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TRANSFORMATION GROUPS ON RIEMANNIAN
SYMMETRIC SPACES

TAKUSHIRO OCHIAI

1. On any Riemannian space N, we denote by I(N) (resp, by I(N)°) the
group of all isometries (resp.. fee Memtity eonneeied component of I(N)). The
purpose of this note is to prove the Mtowkg results

Theorem 1. Let M be a Riemcmnmn symmetric space of the noncompact
type, and L a (not necessary connected) effective Lie transformation group an
M.IfLΏ r(Mf> then I(M) D L.

Corollary (E. Car tan). Let M be a Riemannian symmetric space of the
noncompact type. Then 1(M) is isomorphic to the group of all automorphisms
of /(M)°.

Theorem 2. Let M be an irreducible Riemannian symmetric space which
is not of the Euclidian type, and let <3 be an I(M)Q-invariant differential
operator on M. Then any transformation f of M leaving Si invariant is an
isometry.

Theorem 1 has been proved partially in [4]. The author wishes to thank
Professor T. Nagano for his valuable and generous suggestions.

2. Denote by Gn the isotropy subgroup of any transiΐiw:
group G on a manifold N at any point n e N, and by M a Riemannian
symmetric space of the noncompact type unless stated otherwise. Then the
following properties of M are well known:

(i) M is homeomorphic to an open cell.
(ii) Each irreducible factor in the de Rham decomposition of M is again

a Riemannian symmetric space of the noncompact type.
(iii) l{Mf is semi-simple.
(iv) l(Mf is also the identity connected component of the group of all

isometries of any l(My-invariant metric on M.
(v) I(M)°m (m e M) is a maximal compact subgroup of 7(M)°.

(vi) I(M)l Φ liMfn ifmφn (m, n β M).
A Riemannian symmetric space Λf (not of the Euclidian type) is irreducible
if and only if I(N)° is simple, and in this case, the linear isotropy representation
of I(N)°n (n z N) is irreducible.

Lemma 1. Let G be an effective Lie transformation group on M such that
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G D 7(M)°. / / an element g e G commutes with each element in 7(M)°, then
g is the identity transformation. In particular, the center of G consists of the
identity transformation.

Proof. Let m be a point in M. Since hg(m) = gh(m) = g(m) for any
h € I(M)°m and g(m) = h'girn) = *Λ'(m) for any Λ' € 7(M)°(m), we have l(M)°m

= 7(M)°(m), and hence g(m) = m by (vi). Thus g is the identity.

Lemma 2. / / G is a connected, transitive Lie transformation group on M,
then, for any meM,

(a) Gm is connected,
(b) a maximal compact subgroup of Gm is also a maximal compact subgroup

in G.

Proof, (a) This is due to that M is simply connected, (b) Let H (resp. H')
be a maximal compact subgroup of Gm (resp. G) such that H' Z) H. Then
GjHf and Gm/7ί are homeomorphic to an open cell. Consider the canonical
fibration: G/H-+G/Gm whose standard fibre is GJH. Since G/Gm(^ M)
and Gm/H are homeomorphic to an open cell, G/H is also homeomorphic to
an open cell. Consider another canonical fibration: G/H —> GjH' whose
standard fibre is H'\H. Since G/H and G\Rr are homeomorphic to an open
cell, H'/H must be contractible. Hence H = H'.

Lemma 3. Let G be a connected, effective Lie transformation group on
M such that G Z> 7(M)°. Then any connected abelian normal subgroup A of
G cannot be transitive on M.

Proof. Suppose that A were transitive. Since A is effective, Am(m e M) is
the identity. Thus A acts simply transitively on M. In particular A is a vector
group. We fix a m e M, and let φ: A —> M be the natural identification map
of A with M defined by φ(a) = a(m) (aεA). For each g € 7(Λf)°, we define a
transformation g*: A —>A such that φog* = go^>. Then g* is an affine
transformation of A. In fact, g*(α) = yr 1 g y>(α) = ^ ( g a ί m ) ) =
φ~\gag~ι g(m)) = gag"1 + <τ(g), where σ(g) € /I is defined by σ(g)(m) =
g(m). Then it is easy to see that the map: g -> g* is a faithful representation
of 7(M)° into the affine group of A. Since any affine representation of semi-
simple Lie groups has a fixed point, 7(M)° has a fixed point in A. This is a
contradiction.

Lemma 4. Lei G fee as in Lemma 3. TΛen G is semi-simple.
Proof. Let v4 be any connected abelian normal subgroup of G. It suffices

to show that A is trivial. In fact, the orbits of A define 7(M)° invariant foliation.
Therefore each orbit is again a Riemannian symmetric space of the non-
compact type (c.f. (ii)). Therefore, by Lemma 3, each orbit of A must be a
point. Since G is effective, A must be the identity.

