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SOME DECOMPOSITIONS OF THE SPACE
OF SYMMETRIC TENSORS ON

A RIEMANNIAN MANIFOLD

M. BERGER & D. EBIN

1. Introduction

In this article we consider a compact C~ manifold M and endow it with a
riemannian structure g. For such a riemannian manifold (M,g), the space Ap

of exterior differential forms carries an elliptic operator and the de Rham
laplacian J , and has an orthogonal decomposition

(1.1) Ap = ktτA®cIAp-ι®δAp+ι ,

orthogonal with respect to the global scalar product on Ap. Moreover the
dimension of ker Δ is equal to the p-th Betti number of Af, thanks to de
Rham's theorem.

The simplest space of tensors to consider, besides the Apt>s, is the space S2

of symmetric bilinear differential forms on M. It is natural to look for a de-
composition of S2 like (1,1). In this article we give all the reasonable decom-
positions of 52, which we are aware of. Unhappily we have no essential appli-
cations of them, because of the lack of some kind of a de Rham theorem,
connecting topological invariants of M with the dimension of the kernel of the
elliptic operators considered on S2. However we think it is worthwhile to list
and prove these decompositions, hoping the reader will find interest in the
problems and questions which naturally arise.

After fixing notations in §2 we give in §§3 and 4 the decomposition (3.1),
which essentially yields the subspace <Γι(0) of S2 as the tangent space at g of the
space Jtj2 of classes of riemannian structures on M under diffeomorphisms.
In §5 we give two decompositions for manifolds of constant scalar curvature
which are naturally associated to deformations of the scalar curvature. One of
these is due to L. Nirenberg. §6 lists four elliptic operators on S2; in §6.c an
application is made to minimal surfaces; Corollary 6.2 was suggested to us by
J. Simons. §§7 and 8 are concerned with Einstein manifolds. As an applica-
tion of the decomposition (3.1) of §3, we find that the space of Einstein
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structures is locally finite-dimensional and we also get a result of nondeform-
ability of some Einstein manifolds (Corollary 7.3 and Lemma 7.4).

2. Notations

On our fixed compact manifold M, we denote by Av (p—0, 1, ,dim

M = ri) the p-th exterior power ΛT*(M) of the cotangent bundle T*(M) of M.
Hence C°°(AP), the space of all C "-sections of Aι\ is the space of exterior
differential forms of degree p (in particular A0 is the space of C* -functions on
M). When no confusion is possible, we write Ap for CV\AP). Similarly TJ re-
presents the space of all tensors on M, which are r-timcs covariant and Λ-times

contravariant, i.e., Tr

s = [® T(M)] <g) [® T*(M)]. By S2 C Γ!j w understand
the bundle (or also C"(52)) of symmetric bilinear differential forms.

We endow M with a fixed riemannian structure g, making it a riemannian
manifold (M, g). On tensor spaces on M we have the canonical scalar product
(point-wise) ( | ) and on their sections the global scalar product <•,•>

— I ( I O ^ , where v(J is the canonical measure of (M, g). If P is a differential
3/

operator between some tensor bundles over M, its formal adjoint P* is uni-
quely defined by (P , > = <., P* . >.

Examples. The covariant derivative Γ: T's -> Γ6

r

M, whose formal adjoint
P* will be also denoted by δ — F * : T;. ! -* Tr

s. In local coordinates:

(2.1) («Όfcv^= - Σ Γ ' ^ .

For the restriction of o to S1: δ: S'1 —> A\ still denoted by 5, the adjoint δ* is
given by the formula:

{δ*ξ){xy) l

where JS? is the Lie derivative and ?' the vector field dual (by g) to the 1-form

f
On 52 we have the trace: tr: S2 —> Aι) (with respect to g understood), since

g defines canonically a map S2 -+ T\ and T\ is made up of endomorphisms
(which have a cononical trace). We will set

TZ = {h€ S2: trh = 0} = tr-'(O) c 5L'.

