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MORSE THEORY OF CERTAIN SYMMETRIC SPACES

S. RAMANUJAM

Introduction

T. T. Frankel applied Morse theory to the classical groups, which we shall
denote by G, and Stiefel manifolds [1] by taking the matrix representation of
the classical groups and using the "trace function" as Morse function. The
present author [4] obtained a Morse decomposition for certain symmetric
spaces G/K by using methods similar to those of Frankel with the same trace
function since those symmetric spaces are imbedded in the pσup (?.
M. Takeuchi [6] has considered the same problem and others from a more
general point of view.

The purpose of this paper is to eliminate the heavy manipulation of [4] and
to point out alternate methods with the symmetric spaces described in terms
of matrices, so that this paper differs from [4] in the following three ways:

First, the critical submanifolds of G/K are shown to be the intersection of
the space G/K and the critical submanifolds of G.

Secondly, the indices of the critical submanifolds of G/K are immediately
obtained from that of the critical submanifolds of G.

Thirdly, "Floyd Theorem B" is used not to a great extent but only for the
case t/(2n)/Sp(n).

1. Preliminaries

We briefly describe how the coset space G/K arises as a symmetric space.
Let G be a compact connected Lie group with a left and right invariant
Riemannian metric. (In all our discussions G will denote the classical groups,
i.e., SO(ri), U(n) or Sp(rc).) Let θ be an involution on G, K the full fixed set,
and K1 the identity component of K. Then G/K is a symmetric space.

Let g be the Lie algebra of G. Then g decomposes into a natural direct sum,
g == ϊ Θ p with ί = {x € Q\S(X) = x} and p = {JC € Q\S(X) = —JC} i.e., into
eigenspaces of eigenvalue + 1 and — 1 for s, the differential action induced by
θ on Q. Let ϊj c p be a maximal subalgebra of p. Then ΐ) is abelian and is
called Car tan subalgebra.

Define η\ G-^G by η(g) = g-θ(g~ι). Then η(gK) = η(g), which means η is
constant along the left cosets of K. Hence, η induces a map η^: G/K —» G.
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Let M be the image of p under the exponential mapping. Then η^ is a
homeomorphism of G/K onto Λί, and the natural action of K on G/K (under
the imbedding gK —• g-θ(g~1)) becomes the adjoint action of K on G restricted
to M for

k(gK) -> k g θig-'k-1) = kgθ(g~ι)θ(k-1) = kgθ(g~ι)k-' .

So we think of G/K as a submanifold M of G, and M is a totally geodesic
submanifold. In particular the geodesies of M through e (the identity element)
coincide with the 1-parameter subgroups of G, which lie in M.

Let T be the image of ί) under the exponential map. Any torus of this form
will be called a maximal torus of G/K—M, and these tori have the following
two properties:

1) Every point of M lie on a maximal tori of M.
2) If T and V are two maximal tori, then T = kTk'1 for some k € K\
The dimension of the maximal torus is the rank of G/K. If the rank of

G/K = rank of G, then G/K is said to be of maximal rank.

2. Critical submanifolds of the classical groups

Frankel considered the function f(g) = Re tr g, g e G on the classical groups
G. Here, of course, G is represented by matrices. Frankel showed [1] that
the critical set for this "trace function" consists of all matrices in G satisfying
the condition g2 = e. (We call such a matrix a Grassmann matrix in G). Thus
for

SO(n), the critical sets are real Grassmannians — ,
SO(ή) Π {O(2k) x O(n - 2k)}

U(ri), the critical sets are complex Grassmannians ^ ,
U(k) X U(n - k)

Sp(ή), the critical sets are quaternionic Grassmannians ^ ^ ,
4 Sp(k) x Spin - k) '

k = 0, 1, . . , n .

Before we describe these critical sets in terms of matrices, we give the
following well-known definitions.

Definition. An n x n matrix X (with real or complex entries) is said to
be symmetric if X = X1 (X1 = transpose of X).

A matrix X (real or complex) will be said to be skew-symmetric if
X — —X1. (Remark: A skew-symmetric matrix of odd order is singular. We
will deal only with even order matrices in this case.)

