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WEYL MANIFOLDS

GERALD B. FOLLAND

In 1918 H. Weyl [6] introduced a generalization of Riemannian geometry
in his attempt to formulate a unified field theory. WeyΓs theory failed for
physical reasons, but it remains a beautiful piece of mathematics, and it
provides an instructive example of non-Riemannian connections. In § 1 of this
paper we summarize the classical definitions and theorems concerning Weyl
structures in § 2 we show that a Weyl structure is equivalent to a connection
on a certain line bundle, prove the classical results using modern machinery
and notation (following Kobayashi & Nomizu [4] and Nelson [5]), and derive
a characterization of Weyl structures in terms of their induced linear
connections.

The author wishes to express his indebtedness to Professor Raoul Bott, in
particular for the valuable conversations through which most of the ideas in
this paper were born.

1. Summary of classical results

The physical motivation for WeyΓs ideas is as follows. In the general theory
of relativity, Einstein used Riemannian geometry as a model for physical space.
However, the universe is not really a Riemannian manifold, for there is no
absolute measure of length; that is, instead of being given a scalar product on
the tangent space at each point, we are given a scalar product determiμed only
up to a positive factor at each point. This fact produces no essential change
in the geometry provided that a determination of length at one point uniquely
induces a determination of length on the whole manifold, i.e., if it makes sense
to compare the size of two tangent vectors at two distinct points. Weyl
conjectured that this is not the case rather, that an analogy should be drawn
with the theory of linear connections, in which it generally makes sense to say
that two vectors at two distinct points have the same direction only if there is
specified a curve between the two points along which "parallel translation" can
take place. Hence in the Weyl theory a determination of length at one point
induces only a first-order approximation to a determination of length at
surrounding points. We proceed to make these ideas precise.

M will always denote an π-dimensional smooth manifold, TVM the tangent
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space of M at p, and Λ\M) the space of one-forms on M.

Definitions.
1) Two Riemann metrics g and g' on M are said to be equivalent if and

only if gf — eλg where λ is a smooth function on M. (The use of the exponential
function is a handy way of ensuring positivity, and it has other advantages
which will become apparent later.)

2) A conformal structure on M is an equivalence class G of Riemann
metrics on M. A manifold with a conformal structure is called a conformal
manifold. Note that on a conformal manifold one can speak of the angle
between two vectors at a point, or of the ratio of their lengths, although their
absolute lengths are not defined. Also, the notion of a symmetric or skew-
symmetric transformation of vector fields makes sense; for example, T is
symmetric if and only if for any vector fields X and Y and for some (and
hence all) g e G, g(TX, Y) = g(X, TY).

3) A Weyl structure on M is a map F: G-^Λι(M) satisfying F(eλg) — F(g)
— dλ, where G is a conformal structure. A manifold with a Weyl structure is
called a Weyl manifold. Note that a Riemann metric g and a one-form φ
determine a Weyl structure, namely F: G—>Λι(M) where G is the equivalence
class of g and F(eλg) = φ — dλ.

4) Since the forms in the range of a Weyl structure F differ from each
other by exact forms, they have a common exterior derivative, the negative
of which is denoted by Ω and is called the distance curvature.

5) A Weyl structure enables us to translate a scalar product along a curve,
as follows. Let C: [0, 1]->M be a curve with C(0) = p, C(l) = q; let ( , ) p

be a scalar product on TpM arising from the conformal structure G, and let
g eG extend ( , ) p , i.e., gp = ( , ) p . Then the translate of ( , ) p along C at

qis( , )q = expΓ Γc*(F(g))lg Q . This is independent of g: if λ(p) = 0, so
0

t h a t (e'g)p = ( , ) „ , t h e n

j'cΠFie'g)) = J"C*(FG?) - dλ) = J'c*(F(g)) - λ{q)
0 0 0

hence

( , )q = exp [ Jc*(Ffe))]g9 - exp

Thus we can compare lengths of vectors at p and q.
6) A linear connection on a Weyl manifold M is said to be compatible
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(with the Weyl structure) if and only if the parallel translation of scalar
products arising from G by the linear connection is the same as their translation
defined in 5).

The principal facts about Weyl manifolds, as discussed by Weyl [7, pp.
121-129] and Eisenhart [3, pp. 81-83], are the following. We state these
results in the classical tensor notation, using the Einstein summation
convention.

Let g be an arbitrary element of G, and denote F(g) by φ.
A. A linear connection on a Weyl manifold M is compatible if and only

if gij.k + Sίjψk = 0.