Example. On A0, we have the double covariant derivative, called the hes-
sian: Hess = VoV: A0—> S2. Its trace is nothing but — J, the usual Laplace-
Beltrami operator on A0: Δ = — troHess: Aί]—>AQ (in local coordinates J/

= - Σ f7 /̂ - - Σ
I L
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Finally, for our riemannian manifold (M, g), we denote by R the curvature
tensor, p the Ricci curvature (p € S2) and τ the scalar curvature (r € A0). The
signs we are choosing are such that, for the standard sphere (Sn,g0):

R(x, y x, y) = + 1 for any orthonormal x, y9

ρ(x, x) = n — 1 for any unit vector,

r = Λ(Λ - 1) .

3. The first splitting of S

As is well known, the set Jί of riemannian metrics on Λί is an open (in C s

topology) convex positive cone in the linear space C°°(S2). One approach to a
study of riemannian geometry is to consider certain distinguished subsets of
JC\ e.g., those metrics which make M a space form, Einstein manifold, homo-
geneous space, etc.

The diffeomorphism group 2 of M acts on Jί in a natural way by pull
back. (The usual action on the sections of any tensor bundle.) We denote a
metric g acted on by η as η*(g), and it is easy to see that if (M, g) is a space
form, Einstein manifold or homogeneous space, then so is (M, η*(g)). This
means that each of our distinguished subsets of Jί is a union of orbits of 2
in Jί'. Hence each one can also be looked at as a subset of the space of orbits
Jt/9.

In [4], Ebin has analyzed the action of 2 on Jί and proved the following:
Fix g € Jί and let 0g be the orbit of 2 containing g. Then there exist a

neighborhood U of g in 0̂  and a map χ: U—>2 such that if η*(g) e U,
(χθ?*(#)))*(#) = ??*(£) i e > X is a local section of the map of 2 onto its orbit.
Also there is a submanifold S of Jί containing g such that the map F: U x S
—• Jί defined by F(u, s) = (χ(w))*C0 is a diffeomorphism of U x S onto a
neighborhood of g in Jί} Furthermore the tangent space of S at g is the ker-
nel of the operator δ: S2 -> 7*.

The existence of 5 and F is helpful to the study of the local nature of the
various distinguished subsets of Jί. Let δ be such a subset, and g(t) a curve
in Jί, which is contained in £ and such that g(0) = g. If /r2: t/ X S—»S is
the projection on the second factor, then

^2°'Γ~1te(0) is a curve in Jί

(defined for all t such that g(i) € F(U x 5)). But h{t) = πzoF-\g(t)) and g(ί)
are in the same orbit of 0 because if F" 1^/)) = (w, .Ϊ), then Λ(/) = s and

= (χ(w))*C*). Hence A(/) is also a curve in ί, so h(t) c 5 n <̂  Thus any

1 uί", ^ , and 0ff are all locally Frechet spaces. Therefore we must understand the
words "submanifold" and "diffeomorphism" in the sense of ILH-submanifold and
diffeomorphism (see [7]).
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deformation g(t) of g in the set δ gives rise to a deformation h(i) in δ Π S,
such that if π: JC -*Jί\<2) is the natural projection, πg(t) = τrA(/). Since the

tangent space of S at g is δ'\0)9 ^—h(t) <5~'(()). Hence to study deforma-
dt

tions in Jί\Q) we need only study curves in Jί whose tangent at g is in δ~ι(0).
Here we shall prove not the existence of S and F but an infinitesimal version
of their construction, that is, we shall show that

(3.1) C"(S2) = ί- !(0) θa*(C-(Λ ! )) ,

and δ*(C^(A1)) is the tangent space of 0,, (or U) at g.
First we give a plausibility argument that £*(C%4 ])) is the tangent space of

00 at g (for details see [4]). We let ώ(,: & — . // by η -> g*(g), and shall show
that at the identity of <9, 25*: C"(Aι) -> C (5-) is the tangent map of </v