A complex matrix X is Hermitian symmetric if X = X1 (X means complex
conjugate of X).
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A complex matrix X is skew-Hermitian \ίX — —XK
Now, following Steenrod [5, p. 205] we show that the real Grassmannians

Gn,2k> A = 0, 1, , [w/2], which arise as critical submanifolds of SO(n), are
the set of symmetric matrices in SO(ri). Suppose h is any symmetric matrix in
SO(ri). Then for any g e SO(ri), ghg'1 is again symmetric and conversely.
Thus any symmetric matrix in SO(n) is (special) orthogonally equivalent to a
symmetric matrix on the maximal torus. But symmetric matrix on the maximal
torus are precisely those matrices which have + 1 or — 1 on the diagonal.
Since we are in SO(n), the determinant must be + 1 . Hence the — Γs must
occur in pairs. Further the diagonal matrices with the same number of + l's
and — Γs on the diagonal are conjugate to each other. Thus, if

σ = I(n — 2k) x —I(2k) , where I(2k) is 2k x 2k identity matrix ,

then the set of all symmetric matrices in SO(n) in obtained by the adjoint
action of the group SO(n) on σ for all σ. This is precisely how the critical
manifolds of the function / are obtained. One obtains the critical points on
the standard maximal torus of SO(n) (these turn out to be σ's) and then the
critical manifolds for SO(ή) are obtained by letting SO{n) act on σ by
conjugation.

The standard maximal torus of SO{n) is

{R%{βd X X R2(0m) X 1} , if n = 2m + 1 ,

{R2(θλ) x x R2(θm)} , if n = 2m, where

/ cos θ sin θ\

\—sin0 COS0/

A similar argument shows that the complex Grassmannians Wnik, k =
0,1, , w, which are critical submanifolds of U(n) (for the trace function),
are the set of all Hermitians symmetric matrices in U(ri). The standard maximal
torus of U(ή) is

{eiH X X eiΦ*} .

We imbed Sp(n) in t/(2w) (more precisely in SU(2n)) under the
correspondence

/ A

Now, we can think of the quaternionic Grassmannians Qnk, k = 0, 1, , n,
as the set of "hermitian symmetric" matrices in Sp(ri)c.U(2n). If one defines
the quaternionic conjugation in the usual way (i.e., a + bi + cj + dk = a
— bi — cj — dk), then quaternionic Grassmannian is the set of all matrices
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X e Sp(n) such that X — Ύι. Confusion, if any, can be avoided by defining
"complex hermitian symmetric matrices" (for the case U(ri) and "quaternionic
hermitian symmetric matrices" (for the case Sp(ή)). The standard maximal
torus for Spin) c SUilri) is

{eίβl x x eiθn x e~iθl x x e~iθn) .

3. Description oi the symmetric spaces

Uiri)/Oiri). On Uiri) consider the involution θiX) = X, X = complex
conjugate of X. The fixed set is Oin), the identity component is SOiή), and
the standard maximal torus for Uiri)/Oin) is {eiH X X eiθn}. Uiri)/Oin)
C Uiri) can be identified with the manifold of all symmetric matrices in Uiri).
Since it is imbedded in Uiή) by g Oiri) —• g-θig'1) = g g'1 = gg\ the coset
space Uin)/Oin) is sent into symmetric matrices in Uiή).

Let /4 be a symmetric matrix in f/(n), e< be an eigenvalue, and xt the

corresponding eigenvector. Then Axi = e ^ , ΪjCt = εtjct, x€ = A"1!^ = ^4—xί5

because A"1 = A and e ^ = 1. Thus 4̂*$ = eiXt, and we conclude that the
eigenspace of A is real, so that we can choose vectors x19 "9xn with xtxt = <5̂

/•• °\
such that A((x4Λ) = (0c?w)) . Hence

' . IK*,,))"1 € Uiri)/Oin) .
0 *<

This proof is due to H. Iwamoto [3].
Spin)I Uiri). Spin) can be imbedded in SUilri) under the correspondence

I A B\ -
A + Bj <-*[ 3 -g . The involution on Spin) is 0(Z) = Jf = JnXJΰ1, K —

I j 5 ] , and the fixed set is ( R .) 04, 2? real). This is precisely the

imbedding of Uiri) in SOi2ri)cSUi2n). The imbedding of Spin)/Uiri) in S/?(w)
is given by g Uiri) -^> g-gL.

