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AN INTEGRAL FORMULA FOR IMMERSIONS
IN EUCLIDEAN SPACE

ROBERT B. GARDNER

1. Introduction

This paper derives a general rigidity theorem and an integral formula for
immersions of a compact oriented riemannian manifold without boundary in a
euclidean space. The formula is applied to a volume-preserving immersion to
establish a simple geometric criterion that the immersion be isometric. As the
integral formula has a formal resemblance to one derived by Chern and Hsiung
in [1], we conclude the paper with some remarks about that work.

2. Notations and conventions

Let M be a compact oriented m-dimensional riemannian manifold without
boundary with metric ds*, and let

X:M — Rm+»

be an immersion in an (m 4+ n)-dimensional euclidean space R™*". As such
M admits a second riemannian metric,

ds* = dX.dX .

We fix the range of indices so that the capital Latin indices run from 1 to
m + n, the small Greek indices from 1 to m, and the small Latin indices from
m 4 1tom 4 n.

Matters being so, we choose orthonormal coframes {¢*#} for ds* on M which
diagonalize ds* with respect to ds*. Thus

ds# = S(z®?,  dst = Sg,(r*}),

and the first invariants of the pair of metrics are the elementary symmetric
functions in the functions g,.

Next we choose a family of orthonormal frames {e,} on X(M) in R™*" in
such a way that {e,} are unit tangent vectors of X(M) and the pull back of the
dual coframe {4} satisfies

° = h,e¥
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where A, = (g,)"/?. As such the volume elements of ds* and ds* are respectively
av=7'N.-- Nt™, avi =% N\ ..o N\ mE
The pull back of the structure equations
de, = J¢jey ,
de® = 34 N ¢f
doid = 295 I\ 95
of R™*" give rise to a skew-symmetric matrix of linear differential forms
¢l =3I,

called the Levi-Civita cennection for ds?, and a vector of quadratic differential
forms

2@ ¢t = JAY" ®© 7,

called the vector-valued second fundamental form.
The exterior differential equations

det = Jrt N\ ot
o= —gi
define a unique skew-symmetric matrix of linear differential forms
ot = STt

called the Levi-Civita connection for ds*. This matrix allows us to introduce
a covariant differentiation with respect to ds*. Thus, if f is a function we
introduce f,, by

df = 2f,z* ;
if w = Za,r*¥ is a linear differential form then we introduce a,., by
da, — 2agt = Xa, % ;
if Q = 3b,,r2t © ¢** is a quadratic differential form then we introduce b,,,, by
db,, — Z¢*b,, — 2b, o}
= b, .

Finally we introduce the Hodge mapping defined with respect to ds*, which
is the linear mapping *, characterized by

*g(z®) = (=1 1A o NN A A e

As such if w = Ya,z** is a linear differential form then d %, w is an exact
m-form, and a short calculation proves that

dxyw = 2a,,c*/N\ ... \t™=2a,dV.
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We recall that if w = df, where f is a real-valued function, then
d x,df = 4(Hav ,

where 4,(f) is the Laplacian of f taken with respect to the metric ds*.
These operations make sense in the case that ds* = ds?, and we will denote
the Laplacian with respect to ds* by 4.

3. The integral formula

Let O denote a choice of origin in R™*"; then the linear differential form
Q=23X-e)r"=1}X.dX

is defined independent of the particular family of the orthonormal frames {e,}
and orthonormal coframes {¢°}, and hence induces a globally defined differ-
ential form on M. As such Stokes’ theorem applies to yield the integral formula

(.1) 0=fd*,.o= fA,(%X-X)dfv.

The explicit expression of the resulting integral formula is simplified by the
introduction of the vector
W* = SAz ke, + S(Tt, — )iz,

3.2
G2 + Z(h,00). e, -

The naturality of this vector is apparent from the following proposition.
Proposition 3.3. Let a be any fixed vector in R™*"; then

(3.3) dya-X) = a-h* .
Proof. Utilizing the structure equations, we have
da-X) = Z(a-e)h,z*t ,
d(a-e)h, — Zpt¥a-ey)h,
= S(a-e)ALhh + Z(a-e)[E, — ['Hh ot
+ Z(a-ep)hh )t

and hence contracting the coefficients on « and 7 gives (3.3) as claimed.
In particular this last Proposition is true if ds* = ds®. In this case the vector
characterized by the last proposition will be denoted by 4. We note that

(3.4) h=3Aie,,

which is the mean curvature vector of the immersion.
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With this preparation the integral formula obtained from (3.1) may be stated
as follows.

Theorem 3.4. Let M be a compact oriented manifold without boundary
endowed with the riemannian metric ds* = X (z*)?, and let

X:M— Rm™*"

be an immersion with induced metric ds* = g (:°%)?, then
3.5) 0= f (S5, + X-h¥)avt .
M

Proof. Since

dX-e)h, — (X-e)h gt
=t°h, + X(X-e)¢ih, + 2(X-e)gLh,
+ (X-e)dh, — X(X-e)h ¢
= gt + J(X-e)(¢l — ¢/Dh,
+2(X-e)(dhg;, — h¢Hh,
+ Z(X'ei)SDiha >
we have
C(X-e)h,),, =g, + (X -e)'s, — I'hg,
+ 2(X-e)h,dr),. + 2(X-e)A..z8.
=2g + X -h*,
which gives (3.5) by integration.

