\frac{1}{4} g(W, f X)\left(s \sum \eta_{x}(Y) \eta_{x}(Z)-\sum_{x, y} \eta_{x}(Z) \eta_{y}(Y)\right) \\
& -\frac{1}{4} g(Z, f Y)\left(s \sum \eta_{x}(X) \eta_{x}(W)-\sum_{x, y} \eta_{x}(W) \eta_{y}(X)\right) \\
& +\frac{1}{4} g(Z, f X)\left(s \sum \eta_{x}(Y) \eta_{x}(W)-\sum_{x, y} \eta_{x}(W) \eta_{y}(Y)\right) .
\end{aligned}
$$

Also if $X, Y, Z, W \in \mathscr{L}$, then $Q(X, Y ; Z, W)=0$ and
b) $g\left(R_{f X f Y} f Z, f W\right)=g\left(R_{X Y} Z, W\right)$,
c) $g\left(R_{X f X} Y, f Y\right)=g\left(R_{X Y} X, Y\right)+g\left(R_{X f Y} X, f Y\right)+(s / 2) P(X, Y ; X, f Y)$,
d) $g\left(R_{f X Y} f X, Y\right)=g\left(R_{X f Y} X, f Y\right)$.

Proof. A direct computation shows that

$$
\left(\nabla_{[X, Y]} F+\nabla_{Y} \nabla_{X} F-\nabla_{X} \nabla_{Y} F\right)(Z, W)=-g\left(R_{X Y} Z, f W\right)-g\left(R_{X Y} f Z, W\right) .
$$

On the other hand using Proposition 1.4 and Lemma 1.2 to compute this we obtain a). Using a) twice and equations ($*$) we obtain b). Writing $g\left(R_{X f X} Y, f Y\right)$ $=-g\left(R_{X Y} f Y, X\right)-g\left(R_{X f Y} X, Y\right)$ c) follows from a) and Lemma 2.1. Finally applying a) twice and the definition of P we get d).

Lemma 2.3. On a \mathscr{C}-manifold a) $g\left(R_{X Y} Z, f W\right)+g\left(R_{X Y} f Z, W\right)=0$. Also if $X, Y, Z, W \in \mathscr{L}$, then b) $g\left(R_{f X f Y} f Z, f W\right)=g\left(R_{X Y} Z, W\right)$, c) $g\left(R_{X f X} Y, f Y\right)$ $\left.=g\left(R_{X Y} X, Y\right)+g\left(R_{X f Y} X, f Y\right), \mathrm{d}\right) g\left(R_{f X Y} f X, Y\right)=g\left(R_{X f Y} X, f Y\right)$.

Proof. The proof is similar to that of Lemma 2.2 but in the case of a) is much easier due to Theorem 1.5

Lemma 2.4. Let $B(X, Y)=g\left(R_{X Y} X, Y\right)$ and for $X \in \mathscr{L}, D(X)=B(X, f X)$. On an \mathscr{S}-manifold for $X, Y \in \mathscr{L}$ we have

$$
\begin{aligned}
B(X, Y)= & \frac{1}{32}[3 D(X+f Y)+3 D(X-f Y)-D(X+Y)-D(X-Y) \\
& -4 D(X)-4 D(Y)-6 s P(X, Y ; X, f X)]
\end{aligned}
$$

On a \mathscr{C}-manifold for $X, Y \in \mathscr{L}$ we have

$$
\begin{aligned}
B(X, Y)= & \frac{1}{32}[3 D(X+f Y)+3 D(X-f Y)-D(X+Y)-D(X-Y) \\
& -4 D(X)-4 D(Y)]
\end{aligned}
$$

Proof. A direct expansion gives

$$
\begin{aligned}
& \frac{1}{32}[3 D(X+f Y)+3 D(X-f Y)-D(X+Y)-D(X-Y) \\
& =\frac{1}{32}\left[6 g\left(R_{X Y} X, Y\right)+6 g\left(R_{f X, f Y} f X, f Y\right)+8 g\left(R_{X f X} Y, f Y\right)\right. \\
& \quad+12 g\left(\left(R_{X Y} f X, f Y\right)-2 g\left(R_{X f Y} X, f Y\right)-2 g\left(R_{f X Y} f X, Y\right)\right. \\
& \left.\quad+4 g\left(R_{X f Y} f X, Y\right)-6 s P(X, Y ; X, f Y)\right] .
\end{aligned}
$$