If η(i) is a curve in 2d, with η{0) = /</, then for each p e M,—!—η(t)(p) is

an element of Tp. Hence the tangent space of id at Id is the set of functions
{V} from M to T such that K(p) € TJ}. This set is just C'(T). For any element
K of Cy (T) there is a unique one parameter group of diffeomorphisms η(ί)

such that -
dt

— F. Hence to evaluate the tangent map of ψ, at Vy it is

enough to know —(0?(0)*(g)) But — (η*{t)(g)) is by definition X'v(g)9 the

Lie derivative of V with respect to g. Now using g to identify /I1 and T we
find by (2.1) that this map is 25*.

To prove C~(S2) = ^ " • ( O J Θ ^ C ' M 1 ) ) , we must first derive some results
on linear partial differential operators.

4. Differential operators with injective symbol

Let £ be a vector bundle over M with a riemannian structure, i.e., with
an inner product on each of the fibres of £, and \\\ a volume element μ on
M. Then C~(E) gets an inner product and we call its completion H\E). If
7S(E) is the bundle2 of Λ-jets of £ , there is a natural map /,: C '(£)
—> Cw(/*(£)). Giving /*(£) a riemannian structure we get an inner product on
C°°(JS(E)). We define < }s to be the inner product on C ' ( £ ) induced by /,
and the inner product on Cw(/*(£)). //*(£) is defined to be the completion of
C«(E) in < , >,.

Assume F is another such vector bundle, and let D: C"Λ(£) ->C'(F) be a
differential operator of order k. Then D extends to a continuous linear map
Ds: #*(£) -> Hs~k(F). Also D * : C~(F) — CΛ(E) has order A', so it can be ex-
tended to a map D*_k: Hs~k(F) — Hs-'2k(E). We recall that for any p e M and

2 For a definition of JS(E), Hs(E)y and details of this section, see [8J.
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any cotangent vector t e Γ*, there is a linear map σt(D): Ep -* Fp called the
symbol of D. Also σt(D*): Fp-+Ep is the adjoint of σtφ) with respect to the
inner products on Ep and Fp. We say that the symbol of D is injective, if
σt(D) is injective for all non-zero t.

The goal of this section is to prove:

Theorem 4.1.3 // D has injective symbol, then

Hs~k(F) = D,(ff'(

and the summands are orthogonal with respect to the inner product < , > of

Corollary 4.2. C*(F) = D(C~(E)) ® (D*)"1(0), the summands being or-
thogonal as above.

To prove the above theorem we will need the notion of an elliptic operator:
we say an operator a: C°°(£) -* C°°(F) of order k is elliptic if σt(a): Ep —• Fp

is an isomorphism for all non-zero t. A fundamental property of elliptic
operators is:

Regularity Theorem 4.3. // a is elliptic of order k, then

H"k(F) = as(H°(E)) 0 ker α*_,,

and C~(F) = a(C°°(E)) ® ker a*. Also if for I > s - k, «,(*) 6 Hι(F), then
x € #£+*(E), and if as{x) e C~(F), then x e C°°(£).

Proof. [8, Chapter XI].
Also we need two lemmas.
Lemma 4.4. / / D is an operator of order k with injective symbol, then

D*D is an elliptic operator of order 2k.
Proof. σt(D*D) = σtφ*)σt(D) = (σt(D))*σt(D), where the " * " on the

right hand side means the adjoint of the operator σt(D): Ep —> Fp. σt(D) in-
jective implies (σt(D))*σt(D) is an isomorphism.

Lemma 4.5. Let X and Y be Banach spaces, and T: X —• y a bounded
linear map. Assume C, a closed subspace of Y, is an algebraic linear com-
plement to T(X). Then T(X) is closed in Y, and Y = T(X) ® C topologically.

Proof. See [8, Proof of Theorem 1, p. 119].
Now we are ready to prove our theorem.
We first show that φs_kD*)~\0) = (D*)" ι(0) and (D*D)"1(0) = D~\ϋ).