B. On every Weyl manifold there exists a unique torsion-free compatible
linear connection; its components Γ)k with respect to the coordinates {w*}f are

f + - β) +
where (g*J) is the inverse matrix of {giά), and δ) is the Kronecker delta tensor.

C. Conversely, a torsion-free linear connection on a manifold M for which
there exist a Riemann metric g and a one-form φ satisfying gijΛ + giόψk = 0
is the induced connection of the Weyl structure determined by g and φ.

D. With respect to the natural connection, gij>km — giύtmΊc — — 2gίjΩkm.
E. If R)km is the curvature tensor of the natural connection, then R)km

= *R%m + S)Ωkm where *Rίjkm = gίh*Rh

jkm is skew-symmetric in / and /.
These statements can be proved by laborious computation with indices. We

will prove them with global methods in § 2.
Historical note. In WeyΓs unified theory, the metrics g e G are interpreted

as the gravitational potentials, as in general relativity, and the corresponding
forms F(g) are interpreted as the electromagnetic potentials. For more details
on the physical theory see Weyl [6], [7, pp. 121 if.], Eddington [2, pp. 196-
240], and Adler et al. [1, pp. 401-417].

2. Weyl structures in terms of fiber bundles

A conformal structure G on M naturally gives rise to a fiber bundle 6?
whose underlying manifold, also denoted by Sf, is the set of all scalar products
at all points of M arising from G, i.e., {gp: g e G, p e M}, with the obvious
differentiate structure, and whose projection π: £f —> M is the map π(gp) = p.
This is clearly a principal fiber bundle over M whose structure group is the
positive real multiplicative group 1?*. It is in fact a trivial bundle, since any
g € G induces a trivialization σ(g): Sf —> M X R* defined by σ(g)(g'p) — (p, s)
where sgp = gp e π~ι(p). G can be recovered from Sf as the set of all smooth
sections of £f.

We now fix an element g0 of G, denote the trivialization σ(g0) simply by σ,
and also define a function r: £f —> R by r(s(go)p) = s.
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There is a vector bundle £P associated with Sf, whose underlying manifold
is {s(go)p: p € M, s e R}, i.e., the set of real multiples of members of <f with
the obvious differentiate structure, and whose projection πr: £fr —> M is
π'(s(go)P) = P' Again we have a trivialization ar given by σ'(s(go)p) — (p, s),
and a function r'\ 9r —» R given by r'(s(go)p) = 5*.

Definition. A Wey/ structure on a conformal manifold M is a connection
on the metric bundle Sf.

We now have two definitions of a Weyl structure, and proceed to show that
they are equivalent.

Theorem 1. A connection on the metric bundle S? of a conformal manifold
M naturally induces a map F: G —* Λι(M) with F{eλg) = F(g) — dλ, and
conversely. Parallel translation of points in £f by the connection is the same
as their translation by F.

Proof. Since the Lie algebra of jR* is R, a connection form on 6f is real-
valued. We will denote the action of a e R* on ̂  by ma.

Lemma 1. ω is a connection form on £f if and only if ω = τr*go*ω + r~ιdr.
Proof. Let a be the fundamental vector field on £f corresponding to a e R*.

Since the left-invariant vector fields on R* are of the form ax(d/dx) where x
is the restriction of the canonical coordinate on IP to /?*, it follows that a —
ar(d/dr). ((3/3r) is a well-defined vector field on Sf since Sf = M X R*.)
Hence if ω is a form on £f satisfying ω = π^g^ω + r~ιdr, then ω(a) = r~ιar
= a since π^a — 0. Also,

ma*ω = ma*π*g0*ω + (ar)~ιd(ar) = π*go*ω + r~λdr — ω — {ad a)~ιω ,

since πoma = π and J?* is commutative. Thus ω is a connection form.
Conversely, if ω is a connection form, ω — π*gϋ*ω is some function / times dr,
and the fact that ω(a) = a for any aeR* shows that / = r~ι.

We return to the theorem. Given a connection on <f with connection form
ω, define F: G —> Λ\M) by setting F(e*g0) = —go*ω — dλ. Using the lemma,
it is readily verified that F is independent of the choice of g0, i.e., that F(g)
= — g*ω for any g € G. Conversely, given F: G —> Λ\M), define a one-form
ω on Sf by ω — — ττ*(F(g0)) + r~ιdr. By the lemma, ω is a connection form
since go*ττ* = zd., and again it is easy to see that ω = — ττ*(F(g)) + r~ιdr for
any g β G, so that ω is independent of g0.