Applying Lemma 2.2 this becomes

$$
\begin{aligned}
\frac{1}{32}[& 6 g\left(R_{X Y} X, Y\right)+6 g\left(R_{X Y} X, Y\right)+8 g\left(R_{X Y} X, Y\right)+8 g\left(R_{X f Y} X, f Y\right) \\
& +4 s P(X, Y ; X, f Y)+12 g\left(R_{X Y} X, Y\right)+3 s P(X, Y ; X, f Y) \\
& -2 g\left(R_{X f Y} X, f Y\right)-2 g\left(R_{X f Y} X, f Y\right)-4 g\left(R_{X f Y} X, f Y\right) \\
& +s P(X, f Y ; X, Y)-6 s P(X, Y ; X, f Y)] \\
= & g\left(R_{X Y} X, Y\right) .
\end{aligned}
$$

The proof in the case of a \mathscr{C}-manifold is similar by using Lemma 2.3.
If now $\{X, Y\}$ is an orthonormal pair in \mathscr{L} and $g(X, f Y)=\cos \theta, 0 \leq \theta \leq \pi$, then $K(X, Y)=B(X, Y)$ and, by straightforward computation, $D(X)=$ $H(X), D(Y)=H(Y), D(X+f Y)=4(1+\cos \theta)^{2} H(X+f Y), D(X-f Y)=$ $4(1-\cos \theta)^{2} H(X-f Y), D(X+Y)=4 H(X+Y), D(X-Y)=4 H(X-Y)$. Using Lemma 2.1, Lemma 2.4 now becomes

Proposition 2.5. On an \mathscr{S}-manifold for an orthonormal pair $\{X, Y\}$ in \mathscr{L} we have

$$
\begin{aligned}
K(X, Y)=\frac{1}{8} & {\left[3(1+\cos \theta)^{2} H(X+f Y)+3(1-\cos \theta)^{2} H(X-f Y)\right.} \\
& \left.-H(X+Y)-H(X-Y)-H(X)-H(Y)+\frac{3 s}{2} \sin ^{2} \theta\right]
\end{aligned}
$$

In the case of $a \mathscr{C}$-manifold the formula is the same except that the last term is not present.

Theorem 2.6. The f-sectional curvatures determine the curvature of an \mathscr{S}_{-} manifold or a \mathscr{C}-manifold completely.

Proof. In addition to Theorem 1.7 some other curvature formulas are needed. It follows easily from Theorem 1.7 that in both cases $R_{\xi \xi^{\xi} y} X=0$ for all X. In the \mathscr{S}-manifold case, if $X \in \mathscr{L}$ is a unit vector then $g\left(R_{X \xi x} X, \xi_{y}\right)=$ $g\left(R_{\xi_{x} X} \xi_{y}, X\right)=1 / 4$ and hence $R_{X \xi x} X=(1 / 4) \sum \xi_{z}+Y, Y \in \mathscr{L}$; but

$$
\begin{aligned}
g\left(R_{X \xi_{x}} X, Y\right)= & -g\left(R_{X Y} f^{2} X, \xi_{x}\right) \\
= & g\left(R_{X Y} f X, f \xi_{x}\right)-\frac{s}{4} P\left(X, Y ; f X, \xi_{x}\right) \\
& -Q\left(X, Y ; f X, \xi_{x}\right)=0
\end{aligned}
$$

so that $R_{X \xi x} X=(1 / 4) \sum \xi_{z}$. In the \mathscr{C}-manifold case $R_{X \xi x} X$ is easily checked.
Now let $\{X, Y\}$ be orthonormal pair, and write $X=a Z+\sum \eta_{x}(X) \xi_{X}$, $Y=b W+\sum \eta_{x}(Y) \xi_{x}$ where $a^{2}+\sum \eta_{x}(X)^{2}=1, b^{2}+\sum \eta_{x}(Y)^{2}=1$ and Z, W are unit vectors in \mathscr{L}. Then after using the above curvature formulas the lengthy expansion of $K(X, Y)=g\left(R_{X Y} X, Y\right)$ yields