We note that applying the formula to the special case, where ds* = ds?,
gives

(3.6) 0= f(m + X-hdVv
M
which is a classical formula of Minkowski.

4. Applications to volume-preserving immersions

Theorem 4.1, Let X: M — R™*" be an immersion of a compact oriented
riemannian manifold without boundary. Then among all volume-preserving
diffeomorphisms, the isometries are characterized as those for which the
integral

—fX-h*dV
M
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attains the minimal value of m times the value of vol. M.
Proof. By Newton’s inequality, the hypothesis of volume-preserving
implies

L5 > Wgym=1,
m
or
4.2) Jg,—m>0
with equality if and only if
(4.3) &=1 (Q<La<m.

As such substraction of (3.5) from (3.6), together with the hypothesis that
dVt = dV, gives

o=jﬂ&fam+Xﬂﬁ—me,

but then (4.2) implies

fX-(h* — RV <0,
M

or

fX-h*dV* < fX-th — _mvolM .
P i

If this maximum is achieved, then the integral formula becomes
0= [(Sg. — mav,
M

and hence (4.2) forces
Ega —m= 0 s

and the equality statement (4.3) implies that the immersion is an isometry.
Corollary 4.4. Let X: M — R™*" be a volume-preserving immersion of a
compact oriented riemannian manifold without boundary. Then

h* = h

if and only if the immersion is isometric.
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5. A general rigidity theorem

Now consider the situation that the metric ds* comes from a second
immersion. Thus we have the picture

M X; R7n+n

N
X#\
Rm+n

with ds? = dX-dX and ds* = dx*.dx*.
Theorem 5. A necessary and sufficient condition that two immersions of a
compact oriented manifold without boundary differ by a translation is that

h* = h,

where h* is defined by (3.2), and h, is the mean curvature vector of the X*
immersion.
Proof. By Proposition 3.3 we have

4(X — XY.a = (W* —h)-a.

Therefore X — X* = constant if and only if #* = h,.

As a corollary we obtain the rigidity theorem that two isometric immersions
of a compact oriented riemannian manifold without boundary differ by a
translation if and only if they have the same mean curvature vectors. In the
case of hypersurfaces this was a problem proposed by Minkowski.

6. Remarks on the paper of Chern and Hsiung

The integral formula in [1] was derived for volume-preserving diffeo-
morphisms between compact submanifolds of euclidean space without
boundaries. One of the basic tools in [1] was the observation that Géardings
inequality applies to a classical mixed invariant of two positive definite
quadratic forms. We will now show that a direct calculation of the mixed
invariant allows us to deduce their inequality from Newton’s inequality.
C. C. Hsiung has pointed out that this is done by a different method in [2].

Let V be an n-dimensional real vector space, and Hom (¥, V) the real vector
space of all n X n matrices with real coefficients. Then for X, Y € Hom (V, V)
we introduce functions Pi(X, Y) for 1 < i< n — 1 by

det(X + tY) =detX + tP(X,Y) + - + " 'P'(X,Y) + t"detY .
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In particular

P(X,Y) = %. det (X + 1Y), = <[X + 1Y], d(det)>(X) ,

where [X + tY] is the tangent vector to the curve X + tY in Hom (V, V),
and { , ) isthe canonical bilinear pairing between the tangent and cotangent
spaces of Hom (V, V) at X.

If we introduce the natural coordinates

7;;: Hom (V, V) - R
defined for X = (X;,) by =;;(X) = X, then

d(det)]x = ZMdﬂile
or;;
= trace (cofactor X-dX) ,

and
(X + 1Y), dX> = jt 7 X + V)]0
= (ﬂ'ij(Y)) =Y.

Therefore by linearity
p(X, Y) = trace (cofactor X-Y) .
If X is non-singular, then
cofactor X = (det X)X-',

and hence the classical mixed invariant of the pair X, Y utilized by Chern and
Hsiung in [1] is

_PXY)

1
6.1 Y, = = _trace(X'Y).
©.1) ¥ ndet X n ( )

The basic inequality used in [1] is thus equivalent to the fact that positive
definite symmetric matricies X, Y satisfy

i trace (X-1.Y) > ( detY )!/n
n

det X

with equality if and only if Y is congruent by an orthogonal matrix to a
multiple of X. By diagonalizing ¥ with respect to X this is an immediate
consequence of Newton’s inequality.
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Utilizing the explicit expression (6.1) of the mixed invariant, Donald Singley
has proved that the integral formula in [1] may be generalized to immersions
of compact riemannian manifolds without boundary by the integral formula

0= [desixo.
M
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