Now we show that translation by the connection and by F are equivalent.
Let C be a curve on M and let C be its horizontal lift to Sf with initial point
^o(̂ o)θ(θ)? so that C(t) is the parallel-translate of ro(go)cm along C to C(ί).
Abbreviating r(C(t)) as r(ί), we have C(t) = r(t)(go)Cit) = mnt) o ̂ 0 o C(ί). Since
ω is a vertical form, its restriction to C is zero, i.e., r~ιdr — —π*g<^ω on C.
Thus

J ί j''dr) = log(r(/)/r0) .
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But gQ*mnt*π* = go*τr* = id., so that

mr( ί )*τr*)so*ω = -C*g o *ω =

so exp I C*(F(gQ)) = r(f)/r0, which is the way translation by F was defined.

0

Conversely, if C is a curve on M and C is the curve on 9* defined by C(i) —

mra)ogQoC(t) where r{t) = exp | \ C*(F(g0)) , we have

= log (tit) I rj = fc*(F(g0)) = - §'c*g *ω

Thus I C*ω = 0 for each t, so C*ω = 0. Hence C is horizontal and so is
0

the unique horizontal lift of C to Sf whose initial point is rQ(g0)C{0). This
completes the proof.

We now investigate the most important consequence of the existence of a
Weyl structure, namely, the existence of a unique torsion-free compatible linear
connection.

Lemma 2 (Cf. A in § 1). A linear connection on a Weyl manifold M
is compatible if and only if Vg + F(g) ® g = 0 for all g eG.

Proof. For convenience, denote F(g) by ψ. Let X be a vector field on M,
C an integral curve of X with C(0) = p, and τt the parallel translation of the
tensor algebra from C(0) to C(i) by means of the linear connection. Compati-
bility then means that

τt(gp) = expίj C*JgC(ί), or τl\gca)) = exp[^- J C*φ^gp .
0 0

Thus

(Vxg)p = l imr^rr^to - ft,) = lim r 1 (exp [-

so Vxg — —φ(X)g for any vector field X, i.e., Vg + ψ®g = 0. On the other
hand, let C(t) be a curve, and X(t) its field of tangent vectors. Then g is parallel
along C with respect to the linear connection if and only if Vxg = 0, and it is
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parallel with respect to the Weyl structure if and only if φ(X) = 0. Thus if
Fg + φ®g ~ 0, these conditions are satisfied simultaneously.

Theorem 2 (Cf. B in § 1). On every Weyl manifold there is a unique
torsion-free compatible linear connection.

Proof. Assume such a connection exists we will derive an explicit formula
for it and thus prove the uniqueness. Since F is a derivation,

X(g(Y,Z)) = Fx(g(Y,Z)) = (Fxg)(Y,Z) + g(FxY,Z) + g(Y,FxZ)

for any vector fields X, Y, and Z and any g eG. Thus by compatibility, if
φ = F(g), then g(FxY,Z) = X(g(Y,Z» + φ(X)g(Y,Z) - g(FxZ, Y). Also,
zero torsion means FXY = [X, Y] + FYX, so we have

g(FxY, Z) = X(g(Y, Z)) + φ(X)g(Y, Z) - g([X, Z], Y) - g(FzX, Y) .

By cyclic permutation of X, Y, and Z, we obtain two more equations:

g(FγZ,X) = Y(g(Z,X)) + φ{Y)g(Z,X) - g([Y,X],Z) - g(FxY,Z)

and

g(FzX, Y) = Z(g(X, Y)) + φ(Z)g(X, Y) - g([Z, Y], X) - g(FγZ, X) .

Adding the first two and subtracting the third, we obtain

( 1 ) + Y(g(X, Z)) + φ(Y)g(Z, X) - g(iY, XIZ)

- Z(g(X, Y)) - φ{Z)g{X, Y) + g([Z9 Y], X)} .

Since g is a definite form, this equation determines FXY.
To complete the proof, the following things must be checked: the right hand

side of equation (1) is linear in Z and independent of the choice of g; F
satisfies the axioms for a connection, i.e., that it is linear in X and a derivation
in Y; and F is compatible and torsion-free. These verifications are just a
matter of simple (if tedious) computation.

Note that the local coordinate expression for the connection given in B of
§ 1 is obtained by taking X = d/dw, Y = d/duk, Z = d/du*.