$$
\begin{aligned}
K(X, Y)= & \frac{b^{2}}{4}\left(\sum_{x, y} \eta_{x}(X) \eta_{y}(X)\right)+\frac{a^{2}}{4}\left(\sum_{x, y} \eta_{x}(Y) \eta_{y}(Y)\right) \\
& +\frac{1}{2}\left(\sum_{x, y} \eta_{x}(X) \eta_{y}(Y)\right)\left(\sum \eta_{z}(X) \eta_{z}(Y)\right) \\
& +\left(a^{2} b^{2}-\left(\sum \eta_{x}(X) \eta_{x}(Y)\right)^{2}\right) K(Z, W)
\end{aligned}
$$

in the \mathscr{S}-manifold case and

$$
\left.K(X, Y)=\left(a^{2} b^{2}-\left(\sum \eta_{x}(X) \eta_{x}(Y)\right)^{2}\right) K Z, W\right)
$$

in the \mathscr{C}-manifold case. $K(Z, W)$ is known however by Proposition 2.5 , and the proof is complete.
The above development should be compared to that in the Kaehler case [1] and the Sasakian case [8].

We now give a number of geometric results which are consequences of Proposition 2.5.

Theorem 2.7. The sectional curvatures $K(X, Y), X, Y \in \mathscr{L}$, on an \mathscr{S}-manifold of constant f-sectional curvature $c<s / 4$ satisfy

$$
c \leq K(X, Y) \leq \frac{1}{4}\left(c+\frac{3 s}{4}\right)
$$

with the lower limit attained for an f-section. If $c>s / 4$,

$$
\frac{1}{4}\left(c+\frac{3 s}{4}\right) \leq K(X, Y) \leq c
$$

with the upper limit attained for an f-section. If $c=s / 4, K(X, Y)=c$.
Proof. Proposition 2.5 gives

$$
\begin{aligned}
K(X, Y) & =\frac{1}{4}\left(c\left(1+3 \cos ^{2} \theta\right)+\frac{3 s}{4} \sin ^{2} \theta\right) \\
& =\frac{1}{4}\left(\left(c+\frac{3 s}{4}\right)+3\left(c-\frac{s}{4}\right) \cos ^{2} \theta\right) .
\end{aligned}
$$

One need only find the maximum and minimum of this with respect to θ and note that for an f-section $\theta=\pi$ to obtain the result.

Corollary 2.8. A Sasakian manifold $(s=1)$ with constant f-sectional curvature equal to $1 / 4$ has constant curvature.

Proof. By the theorem $s=1, c=1 / 4$ gives $K(X, Y)=1 / 4$ for $X, Y \in \mathscr{L}$. Now for any orthonormal pair $\{X, Y\}$ the proof of Theorem 2.6 yields

$$
K(X, Y)=\frac{1}{4} \eta_{1}(X)^{2}+\frac{1}{4} \eta_{1}(Y)^{2}+\left(1-\eta_{1}(X)^{2}-\eta_{1}(Y)^{2}\right) K(Z, W),
$$

$Z, W \in \mathscr{L}$, and hence $K(X, Y)=1 / 4$ since $K(Z, W)=1 / 4$,
Theorem 2.9. The sectional curvatures $K(X, Y), X, Y \in \mathscr{L}$, on a \mathscr{C}-manifold of constant f-sectional curvature c are (1/4)-pinched that is $c / 4 \leq K(X, Y)$ $\leq c$ for $c>0$ and $c \leq K(X, Y) \leq c / 4$ for $c<0$. For $c=0$, the manifold is locally flat (cf. Corollary 1.8).

Proof. By Proposition 2.5, $K(X, Y)=(c / 4)\left(1+3 \cos ^{2} \theta\right)$ from which the result follows.
3. In this section we start with $M^{2 n+s}$ as the bundle space of a principal
toroidal bundle over a Kaehler manifold $N^{2 n}$; in the case $s=1$ these are principal circle bundles (see e.g. [2], [7]).