As in the case of Uiri)/Oin) it can be shown that if A is a symmetric matrix
in Spin), i.e., ̂ 4 — A~ι

9 then the eigenspace of A is real. Moreover, v4 e S/?(n)
if and only if A = JnAJιx. It follows that if JC is a (real) eigenvector
corresponding to the eigenvalue ε for Λ, then J" 1 ^ is an eigenvector
corresponding to the eigenvalue ε. In other words A = gtg~ι, where g e Uiri)
and ί is a diagonal matrix of the form eiθl X X e i ί n x e~iθl X x e" i<?Λ,
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so A 6 Sp(ή)/U(ri), and hence Sp(ή)/U(n) can be thought of as the manifold
of symmetric matrices in Sp(ri).

U(2ή)/Sp(ri). The involution on U(2ή) is Θ(X) = ]nXJ~\ and the fixed set

is ( - -) which is Sp(ή). As a symmetric space U(2ri)/Sp(n) is imbedded

in V{2ή) under the mapping gSpin) -> g/^gV"1.
We define X e t/(2rc) to be a transvection if and only if X~ι = JnXJ~\ A

simple computation shows that between the set of transvections (denoted by
X) and the set of all skew-symmetric matrices (denoted by A) in U(2ή) there
is a one-to-one correspondence given by A — XJn, X = —AJn. Under the
imbedding g-Sp(ή) -* gJ^J-1 the coset space U(2ή)/Sp(n) is sent into
transvections.

Now, if x is an eigenvector for the eigenvalue ε of a tranvection, then J^x
is also in the eigenspace corresponding to the eigenvalue ε. This means that
X = gtg~\ where g e S/?(n), and / is a diagonal matrix of the form
{eiθl X X ei9n x £ί<?1 x X eiOn). Since all the elements in U(2ή)/Sp(ή)
are transvections, there is a one-to-one correspondence between U(2ή)/Spin)
and the set of all skew-symmetric matrices in £/(2rc).

SO(2ή)/U(n). The involution on SO(2ή) is Θ(X) = JnXJ-1- Since here we
think of [/(«) as imbedded in SO(2ή) under the correspondence /I + ιB

)
e symmetric space SO(2n)/ U(n) is imbedded in SO(2n) under

the correspondence gU(ή) -+ gJng~xJ-χ.

We follow Steenrod [5, p. 213] to establish a correspondence between Wn,
the set of skew-symmetric matrices in SO(2ri), and SO(2ή)/U(n). Let φ(X)
= Z/ π Z ί be defined on SO(2ή). Then ^ is onto Wn. Also ^(Z) = Jn if and

onlyifZ = ( R A)9 i.e., X € U(ή). Hence c6 induces an identification

between the coset space SO(2ή)/U(ή) and Wn. In this identification
SO(2ή)/U(n) is imbedded in 5O(2π) under g U(ή)-> gJng-\ Thus the
matrices X € SO(2ri)/U(ri) (considered as a symmetric space imbedded in
SO(2n)) are in a one-to-one correspondence given by X = — y47n, v4 = X7n

with the matrices A e Wn.
Remarks. (1) The set of skew-hermitian matrices in U(ri) can be identified

with the complex Grassmannians Wnyk, k = 0, 1, , n. The argument is
very much similar to the case of hermitian matrices in U(n). In the case of
hermitian matrices in U(ri), Wn^k are obtained by conjugating a real diagonal
matrix with ± 1 along the diagonal, whereas in the case of skew-hermitian
matrices the Wnyk are obtained by conjugating purely imaginary diagonal
matrices with ±i along the diagonal.

(2) The set of skew-hermitian matrices in Sp(n) can also be identified with
the quaternionic Grassmannians Qnk, k = 0, 1, , n. As in the previous
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case such Qnk arise by conjugating purely imaginary diagonal matrices by the
group Spin).