The following Lemma 5 is well-known.

Lemma 5. Let G be any connected semi-simple Lie group without center.
Then any connected subgroup of G which properly contains a maximal compact
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subgroup of G contains a normal subgroup of G.
Lemma 6. // G is a connected effective Lie transformation group on M

such that G z> /(Af)°, then G = /(Af)°.
Proof. By Lemma 4, G is semi-simple. By Lemma 2, Gm(ra e M) contains

a maximal compact subgroup of G. Since the center of G is trivial by Lemma
1 and G is effective, Gm (m e M) is a maximal compact subgroup of G by
Lemma 5. In particular, M has a G-invariant metric, which is, of course,
7(M)°-iiίvariant. Hence G = /(Λf)° (c./. (iv)).

Lemma 7. Lei N be a Riemannian symmetric space such that each
irreducible factor of N is not of the Euclidian type. If G is an effective
transformation group on N such that G contains I(N)° as a normal subgroup,
then G c I(N).

Proof. First assume N is irreducible. Denote the metric of N by τ. For
any geG, gτ is also an /(M)°-invariant metric, since l(gτ) = gig'Hgτ) = gτ
for any Z € 7(M)°. Since iV is irreducible, gr = cτ for some constant real
number c. In particular, g is a homothetic transformation. Since N is complete
and not of the Euclidian type, g is an isometry. Thus G c 7(M) when iV is
irreducible. The general case where N is reducible can be easily verified if we
note that g transforms each irreducible factor of N onto an irreducible factor.

Proof of Theorem 1. By Lemma 6, the identity connected component of
L is equal to /(M)°. Therefore L contains 7(M)° as a normal subgroup. Thus
by Lemma 7, L c I(M).

3. Let G be a Lie group, and G° its identity connected component. Far
any g e G, we denote by Inn (g) the inner automorphism of G° defined by g.
We also denote by Ad (g) the automorphism of the Lie algebra of G° induced
by Inn(g).

Proof of the Corollary. Define a natural homomorphism c: /(M) —»
Aut(/(M)°) by Kg) = Inn(g). Then by Lemma 1, t is injective. Therefore
we can identify 7(M)° with c(I(M)°). We define Aut (7(M)°)m by
{φ β Aut (/(M)°) \φ(I(M)l) c /(M)y. Then by (vi), Aut (7(Λf)°)m Π 7(M)° =
7(M)°m by (vi), and Aut (7(M)°)/Aut(7(M)°)m is identified with M=7(M)°/7(M)Jι.
Thus Aut(7(M)°) can be considered as a Lie transformation group on M
which contains 7(M)°, and the corollary follows from Theorem A and the
following lemma.

Lemma 8. Aut (7(M)°) is effective on M.
Proof. We denote by % (resp. $TO) the Lie algebra of 7(M)° (resp. I(M)°m),

and also donote by pm the orthogonal complement of $ m with respect to the
Killing form of !g. We remark that [pm9 pm] = $ m . Since any automorphism
of $ preserves the Killing form of $, Ad (φ)(pm)apm for any φ e Aut (7(M)°)m,
and the linear isotropy representation of a φ e Aut (7(M)°)m is exactly the
restriction of Ad (φ) to pm. Therefore if a φ ε Aut (7(M)°)m operates on M as
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the identity, then A d ( 0 is the identity on pm. Since [pm, pm] = $ m , A d ( 0
is the identity on $. Hence φ is the identity, and Aut (/(M)°) is effective.

4. Let V be a finite dimensional vector space over the field f. Denote by
Sk(V) the vector space of all k-th contravariant symmetric tensors of F. The
group GL(V) of all linear isomorphism of V naturally operates on Sk(V). An
element B of Sk{V) is defined to be non-degenerate if there is no non-zero
vector ζ in F * (the dual vector space of F) such that c(ζ)B = 0, where Kζ)#
denotes the usual inner product of B with ζ.

For any subspace g of F (x) F * , we define gfc by

g* = g (X) S*(F*) n F (8) S* + 1 (F*) .

g is defined to be of finite type if g* = 0 for some k.
Theorem A (Guillemin-Quillen-Sternberg [2]). Let t be the field of complex

numbers. Then a subspace g of V ®V* is of finite type if and only if g
contains no element of rank 1 (i.e. an element of the form v ® ζ , v € F , ζ e F*) .

Lemm 9. Let ϊ be the field of real numbers, and G a Lie subgroup of
GL(V). If there is an element B in Sk(V) (k > 2) which is non-degenerate and
invariant under G, then the Lie algebra g ( c F ® F*) is of finite type.