Theorem 3.1. Let $M^{2 n+s}$ be the bundle space of a principal toroidal bundle over a Kaehler manifold $N^{2 n}$ and let $\gamma=\left(\eta_{1}, \cdots, \eta_{s}\right)$ be a Lie algebra valued connexion form on $M^{2 n+s}$ such that $d \eta_{x}=\pi^{*} \Omega, x=1, \cdots, s$, where π is the projection map and Ω the fundamental 2-form on $N^{2 n}$. Then $M^{2 n+s}$ is an \mathscr{S}_{-} manifold.

Proof. Let J be the almost complex structure tensor and G the Hermitian metric on $N^{2 n}$. Then define f and g on $M^{2 n+s}$ by

$$
\begin{aligned}
f X_{m} & =\tilde{\pi} J \pi_{*} X_{m}, \\
g(X, Y) & =G\left(\pi_{*} X, \pi_{*} Y\right)+\sum \eta_{x}(X) \eta_{x}(Y),
\end{aligned}
$$

where $\tilde{\pi}$ denotes the horizontal lift. Let ξ_{1}, \cdots, ξ_{s} be vector fields dual to η_{1}, \cdots, η_{s}, i.e., $\eta_{x}(X)=g\left(X, \xi_{x}\right)$. Then $\eta_{x}\left(\xi_{y}\right)=\delta_{x y}, f \xi_{x}=0, \eta_{x} \circ f=0$ are immediate. Now

$$
f^{2} X=\tilde{\pi} J \pi_{*} \tilde{\pi} J \pi_{*} X=\tilde{\pi} J^{2} \pi_{*} X=-X+\sum \eta_{x}(X) \xi_{x},
$$

from which $f^{3}+f=0$ and we see that $M^{2 n+s}$ has an f-structure with complemented frames. Further

$$
\begin{aligned}
g(f X, f Y) & =G\left(J \pi_{*} X, J \pi_{*} Y\right)+\sum \eta_{x}\left(\tilde{\pi} J \pi_{*} X\right) \eta_{x}\left(\tilde{\pi} J \pi_{*} Y\right) \\
& =G\left(\pi_{*} X, \pi_{*} Y\right)=g(X, Y)-\sum \eta_{x}(X) \eta_{x}(Y) .
\end{aligned}
$$

Now $F(X, Y)=g(X, f Y)=G\left(\pi_{*} X, J \pi_{*} Y\right)=\Omega\left(\pi_{*} X, \pi_{*} Y\right)$, i.e., $F=\pi^{*} \Omega=$ $d \eta_{x}$ from which we see that the fundamental 2-form F is closed and that $\eta_{1} \wedge \cdots \wedge \eta_{s} \wedge\left(d \eta_{x}\right)^{n} \neq 0$. Finally

$$
\begin{aligned}
{[f, f](X, Y)+\sum d \eta_{x}(X, Y) \xi_{x}=} & f^{2}[X, Y]+[f X, f Y]-f[f X, Y] \\
& -f[X, f Y]+\sum d \eta_{x}(X, Y) \xi_{x} \\
= & \tilde{\pi} J^{2} \pi_{*}[X, Y]+\left[\tilde{\pi} J \pi_{*} X, \tilde{\pi} J \pi_{*} Y\right]-\tilde{\pi} J \pi_{*}\left[\tilde{\pi} J \pi_{*} X, Y\right] \\
& -\tilde{\pi} J \pi_{*}\left[X, \tilde{\pi} J \pi_{*} Y\right]+\sum d \eta_{x}(X, Y) \xi_{x} \\
= & \tilde{\pi} J^{2}\left[\pi_{*} X, \pi_{*} Y\right]+\tilde{\pi}\left[J \pi_{*} X, J \pi_{*} Y\right]+\sum \eta_{x}\left(\left[\tilde{\pi} J \pi_{*} X, \tilde{\pi} J \pi_{*} Y\right]\right) \xi_{x} \\
& -\tilde{\pi} J\left[J \pi_{*} X, \pi_{*} Y\right]-\tilde{\pi} J\left[\pi_{*} X, J \pi_{*} Y\right]+\sum d \eta_{x}(X, Y) \xi_{x} \\
= & -\sum d \eta_{x}\left(\tilde{\pi} J \pi_{*} X, \tilde{\pi} J \pi_{*} Y\right) \xi_{x}+\sum d \eta_{x}(X, Y) \xi_{x} \\
= & \sum\left(-\Omega\left(J \pi_{*} X, J \pi_{*} Y\right)+\Omega\left(\pi_{*} X, \pi_{*} Y\right)\right) \xi_{x}=0,
\end{aligned}
$$