(3) Lastly, we find the skew-symmetric matrices in Spin), and know that
in Ui2ή) between transvections Z (i.e., matrices such t h a t / ^ Z / ; 1 = Z" 1) and
skew-symmetric matrices A there is a one-to-one correspondence given by
Z = -AJn, A = XJn. We also know that Ui2n)/Spin) is the spaceof all
transvections in C/(2rc). Now, if A <= Spin), then JnAJ'1 = A φ=φ JjClJ'1

= Z / n <—> /jjΐ/;1 = Z , so that the transvections Z must be in Spin) and
ΛΓ = JC"1. Thus these Z are the β n f c in Spin). Hence the skew-symmetric
matrices A in 5p(π) are in a one-to-one correspondence with all the Qn^ and
this correspondence is given by A = Z / n , Z = — Λl/n, Z 6 Q n fc, & = 0,1, , n.

Real Grassmannians. Consider the involution Θ on SOip + q) defined by

ΘiX) = IPt9XIM, where 1M = fc _ 7 ° ) , p + q = n. The fixed set K is

SOip + q) Π {0(A) X #(<?)}, and the identity component is SOip) X SO(q).
The real Grassmannian G p + ( 7 > p arises as a symmetric space, and the imbedding
of Gp+qyP in SOip + q) is given by gK -> gIPyqg-Ίp^q.

The Grassmann manifolds Gn v and — — are essentially the same,
Oip) X Oiq)

but — , p + q — n, are all the symmetric matrices in Oin) of trace
O(p) X " ' ^

p — q. Hence G P H j P can be identified with all symmetric matrices in O(w) of
trace p — q. If SUyP is the set of all symmetric matrices in Oin) orthogonally
equivalent to 7 P Q , then there is a one-to-one correspondence between SUtP and
GTOϊP given by

Y = SIpq , YIpq = 5 , F € Gp+Qijn S e Sn^p .

complex Grassmannian Wp+q^p. Consider the involution ΘiX) =
IPjqXIPiq on L/Q? + ^ ) . The fixed set K is Z7(p) x Uiq), and the coset space

ί s ^ b ^ ^ d ώ ^ + «> u n d e r

X
Let Hp+QiP be the set of hermitian matrices in t/(p + q) unitarily equivalent
to IPiQ. Then there is a one-to-one correspondence between Wp+q,p and Hp+qyP

given by

F = Hlpq , F/pW = H , Ye Wp+QiP , ^ € Hp+qyP .

77ιe quaternionic Grasmannian Qv+q^v. Since we imbed 5p(n) in Ui2n),
this case is much similar to the previous one.

4. Critical submanifolds of symmetric spaces

Frankel showed [1] that for the function fig) = Re tr g, g € G, the critical
set consists of all matrices g such that g2 = e, i.e., of what we have called
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Grassmann matrices. The symmetric space M = G/K is imbedded in G, and
we can consider the restriction of / to M.

Lemma [4]. grad / is tangent to M at each point m € M.
Proof. Consider the anti-involution τ: G -* G defined by τ(g) = θ(g~ι).

Then τ leaves M fixed, because M consists of all elements of the form g-θ(g~ι)>
g € G and

rig-dig'1)) = θ(θ(g-ιYλg-1) = θ(θ(g))θ(g-1) = gθ{g~ι) .

For f, the differential action of r,

τ(fl) = S(-Q) = s ( - ϊ - p) = - I + p ,

where s is the differential action induced by θ. Hence τ leaves p fixed. But τ
is an isometry. Hence F r, the fixed set of r, is a totally geodesic submanifold
of G, and M, the identity component of Fτ, is totally geodesic in G.

It can be verified that Retr g — Retrτig). In a bi-invariant Riemannian
metric, this means that i leaves grad / fixed. Thus grad / is tangent to M.

This lemma means that the critical points of / on M c G are the same as
those of / restricted to M. (Here / is still a function defined on G.) Since the
critical points of / on M c G are the matrices m e M such that m2 = e and
these matrices are precisely the critical points of / restricted to M, we have the
following

Proposition. Consider the junction f(m) — Retrm on M. Then m e M is
critical for f if and only if m2 = e. Let Γf(G) = critical points of f on G.
Then ΓjiM) = Γf(fj)ΠM.

Next we observe that to locate all such matrices m e M, it is enough to find
such matrices on the standard maximal torus of M and conjugate them by K',
the identity component of the full fixed set of the involution θ.

The standard maximal tori are (see [2]):

U(n)/O(n). e^ x . . . x ei9* .