Proof. Denote the complexification of V (resp. B, g) by F * (resp. B^, g*).
Then B* e Sk(V^) is also non-degenerate. It suffices to show that g* is of
finite type. In view of Theorem A, it suffices to show that g^ has no element
of rank 1. Now suppose that g^ has an element T of rank 1. Then we can
choose a basis [v19 , vn] (n — dim F) such that T(y^) Φ 0 and T(Vi) — 0
if i Φ 1. Since B^ is invariant under G, ΣLιB*(vjω, , T(vja)), , vHk))
= 0. Therefore tiTiv^B^ = 0, which is impossible since B* is non-
degenerate.

For an w-dimensional smooth manifold N, we denote the frame bundle of
N by «F(ΛΓ). If we fix an n-dimensional real vector space W, then ^(N) is a
principal GL(PF)-bundle, and the fibre JHW)n of ^(N) over neN can be
considered as the totality of linear isomorphisms of W onto the tanget space
T(N)n of Λf at n. The right operation of GL(W) on ^(N) is natural one, given
by &{N)n X GL(W) 3 (x, a) ^ xa = x ae ^(N)n (neN). For any diffeo-
morphism / of N, its differential df can be considered as a diffeomorphism of
^(N). Let G be a Lie subgroup of GL(W). A G-subbundle P of «̂ (ΛΓ) is
called a G-structure on iV. Note that P is a submanifold of &(N). A diffeo-
morphism / of N is called a G-automorphism if (df)(P)(ZP. A G-structure P
is called to be of /m/te Γype if the Lie algebra g of G(gd W ® ϊ^*) is of finite
type.

The following theorem is fundamental.

Theorem B [7], [6]. Let P be a G-structure of finite type on N. Then the
group Aut (P) of all G-automorphisms is a finite dimensional Lie transfor-
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mation group on N.

Lemma 10. Let N be an irreducible Riemannian symmetric space, which
is not of the Euclidian type, and 2 be an I(N)°-invariant differential operator
on N. Then the group L of all transformations of N, which leave 9) invariant,
is a finite dimensional hie transformation group.

Proof. The homogeneous part of the highest degree of 2 defines a 7(ΛΓ)°-
invariant contravariant symmetric tensor 5(S) on N. Clearly S(@) is nowhere
zero. Fix a point n e N9 since the linear isotropy representation of I(N)°n is
irreducible, S(S)n is non-degenerate. In fact, the vector subspace of all
elements ζ such that c(ζ)S(@)n = 0 is a 7(iV)£-invariant subspace. Define a
Lie subgroup G(#) of GL(T(N)n) by {g e GL(T(N)n)\g(Smn) = S{9)n). Since
Siβf) is 7(Λ0°-invariant and I(N)° is transitive on N, S(@) canonically defines
a G(^)-structure P(&) on N. In fact, the fibre of P{0) over ή e N consists
of all linear isomorphisms x: T(N)n -> T(N)n< such that x{S(9)n.) = S(@)n. By
Lemma 9, P{@) is of finite type. Therefore, by Theorem B, Aut (P(2)) is a
finite dimensional Lie transformation group on N. Since S(@) is also L-
invariant, L is a subgroup of Aut (P(^)). It is easy to see that L is closed in
Aut (P(^)). Therefore L is also a finite dimensional Lie transformation group.

Lemma 11. With the same notation as in Lemma 10, the identity
connected component L° of L is equal to I(N)°.

Proof. Since the lemma has already been proved for N of the noncompact
type, we now consider the case where N is of the compact type. If L° is
strictly greater than /(ΛΓ)0, then the linear isotropy representation of I(N)Q

n

(n e N) contains a non-trivial scalar multiplication [5]. Therefore LPn cannot
leave S(<2))n invariant, and hence L° cannot be strictly greater than I(N)°.

Proof of Theorem 2. Theorem 2 follows from Lemma 10 and Theorem 1
for N of the noncompact type, and from Lemma 11 and Lemma 7 for N of
the compact type.

Appendix. Since [2] has not yet been published, we shall give a proof of
Lemma 10 without using Theorem A. We use the same notation as in the
proof of Lemma 10.

Another Proof of Lemma 10. We denote the Lie algebra of G(β) by ®,
and have only to check the case where ® is of infinite type. Since © contains
the linear isotropy Lie algebra which is irreducible, so is ©. By the classification
theorem of irreducible infinite Lie algebras [4], we have two cases which may
be possible:

(i) © contains an element of rank 1,
(ii) T(N)n has a complex structure which ® leaves invariant.

Since © leaves S{0)n invariant, © contains no element of rank 1 (see the proof
of Lemma 9). Therefore only the case (ii) might be possible. In this case our
G(D) structure defines a /(ΛO°-invariant almost complex structure on N. It is
well-known that an 7(N)°-invariant almost complex structure is unique on N
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and integrable. Thus N is a Hermitian symmetric space and Aut (P(@)) is a
subgroup of the group of holomorphic transformations which is known to be
a finite dimensional Lie group.
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