Clearly φs_kD*)-\0) 3 (D*)"ι(0). If Ds_kD*(x) = 0, then ζx,Ds_kD*x}
= φ*x,D*x> = 0 so D*(x) = 0. Similarly (D*D)"1(0) 3 D~\0), and D*Dx
= 0 implies <JC, D*DJC> = <Dx, Dx} = 0 so Dx = 0.

Secondly we show DS(HS(E)) = DsDf+k(Hs'k(F)). Clearly DS(H*(E))
2 DsD*+k(Hs+k(F)). If * = D sy, yβfl '(£), then y = D*+JkDβ(α) + fe by the

3 This theorem is a special case of the statement involving equation (13) on page 447
of [13]. Since the proof of much easier in the special case, we include it.
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regularity theorem, where azHs+2k(E) and b e (D+Dy^O). But then by the
above b € D~ι(0) so

x = Dβ(y) = DsD*+kDs+2k(a) .

By Lemma 4.5, in order to prove our theorem, we need only show
Hs(F) = Ds(Hs(E))®(D*_k)-\0) algebraically, since (D*_ky

ι(0) is closed.
(Df.ky

ι(0) Π DS(HS(E)) = {0} because if D*_kDsx=0 then <JC, D*_fcDs *>
= <DSJC, D,JC> = 0, so D,(JΓ) - 0.

Also

H-*{F) = (D,_2kD*_k)-KDs_2kD

= D9_k(H»-*(E)) Π W-*(F) + ( D . - ^ D J l ^ ί O ) .

But D6._2λ.(jc) 6 Hs-k(F) implies Df_nDs_2k(x) ε H*~2k(E), which by regularity
implies that t e //*(£). Also (DΛ_2kD*_k)-ι(!ΰ) = (Df.J-^O) as we have shown
above, so ffβ-*(F) = D,(H*(E)) ® (D*_ t)- ι(0). The summands are orthogonal
by the fact that <£>,.*,}>> = <>, Dfx}.

Proof of Corollary. First we show that C^iF) = D(Cm(E)) ® D~\0) alge-
braically. From the theorem we know that the two summands have zero
intersection, so we need only show that they span. Given / € C °(F) we know
f = Dt(e) + h, ezH%E), he(D*_ky

ι(0). Therefore D*f = D*_kD,(e). But
D*f € C"(E), so by regularity e € C (£) and hence A = / - D(e) € C~(F).

Now we show the sum is topoiogical. In the proof of the theorem we
showed that

Π H'{F) =

for any t>s-k. But C~(F) = Π « ' ( f ) , so D(C"(E)) = C°°(F) n D,(H*(E)),
t>s

and D(C°°(E)) is closed in C~(F). The other summand is also closed, so the
sum must be topoiogical.

Now to prove C^S2) = δ*(Cco(A'))®δ-](0), we need only look at the sym-

bol of δ*. A direct calculation shows σt(δ*)(ξ) = — (f Θ ί + / Θ £), which is

clearly injective for non-zero ί.

5. Deformations of scalar curvature

Another splitting of C^iS2) was kindly communicated to us by L. Nirenberg
and is based on a conversation between him and L. Fadeev. To define it we
need the following two operators: α: A1 —* S2, defined by α(ξ) = δ*ξ + (δξ)g9

and jB: A°->S2, defined by β(f) = Hess(/) - fp + (—LΔfτg.
\ n— 1 /
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(t,ξ)9 so *,(«)(£) = - I ( f ® £ + £&/) + (/,£)*. It is easy to

check that this is injective. β is a second order operator, and σt(β)(f)
= σ£(Hess)(/) = /(/(g) t), which is also injective. Hence C°°(52) = a(C°°(A1))
φ α-!(0) and C~(S2) = flC-^1)) Θ β'KO).