since $[J, J]=0$ and Ω is of bidegree $(1,1)$.
Now let U be a neighborhood on $N^{2 n}$ and suppose that G is given by $d s^{2}=$ $\sum\left(\theta^{A}\right)^{2}$, where the $\theta^{A \prime} s, A=1, \cdots, 2 n$ are 1 -forms on U. Suppose that the Riemannian connexion is given by 1 -forms θ_{B}^{A} on U so that the structural equations become

$$
\begin{aligned}
d \theta^{A} & =-\theta_{B}^{A} \wedge \theta^{B} \\
d \theta_{B}^{A} & =-\theta_{C}^{A} \wedge \theta_{B}^{C}+\Theta_{B}^{A}
\end{aligned}
$$

where $\Theta_{B}^{A}=\frac{1}{2} S_{A B C D} \theta^{C} \wedge \theta^{D}$ and $S_{A B C D}$ is the curvature tensor on $N^{2 n}$.
On U write the fundamental 2-form $\Omega=\frac{1}{2} \Omega_{A B} \theta^{A} \wedge \theta^{B}$; then we have $d \eta_{x}=$ $\pi^{*}\left(\frac{1}{2} \Omega_{A B} \theta^{A} \wedge \theta^{B}\right)$. Set $\varphi^{x}=\eta_{x}$ and $\varphi^{A}=\pi^{*} \theta^{A}$; then g is given by $d \sigma^{2}=\sum\left(\varphi^{\alpha}\right)^{2}$, $\alpha=1, \cdots, 2 n+s$. Using the techniques of Kobayashi [6] we can find the Riemannian connexion on $M^{2 n+s}$.

Proposition 3.2. $\varphi_{y}^{x}=0, \varphi_{x}^{A}=-\varphi_{A}^{x}=-\frac{1}{2} \Omega_{A B} \varphi^{B}$ and

$$
\varphi_{B}^{A}=\pi^{*} \theta_{B}^{A}-\frac{1}{2} \sum_{x} \Omega_{A B} \varphi^{x}
$$

define the Riemannian connexion of g on $M^{2 n+s}$.
Proof. Let V be an overlapping neighborhood on which $d s^{2}=\sum\left(\bar{\theta}^{4}\right)^{2}$. Then $\bar{\theta}^{A}=e_{B}^{A} \theta^{B}, e_{B}^{A} \in \mathscr{U}(n)$. A bar above other forms will denote their components defined with respect to V. Now

$$
\bar{\theta}_{B}^{A}=\sum_{C, D} e_{C}^{A} \theta_{D}^{C} e_{D}^{B}-\sum_{C}\left(d e_{C}^{A}\right) e_{C}^{B}
$$

Let $f_{\alpha}^{x}=f_{x}^{\alpha}=0, \alpha \neq x, f_{x}^{x}=1, f_{B}^{A}=e_{B}^{A}$; then computing we have