Corollary (Cf. C in § 1). A torsion-free connection on a manifold M on
which there exist a metric g and a one-form ψ satisfying Fg -\- ψ® g — 0 is
the induced connection of the Weyl structure determined by g and ψ.

Proof. It is easy to see that if g and φ satisfy Fg + φ (x) g = 0 then so do
eλg and φ — dλ for all smooth functions λ. The corollary then follows from
Lemma 2 and the uniqueness assertion of Theorem 2.

Let ω and Dω be the connection and curvature forms, respectively, given
by a Weyl structure on the metric bundle <y. Since multiplication in R is
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commutative, the structure equation dω(X, Y) = \[ω{X), ω(Y)] + Dω(X, Y)
reduces to dω = Dω. If Ω is the distance curvature and g e G, then Ω —
— d(F(g)) = —d( — g*ω) = g*dω = g*Dω. Thus the distance curvature on M
is the pulldown of the curvature form on ̂  via any g εG.

If T is a tensor field of type (r, s) (i.e., of contravariant degree r and
covariant degree s) on a manifold M with a linear connection, FFT is a tensor
field of type (r, s + 2) which thus assigns to each pair Y, Z of vector fields a
tensor field FFT(Y, Z) of type (r, s). If #(Y, Z) = F Γ F Z - FZFY - F [ F , Z ] is
the curvature transformation determined by the vector fields Y and Z, and X
is any vector field, then the relation FFXiY, Z) - FFX(Z, Y) = R(Y, Z)X
holds provided the connection is torsion-free (Nelson [5, p. 71]). On a
Weyl manifold an analogous relation holds for the distance curvature Ω.

L e m m a 3 (Cf. D in § 1 ) . For any geG and any vector fields Y, Z ,

FFg(Y,Z) - FFg(Z, Y) = -2Ω(Y,Z)g .

Proof. If φ = F(g), we have

FFg(Y, Z) = F(-φ (x) g)(Y, Z) = -(Fφ (x) g)(Y, Z) - (φ (x) Fg)(Y, Z)

= -{Fφ®g){Y,Z) + (φ® φ®g)(Y,Z) = -(Fzφ)(Y)g + φ(Z)φ(Y)g .

Thus

FFg(Y, Z) - FFg{Z, Y) = ((Fγφ)(Z) - (Fzφ)(Y))g

= 2dφ(Y,Z)g= -2Ω(Y,Z)g,

since d = alt F on forms (Nelson [5, p. 64]).
From this we can conclude a formula for the symmetric and skew-symmetric

parts of the curvature transformation of the natural linear connection on a
Weyl manifold. Let X, Y, Z, W be any vector fields, R(X, Y) the curvature
transformation determined by X and Y, R(X, Y)\ its transpose (adjoint)
and ΦR{X>Y) the derivation of the tensor algebra induced by R(X, Y). Using
formulas (9) and (33) of Nelson [5, pp. 43, 71], we find that

-2g(Ω(X, Y)Z, W) = -2Ω(X, Y)g(Z, W) = FFg(X, Y)(Z, W)

- FFg(Y,X)(Z, W) = (ΦR(X,Y)g)(Z, W) = -g(R(X, Y)Z, W)

- g(Z,R(X, Y)W) = -g([R(X, Y) + R(X, YY]Z, W) ,

for all W, and hence ±(R(X, Y) + R(X, YY)Z = Ω(X, Y)Z for all Z. Thus
the symmetric part of R(X, Y) is just Ω(X, Y)δ, δ being the Kronecker delta
tensor of type (1, 1). If we set *# = R - Ω ® δ, then *R(X, Y) is the skew-
symmetric part of R(X, Y). *R is called the direction curvature. We sum up:

Theorem 3 (Cf. E in § 1). For any vector vields X and Y, Ω ® δ(X, Y)
= Ω(X, Y)δ is the symmetric part of R(X, Y), and *R(X, Y) is the skew-
symmetric part.
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To prepare for the last theorem, we make some algebraic and bundle-
theoretic remarks.