Lemma 5.1. // (M,g) has constant scalar curvature τ, then a(Λι) and
β(A°) are orthogonal with respect to the standard inner product < , > 0/1
C-(ST*).

Theorem 5.2. // (M, g) has constant scallar curvature, then

C-iS2) = a(C-(A1)) ®β(C"(A<>)) φ a*-'(0) D j8*-'(0) ,

wΛere ίAe summands are orthogonL
Proof. The theorem follows immediately from the lemma and the two de-

compositions of C°°(52) above.
To prove Lemma 5.1 we must introduce a second order operator γ: S2 -> A0.

γ is defined as follows: given he S2, let g(t) be a curve in Jί such that

g(0) = « and
A

= Λ. Let τ(t) be the scalar curvature of the metric
0

d
g(t) and define r(A) to be — τ ( / ) . From [2, (3.4)] we find

dt

(5.3) r(Λ) = Δ tr (Λ) + M(A) - (A, p).

Since 3*(f) = —J^e,(g) for £ e /4ι, it is clear that γoδ(ξ) = J _ ^ , ( r ) , so in

particular if r is constant γo 5* = 0.
It is easy to check that the symbol of γ is surjective, so σtiγ*) must be in-

jective. Hence we get an orthogonal splitting C°°(52) = γ*(A°) φ ^~!(0). Since
γoδ* — 0, 7*(y4°) and δ*iAι) orthogonal, so that we can get a finer splitting:

(5.4) S2 = γ*iAϋ) ® t*iA') φ 3-'(0) Π γ~KO) .

This is very similar to the splitting of Theorem 5.2, to which we now return.
We prove Lemma 5.1.

We need only show βiA°) C a*~li0)9 for a*~λi0) is orthogonal to a(A').
First we remark that from (5.3) we easily get

(5.5) r*(/) = iΔf)g -fp + δ*df .

Also since γoδ* = 0, δoγ* = 0 so that

(5.6) a((J/)ri - δifp) + δδ*df = 0.

To prove the lemma we must show α* o β = 0, and from the formulas for
αr and 0,
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a* oβ(f) = (δ + do tr) (Hess(/) - fp + — — fτg

(5.7) = δδ*d(f) - δipf) + ( — — ) τδifg) - dΔf

Λ7 — 1

But,

(5.8) δ(fg)= -elf

so

(5.9) a*oβ(f) = »*</(/) - 3^/) - rfj/ + (—^ 1 + 1—) «// .
\ n — 1 n — \ I

Using (5.6) and (5.8), we find that δδ*d(f) - δipf) - dΔf = 0, and the last
term on the right hand side is also zero, so the lemma is proved.

Remark 5.10. S. Deser discusses decompositions like (3.1), (5.2) and
(5.4) in some articles on general relativity for the purpose of finding a canoni-
cal form for the gravitational field. See [11, pp. 158-1621 and [121.

Remark 5.11. C. Barbance [1J proved our original splitting S1 — δ '(())
+ δ*iAι) in the case where M is an Einstein manifold. She also gave a more
refined splitting for this case.

Remark 5.12. E. Calabi [31 has investigated the operator 5*: Ax—*Sr in
the case where M has constant curvature. He formed a sequence of differential
operators

which is locally exact and resolves the sheaf defined by ( ό T ^ O ) . Dλ is defined
just as γ is, except that the full curvature tensor replaces the scalar curvature.
S\A2) means the symmetric tensor of A2 with itself, and the {#,} arc certain
subbundles of A2® A*.

6. Four elliptic operators on S2

a. The rough laplacian J . For any r, A- it is easy to check the covariant
derivative V \ Tr

s —• 7[,, has injective symbol. Hence by Lemma 4.4 the opera-
tor Δ — F*F = δV\ 7 ; —• Tζ is an elliptic operator on 7*;, called the rough
laplacian. In local coordinates:

/;;;;//= - £ ΓT,//;;;;// .
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Moreover J is non-negative: <iϊ/, ί) = || Δt ||2 > 0, and so ker Δ — ker Δ. For
Ί% = A0 the rough laplacian Δ is nothing but J, the usual Laplace-Beltrami
operator for functions on M.