$$
\begin{aligned}
& \sum_{r, \delta} f_{r}^{x} \varphi_{\partial}^{\tau} f_{\bar{\partial}}^{y}-\sum_{r}\left(d f_{r}^{x}\right) f_{\tau}^{y}=0=\bar{\varphi}_{y}^{x}, \\
& \sum_{\gamma, \bar{o}} f_{r}^{A} \varphi_{\partial}^{\gamma} \hat{\delta}_{\bar{o}}^{x}-\sum_{\gamma}\left(d f_{\gamma}^{A}\right) f_{\gamma}^{x}=-\frac{1}{2} \sum_{B, C} e_{B}^{A} \Omega_{B C} \varphi^{C}=-\frac{1}{2} \sum_{B, C, D} e_{B}^{A} Q_{B C} e_{C}^{D} \bar{\varphi}^{D} \\
& =-\frac{1}{2} \bar{\Omega}_{A D} \bar{\varphi}^{D}=\bar{\varphi}_{x}^{A}, \\
& \sum_{r, \dot{\delta}} f_{r}^{A} \varphi_{\partial}^{2} \delta_{\bar{\delta}}^{B}-\sum_{\gamma}\left(d f_{r}^{A}\right) f_{r}^{B}=\pi^{*} \sum_{C, D} e_{C}^{A} \theta_{D}^{C} e_{D}^{B}-\frac{1}{2} \sum_{x, C, D} e_{C}^{A} \Omega_{C D} e_{D}^{B} \varphi^{x} \\
& -\pi^{*} \sum_{C}\left(d e_{C}^{A}\right) e_{C}^{B} \\
& =\pi^{*} \bar{\theta}_{B}^{A}-\frac{1}{2} \sum_{x} \bar{\Omega}_{A B} \bar{\varphi}^{x}=\bar{\varphi}_{B}^{A} .
\end{aligned}
$$

Hence the φ_{β}^{α} define a connexion on $M^{2 n+s}$. To see that it is the Riemannian connexion we compute its torsion.

$$
\begin{aligned}
d \varphi^{x}+\varphi_{r}^{x} & \wedge \varphi^{\tau}=\pi^{*}\left(\frac{1}{2} \Omega_{A B} \theta^{A} \wedge \theta^{B}\right)+\frac{1}{2} \Omega_{A B} \varphi^{B} \wedge \varphi^{A}=0 \\
d \varphi^{A}+\varphi_{r}^{A} \wedge \varphi^{\tau} & =\pi^{*} d \theta^{A}-\frac{1}{2} \sum_{x, B} \Omega_{A B} \varphi^{B} \wedge \varphi^{x}+\left(\pi^{*} \theta_{B}^{A}-\frac{1}{2} \sum_{x} \Omega_{A B} \varphi^{x}\right) \wedge \varphi^{B} \\
& =\pi^{*}\left(d \theta^{A}+\theta_{B}^{A} \wedge \theta^{B}\right)=0
\end{aligned}
$$

The curvature form Φ_{β}^{α} of this connexion is given by the second structural equation, $d \varphi_{\beta}^{\alpha}=-\varphi_{r}^{\alpha} \wedge \varphi_{\beta}^{\gamma}+\Phi_{\beta}^{\alpha}$. Computing Φ_{B}^{A} we have

$$
\begin{aligned}
\Phi_{B}^{A}= & d \varphi_{B}^{A}+\varphi_{a}^{A} \wedge \varphi_{B}^{\alpha} \\
= & -\pi^{*} \theta_{C}^{A} \wedge \theta_{B}^{C}+\pi^{*} \Theta_{B}^{A}-\frac{1}{2} \sum_{x}\left(\pi^{*} d \Omega_{A B}\right) \wedge \varphi^{x} \\
& -\frac{1}{2} \sum_{x} \Omega_{A B} d \varphi^{x}-\frac{s}{4} \Omega_{A C} \Omega_{B D} \varphi^{C} \wedge \varphi^{D} \\
& +\sum_{C}\left(\pi^{*} \theta_{C}^{A}-\frac{1}{2} \sum_{x} \Omega_{A C} \varphi^{x}\right) \wedge\left(\pi^{*} \theta_{B}^{C}-\frac{1}{2} \sum_{y} \Omega_{C B} \varphi^{y}\right) \\
= & \pi^{*} \Theta_{B}^{A}-\frac{1}{2} \sum_{x}\left(\pi^{*} d \Omega_{A B}\right) \wedge \varphi^{x}+\frac{s}{4} \Omega_{A B} \Omega_{C D} \varphi^{D} \wedge \varphi^{C} \\
& -\frac{s}{4} \Omega_{A B} \Omega_{B D} \varphi^{C} \wedge \varphi^{D}+\frac{1}{2} \sum_{x, C} \pi^{*}\left(\Omega_{A C} \theta_{B}^{C}+\Omega_{C B} \theta_{A}^{C}\right) \wedge \varphi^{x} \\
& +\frac{1}{4} \sum_{x, y, C} \Omega_{A C} \Omega_{C B} \varphi^{x} \wedge \varphi^{y} \\
= & \pi^{*} \Theta_{B}^{A}-\frac{s}{4}\left(\Omega_{A B} \Omega_{C D}+\Omega_{A C} \Omega_{B D}\right) \varphi^{C} \wedge \varphi^{D} \\
& +\frac{1}{4} \sum_{x, y, C} \Omega_{A C} \Omega_{C B} \varphi^{x} \wedge \varphi^{y},
\end{aligned}
$$