The n-dimensional conjormal group C(n) is the group of all real n x n
matrices A such that A A1 — kl, where / is the identity matrix and k is a
positive number. C(ή) is thus the set of all nonzero multiples of orthogonal
matrices. Since the negative of an orthogonal matrix is orthogonal, C(ή) is
isomorphic to O(n) x /£*. There is then a corresponding decomposition of the
Lie algebra, c(ή) ^ o(ri) X R. Moreover, if C(ή) and O(ή) are regarded as
subgroups of GL(n, R), and c(ή) and o(ή) correspondingly as subspaces of
QΪ(n, R) = the space of all n x n matrices, then o(ή) is the subspace of all
skew-symmetric matrices, as is well known, and c(ή) is o(ri) © RI. To verify
this, let A = B + kl, where B is skew-symmetric and k e R. Then exp (tA)
= exp (tkl) exp (tB) = ekt exp (tB). But exp (tB) e O(n), so ekt exp (tB) e C(n).
Thus o(ri) 0 RI c c(n), so they are equal since their dimensions are the same.

Now let M be a conformal manifold. A frame ξ = {ξ^ at a point p e M i s
said to be conformal if the vectors ξi are pairwise orthogonal and have equal
lengths (although their absolute lengths are not determined). The bundle # of
conformal frames on M is clearly a principal fiber bundle over M with structure
group C(n).

There is a natural bundle homomorphism h from the bundle ^ of conformal
frames onto the metric bundle Sf, which sends the frame ξ at p e M to the
scalar product ( , ) p at p with respect to which ξ is orthonormal. Now, if a
connection is given on ^ , there is induced a connection on <9* such that the
horizontal subspaces over # are mapped onto the horizontal subspaces over
£f; and if ω\ ω are the connection forms, and Dω\ Dω the curvature forms on
# and £f respectively, then h*ω = H o ωr and /z*Dα) = # o Dωf where H is the
projection t(n) ^ o(n) X R-> R (Kobayashi & Nomizu [4, pp. 79-81]).

Theorem 4. v4 torsion-free linear connection on a conformal manifold M
is the induced connection of a Weyl structure on M if and only if it is reducible
to the bundle Ή of conformal frames. In this case the Weyl structure is the
connection on 3f induced via the homomorphism h of the preceding paragraph
from the reduction of the linear connection to <&.

Proof. Suppose M is a Weyl manifold. Then by compatibility, conformal
frames are preserved under parallel translation, and it follows from the reduction
theorem (Kobayashi & Nomizu [4, pp. 83-85]) that the linear connection is
reducible to a connection on <$. To prove the last assertion of the theorem we
must show that the homomorphism h maps the horizontal subspaces of the
connection on # onto the horizontal subspaces of the Weyl structure on Sf.
If C is a curve on M, then its horizontal lift to # is a family C of conformal
frames, where C(t) = {£*(*)}? is a frame over C(t) and ξ^t) is a parallel family
of vectors for each i. Set gt = h o C(t). Then &(&(*), ξj(t)) = δij9 so if C(t) is
the tangent to C at t, then
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Since (Vc,{t)g)t is determined by its effect on the basis {ξt(ί)}, it follows that gt

is a parallel family of scalar products along C. Thus by Theorem 1 and
compatibility, gt is a horizontal curve on Sf. Since horizontal curves map to
horizontal curves, horizontal subspaces map to horizontal subspaces, and the
last assertion is proved.

On the other hand, suppose we are given a torsion-free linear connection on
M which is reducible to Ή. Let C be a curve on M, and τt parallel translation
of the tensor algebra from p = C(0) to C(t). Reducibility to <g means that Sf
is preserved under τt (and hence under τf1)- In fact, if gp is in the fiber of S?
over p and {fj is a frame at p, which is orthonormal with respect to gp, then
δij = gP(f *, f j) = (τtgp)(τtξi9 τtξj) since r t is an isomorphism of the tensor
algebra. But {τtξi} is a conformal frame at C(t), and since r ^ is determined
by its effect on a frame, it follows that τtgp e if. In particular, if g0, &", and
rr are as defined at the beginning of this section, τ^ι((g0)ca)) 6 5f, so rrXC^Cio)
- (go)p 6 ̂  and thus (Fc,it)g0)p = lim r '[τϊKigάcω) ~ (So)P1 € ̂ . We
therefore define a one-form φ by ^(Z) = —r'(γxgd. By definition of rr, F x g 0

= —φ(X)gQ for all X, and so Fg0 + φ® g0 = 0. By the corollary to Theorem
2, the proof is complete.

Remark. The decomposition of R(X, Y) in Theorem 4 into a skew-
symmetric transformation and a multiple of the identity corresponds to the
decomposition of the curvature form Dωf of the reduced connection on ^ into
its o(n) and Rl components in c(«)cgi(«, R).
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