Note also that ΔS2 C S2, so we can consider Δ: S2 -* S2 as an operator on S2

(using the same notation J). From Vg = 0:

(6.1) i g = 0 .

It is also elementary that:

kerF = Rg iff (M,g) locally irreducible .

Using the trace tr: S2—>Λ°, from (6.1) one deduces:

(6.2) tr> Δ = Δ o tr .

/4s a consequence of (6.2), we can consider Δ as an operator J : TZ —> TZ.
b. The operator θ . Define • : S2 -> S2 ® /I ι by

(6.3)

and consider (•, </2δ): S2--> (S2 (g) A1) x A1. It is straightforward to check
this operator has injective symbol. Hence if we set θ = (Q, \/2 <0*(Q> V2 5) =
• * • + 2δ*δ, the so-gotten operator θ is elliptic non-negative (Lemma 4.4):
<ΘΛ, A)> = || GΛ IP + 21| ίΛ ||2 > 0 and ker θ = ker Q Π ker 5. In fact: ker Q =
kerf = ker j ; for by (6.3), QΛ = 0 implies that Vh is antisymmetric in the
two last entries, and being symmetric in the two first entries it has to be zero.

To get an explicit formula for θ, we perform explicit computations (straight-
forward ones with the Ricci commutation formulas) in local coordinates:

(D**)α* = Σ W%*» + r%ba - F'kabl).

Therefore

(6.4) θ = 3J + K ,

where K: S2 —»52 is the zero-order differential operator defined explicitly by

(6.5) (Kh)ab = Σ ipaihι

b + Pbιh
la) - 2 Σ Λπi^Λ1"1

Direct verification yields

Kg = 0, so Θ ^ O ,

(6.6) tr o A: = 0 .

Hence by (6.2),
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(6.7) t r o θ = J o t r ,

so that Θ also preserves TZ and can be considered as an operator θ\ TZ-+TZ.
On TZ the operator K is intimately related to the sectional curvature of (M, g)
as follows:

Proposition 6.1. The operator K is positive definite on TZ if (M,g) is of
strictly positive sectional curvature.

Proof. At any point meM, diagonalize A with respect to g, using an ortho-
normal basis {ea}. Letting the sectional curvature of the plane of Tm(M)
generated by ea and eb be σ(ea, eb) and expressing σ(eay eb) in terms of /?, by
a direct computation from (6.5) we get

Hence (Kh\h) > 0, and (K/ι\h) = 0 implies that all the Λ<ία's are equal; but
trΛ = £ Λαtt, so all the Aαα's have to be zero.

a

c. The operator Ψ. This operator is the one associated to a differential

system introduced by J. Simons in [9, pp. 96-97]. Define σ: S2 —>A2®Aι

by (σA)(jc,y;z) = F IΛ(y,z)-Γ J ίΛ(jι:,z) and (σ, y/2δ): S2-> (A2® A1) x A\

One can check it has injective symbol, so Ψ = (σ, V2 δ)*(σ9 \ll δ) = σ*σ

+ 2δ*δ is elliptic, non-negative: <TA, A> = ||(yA||2 + 2 ||<5A|p > 0 and ker Ψ =

kerσ Π kerd. Direct computations yield

(o*k)ab = - Σ W%«> + rιkuJ ,
I

Ψ = 2 J + K .

By (6.7) we still have tr o Ψ — J o tr and a restricted operator Ψ: TZ -> TZ.
In [9] J. Simons introduced the system δh — ah — 0, because if (M,g)

C (Sn + \g0) is a minimal hypersurface of the standard sphere (S' ί M,g 0), then
its second fundamental form A satisfies δh = <τΛ = 0 (in fact σh = 0 and tr A
= 0, which implies immediately σA = 0). Combining this with Proportion 6.1,
we get:

Corollary 6.2. // (M,g) c (S'M\g 0) ώ tf compact minimal hypersurface,
and (M, g) is of strictly positive sectional curvature, then (M, g) has to be an
equator of (Sn+\g0).