since $d \Omega_{A B}-\Omega_{A C} \theta_{B}^{C}-\Omega_{C B} \theta_{A}^{C}=0$, i.e., $N^{2 n}$ is Kaehlerian.
Now write $\Phi_{\beta}^{\alpha}=\frac{1}{2} R_{\alpha \beta r \delta} \varphi^{\gamma} \wedge \varphi^{\delta}$; then

$$
\begin{aligned}
\frac{1}{2} R_{A B_{\gamma} \delta} \varphi^{r} \wedge \varphi^{\delta}= & \left(\frac{1}{2} S_{A B C D}-\frac{s}{4}\left(\Omega_{A B} \Omega_{C D}+\Omega_{A C} \Omega_{B D}\right)\right) \varphi^{C} \wedge \varphi^{D} \\
& +\frac{1}{4} \sum_{x, y, C} \Omega_{A C} \Omega_{C B} \varphi^{x} \wedge \varphi^{y} .
\end{aligned}
$$

Skew-symmetrizing gives

$$
R_{A B C D}=S_{A B C D}-\frac{s}{4}\left(2 \Omega_{A B} \Omega_{C D}+\Omega_{A C} \Omega_{B D}-\Omega_{A D} \Omega_{B C}\right) .
$$

Suppose now that $N^{2 n}$ has constant holomorphic sectional curvature K, i.e.,

$$
S_{A B C D}=\frac{K}{4}\left(G_{A D} G_{B C}-G_{A C} G_{B D}+\Omega_{A D} \Omega_{B C}-\Omega_{A C} \Omega_{B D}-2 \Omega_{A B} \Omega_{C D}\right)
$$

Let $\{X, f X\}$ span an f-section on $M^{2 n+s}$ with X a unit vector; then the sectional curvature of this section is given by

$$
\begin{aligned}
&-R_{\alpha \beta r \delta} X^{\alpha}(f X)^{\beta} X^{r}(f X)^{\delta}=-R_{A B C D} X^{A}(f X)^{B} X^{C}(f X)^{D} \\
&=-\frac{K}{4}\left(G_{A D} G_{B C}-G_{A C} G_{B D}\right) X^{A}(f X)^{B} X^{C}(f X)^{D} \\
&+\left(\frac{s}{4}-\frac{K}{4}\right)\left(\Omega_{A D} \Omega_{B C}-\Omega_{A C} \Omega_{B D}-2 \Omega_{A B} \Omega_{C D}\right) X^{A}(f X)^{B} X^{C}(f X)^{D} \\
&= \frac{K}{4}+\frac{3 K}{4}-\frac{3 s}{4}=K-\frac{3 s}{4} .
\end{aligned}
$$

Hence we have the following theorem.
Theorem 3.3. Let $M^{2 n+s}$ be a principal toroidal bundle over a Kaehler manifold $N^{2 n}$ as in Theorem 3.1. If $N^{2 n}$ has constant holomorphic sectional curvature K, then the \mathscr{S}-manifold $M^{2 n+s}$ has constant f-sectional curvature equal to $K-3 s / 4$.