Note this is a best possible result, since the flat standard square two-dimen-
sional torus has a minimal imbedding in (S\gQ).

d. The operator J . This operator was introduced by Lichnerowicz in [6,
p. 27]. It is defined in an explicit way as Δ = Δ + K. If we write out Δ in
local coordinates, the formula has the property that, when one replaces A € 52

by aζA2 then Δh becomes Δa, the usual laplacian of de Rham on exterior
forms. We do not known if J , which is of course elliptic, is still non-negative.
We again have tr o Δ = Δ o tr (see [6, last half of p. 27]).
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e Orthogonal decompositions. By the general theorem on elliptic operators
(4.3), we have the orthogonal decompositions: S2 = kerFφJ(S*),S 2 =
ker V Θ Θ(S2), S2 = ker Ψ Θ ΨiS2), S2 = ker Δ Θ JίS2). But, contrary to the
case of the laplacian on exterior forms, the sums Θ(52) = δ*Aι + [J*(Si®A1)9

ΨiS2) = 5*/*1 + (r*^ 2 ®/! 1 ) are neither direct nor orthogonal, for δ o σ* =£ 0
and a o •* f̂c 0.

7. Deformations of Einstein manifolds

An Einstein manifold is a riemannian manifold (M, g) for which the Ricci
curvature satisfies p = kg (for some real number k).

By a deformation of Einstein structures through g we mean a smooth curve
£(0 (t running through some open interval containing 0) in Jt with g(0) = g
and such that, for all t, there exists k(t), a real number, with p(nt) = k(t)g(t).
If A(0) :£ 0, by normalization we can replace our deformation by another one
such that ρgU) = ε-g(t),ε = ± 1 . In the following we assume this is done. In
the case Λ(0) = 0, we do not know if such a deformation exists with Λ(t) not
identically 0; it is an interesting problem. We now compute consequences of
the equation pgU) = k(t) g(t). The formula giving dpg(t)/dt is classical; we
write it down as in [2, Formula (3.3) for / = 0], all invariants (like δ,δ+, Δ,
Hess) being understood to be with respect to g = g(0):

(0) = —{Δh + 2δ*δh - Hess (tr A)), h = dg® (0) .
at 2 dt

From § 3, we know we can assume δh = 0, so

i ^ = -(Δh - Hess (tr Λ)).
2dt 2

Lemma 7.1. The function trΛ is necessarily constant.
The proof depends on whether k(0) is 1, — 1, or 0.
a. *(0) = 0. By hypothesis we have Δh - Hess (tr Λ) = 2k'(0) g + 2λ(0)Λ

= 2k'(Q)-g. Taking the trace of both sides and using 6d and Δ = —tr o Hess
we get J(trΛ) = nk'(0) which implies k'(0) = 0 and trΛ is constant.

b. k(0) = — 1. In this case, pgU) = -g(f) for all t so that taking traces
again: J(trΛ) = —trΛ, which implies trΛ = 0.

c. *(0) = 1. Now we have J(trΛ) = trΛ. We apply [5, p. 135] to the

effect that λl9 the first eigenvalue of Δ on A0, is > — a, where a is a
n — 1

lower bound for p, i.e., ρ>a g. But here one can take a = 1, so λx >

— - — > 1, and hence trΛ = 0.
n - 1
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From the lemma we nave now the standard equation for // = —^-^-(0) of
clt

a deformation of Einstein structures:

(7.1) Δh = ε*h, fi= 1,-1,0:/> = £ . * .