Inequalities for the sectional curvature of other horizontal sections may be derived from Theorem 2.7.
4. It is well-known that the canonical example of a Sasakian manifold, the odd-dimensional sphere $S^{2 n+1}$, is a circle bundle over complex projective space $P C^{n}$ by the Hopf-fibration. Let $\pi^{\prime}: S^{2 n+1} \rightarrow P C^{n}$ denote the Hopf-fibration; then using the diagonal map Δ we define a principal toroidal bundle over $P C^{n}$ by the following diagram

that is, $H^{2 n+s}=\left\{\left(p_{1}, \cdots, p_{s}\right) \in S^{2 n+1} \times \cdots \times S^{2 n+1} \mid \pi^{\prime}\left(p_{1}\right)=\cdots=\pi^{\prime}\left(p_{s}\right)\right\}$.
Now let η_{x}^{\prime} be the contact form on $S_{x}^{2 n+1}$ and define η_{x} on $H^{2 n+s}$ by $\eta_{x}=$ $\left.\hat{\Delta}^{*}\right|_{s_{x}^{2 x+1}} \eta_{x}^{\prime} \equiv \hat{\Delta}_{x}^{*} \eta_{x}^{\prime}$. Then

$$
d \eta_{x}=d \hat{\Delta}_{x}^{*} \eta_{x}^{\prime}=\hat{\Delta}_{x}^{*} d \eta_{x}^{\prime}=\hat{\Delta}_{x}^{*} \pi_{x}^{*} \Omega_{x}=\pi^{*} \Delta_{x}^{*} \Omega_{x}=\pi^{*} \Omega
$$

where Ω_{x} is the fundamental 2-form on $P C_{x}^{n}$ and Ω that on $P C^{n}$. Further $\gamma=$ $\left(\eta_{1}, \cdots, \eta_{s}\right)$ is equivariant and fibre preserving, hence by Theorem 3.1 the space $H^{2 n+s}$ is an \mathscr{S}-manifold.

Recall that $P C^{n}$ has constant holomorphic sectional curvature $K=1$ (FubiniStudy metric) and that $S^{2 n+1}$ (as a Sasakian manifold with the constant curvature metric) has constant curvature $1 / 4$. From Theorem 3.3 we obtain the following result.

Theorem 4.1. $H^{2 n+s}$ has constant f-sectional curvature $1-3 s / 4$.
Analogous to $P C^{n}$ being (1/4)-pinched $(1 / 4 \leq K(X, Y) \leq 1)$ and $S^{2 n+1}$ having constant curvature $1 / 4$, from Theorems 2.7 and 4.1 we have

Theorem 4.2. Let $X, Y \in \mathscr{L}$ on $H^{2 n+s}, s \geq 2$. Then

$$
1-\frac{3 s}{4} \leq K(X, Y) \leq \frac{1}{4}
$$

References

[1] R. L. Bishop \& S. I. Goldberg, Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964) 508-535.
[2] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967) 331-345.
[3] D. E. Blair \& G. D. Ludden, Hypersurfaces in almost contact manifolds, Tôhoku Math. J. 21 (1969) 354-362.
[4] S. I. Goldberg \& K. Yano, Framed f-structures on hypersurfaces of almost contact manifolds, to appear.
[5] Y. Hatakeyama, Y. Ogawa \& S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J. 15 (1963) 42-48.
[6] S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tôhoku Math. J. 15 (1963) 121-139.
[7] A. Morimoto, On normal almost contact structures, J. Math. Soc. Japan 15 (1963) 420-436.
[8] E. M. Moskal, Contact manifolds of positive curvature, Thesis, University of Illinois, 1966.
[9] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hemitian or almost Kaehlerian, Kōdai Math. Sem. Rep. 18 (1966) 161-183.
[10] S. Sasaki \& Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan 14 (1962) 249-271.
[11] A. G. Walker, Almost-product structures, Proc. Sympos. Pure Math. Vol. III, Amer. Math. Soc. 1961, 94-100.
[12] K. Yano, On a structure f satisfying $f^{3}+f=0$, Technical Report No. 12, University of Washington, 1961.
[13] - On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor 14 (1963) 99-109.
[14] - , Differential geometry on complex and almost complex spaces, Pergamon, New York, 1965.

Michigan State University