Since Δ is elliptic, it has finite dimensional kernel, so from § 3 we get
Corollary 7.2. The subset π(ξ) of Einstein structures in Jί\Q is finite

dimensional.
Remark 1. We can define a solution of (7.1) as an infinitesimal defor-

mation of Einstein structures.
Remark 2. We proved, precisely, that the tangent direction h has to

belong to k e r ( J — ε). The converse might be true: if heker(Δ — ε), then
there exists a deformation of Einstein structures with h as tangent direction.
This existence theorem extending an infinitesimal deformation into a local one
seems to be out of the reach of the present results of non-linear analysis.

Using the definition Δ = Δ + K, the definition of K in (6.5), and the fact
that p = ε-g we can write (7.1) more explicitly:

(7.2) Δ - ε = Δ + L ,

where L is defined explicitly by

(7.3) (Lh)ab= - Σ * α » « Λ l m -

In the case e = — 1 or ε = 0 there exist deformations of Einstein structures,
for example the flat riemannian structures on tori, or the families of constant
negative curvature on a surface of genus greater than one. In the case ε = + 1 ,
we have, by the above:

Corollary 7.3. // L is positive-definite on TZ, then (M, g) is not infinitesi-
mally deformable, i.e., dim^ £ — 0.

This happens, for example, in the following:
Lemma 7.4. // the sectional curvature of (M, g) ranges in the interval

1 p~ l , l l for n = 2por in the interval 2p2 "" X , l l for n = 2p+ 1, then
J p J J 2p(p + 1 ) J

L is positive-definite on TZ.
Proof. This lemma is very elementary. At a given point, we diagonalize h

with respect to g, using an orthonormal basis <eα> set haa = xa, σ(ea, eb) = aab.
Then

aφb \ a I aφb

— y γ2 4- y1 π — rt Λx x
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Separate the jrΛ's in > 0 and < 0: yt> 0 (/ = 1, ,p), z} < 0 (/ = 1, ,q)

and set A = Σ y, = - ( Σ z/j W e h a v e a l s o ] ~ "at > e > °< ε t o b e f o u n d

ϊ \ j Ί

later. But

> — + — - 2*4*.
p q

which is positive if e < — (— + — ) . Taking the minimum value for this,
2\p ql

i.e., p = q = y if n — 2p, and q = p+\ if n = 2p+U the lemma is proved.

Remark. In the interval n "" , 1 , see [2, Proposition (6.4)].

8. Corrections and addition to [2]

We wish to take the opportunity, writing on Einstein manifolds, to correct
some mistakes made by Berger in [2].

a. In formula (3.2), p. 38, read at the end a " + " . In formula (3.3) put a
" - " in front of ®dh, in (3.4) " + " in front of <5<5Λ.

b. The number i(γ) defined on the last line of p. 39 makes sense only when
Λ/2, and so does everything which follows in § 4 of [2].

c. The end of p. 40 is incorrect, in the sense one should add everywhere
the condition " r is nowhere zero". In fact the best way to get Einstein

structures as critical is to take i(γ) = I ττ vr under the normalization j τ r = 1.

At M

d. The first remark of p. 54 (and so the Proposition (8.1)) is simply proved
by Bochner's theorem [14, Theorem 2.9., p.37]. If (M,g) is flat and compact,
then it has [10, Theorem 3.3.1, p. 105] a covering (Λ/, g) which is a flat torus.
But

Addition 8.1. On a torus, there are no Einstein structures with ε = 1 (i.e.,
p = g), and any Einstein structure with p = 0 is necessarily flat.

Proof. By the quoted result of Bochner, every harmonic 1-form has zero
covariant derivative if p — 0, and is zero if p > 0. By the de Rham theorem
and the Hodge-de Rham theorem there are n(= dimM = first Betti number
of M) such linearly independent such harmonic 1-forms; hence our manifold
carries n linearly independent 1-forms with zero covariant derivative, so it has
to be flat.

Remark. It would be interesting to decide whether or not a torus can carry
an Einstein structure with ε = — 1, i.e., p = —g (this question is a particular
case of the problem which arose at the beginning of § 5).
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