Sp(n)/U(n). eίθl x -. . x eiθ* x e~iH x ... x e~ie* .

U(2n)/Sp(n). eiθ* x . - . x e«* X eiθ* x . . . x eiβ- .

S(K2n)IU(μ). Rt(0J X - • X R2iβJ X RJί-ΘJ X - - X R%(-ΘJ ,

if n = 2m

#2(0i) X X Λ2(̂ m) X 1 X R2(-θi) X ' •

X R2(-ΘJ X 1 , if w = 2m + 1 ,

where

\—si

« « sin*

cos^/
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( cos θx sin θλ

0
θ

wn

••' . τ =

0
0

0

cos0? /

T 0\

,0 77

Thus we immediately see that the critical manifolds of the respective spaces
are as follows:

U(n) .
O(ή) '

real Grassmannian
SO(n)

Spin) .

U(n)
complex Grassmannian =

U(2n) .

Spin)
: quaternionic Grassmannian =

SO{ή) Π {Oir) x O(n - r)} '

r = 0 , 1 , •••,«.

t/(n)

t/(r) X £/(B - r) '

Spir) X 5p(/ί - r) '

£/(2m)

SO(2n).
: complex Grassmannian =

C/(2r) x C/(2m - 2r)

if n = 2m, r = 0, 1, , m,

ί/(2m + 1)

1/(2* + 1) X E/(2m - 2r) '

, if n = 2 m + l , r = 0,1, ,m.

Gp+qiP: product of real Grassmannians = G p > r x Gα > r ,

r = 0 , l , - - - , « .

Wp+QtP: product of complex Grassmannians = WPtT X WQi7. ,

r = 0 , l , • - . , * .

βp+α,2>: product of quaternionic Grassmannians = β p , r X β9 >r ,

r = 0, 1, ..-,<? .
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The critical submanifolds of G/K are Grassmann matrices in K; this can
be readily seen as follows:

Any matrix in M is m = g-θig'1), g € G. Suppose m2 = e, i.e., m = m"1.
Then

Thus m is left fixed by θ, and a Grassmann matrix in G/K must be a
Grassmann matrix in K. The case SO(2n)/U(n) illustrates that the converse is
not true.

Our results can be stated in terms of intersections. For example, the first
of the results says

U(n) n U(n) _ SO(n) p + a = n
O(n) U(p) X U(q) SO(ή) (Ί {O(p) X O(q)} '

It should be emphasised that the coset space U(ri)/O(ri) is always considered
to be imbedded in the group U(ri).

One can discuss a case by case analysis, and find Γf(M) — Γf(G) Π Λί.
For example, let us find Γf(Wp+q%p) the critical set of Wp+QiP (the complex
Grassmannian as imbedded in ύ(p + q), p + q = n). Since Γf(Wp+qiP)
= Γj{U(p + q)) Π WP+Q9P, and Wp+QtP is imbedded in U(p + q) as
XIpqX~ιIpq, X € U(p + q), to obtain the required intersection we use the fact
that Γf(U(p + q)) is the set of all hermitian symmetric matrices in U(p + q),
so that

and XlpqX'1 commutes with Ipq9 i.e., XlpqX
ι € Ϊ7(p) X ί7(^). Thus we have

to find all hermitian symmetric matrices in U(p) X U(q) with trace p — q.

These matrices form the manifolds ^ ^ X
U(k) x U(p - k) l/(*') X

and must have trace p — q so that k' •=• q — k. Hence the required intersection

is ϋ<P> x ϋ (g> ft = 0 1
£/(ft) X U(p - k) U(k) χV(q-k)' ' '

4. Non-degeneracy and index of the critical submanifolds

Frankel considers σ = I(p) X —/(<?), P + q = n, a critical point of / on G.
Such a σ is in fact in the standard maximal torus of G, and the critical
submanifold obtained by conjugating a by the group G is G/C(σ) = Mff where
C(σ) is the centralizer of σ in G. In order to show that the critical submanifolds
are non-degenerate and to find their indices, Frankel shows that / has a non-
degenerate absolute maximum at σ on the manifold Gp X — l(q) (σC~(σ) in
FrankeΓs notations), and has a non-degenerate absolute minimun at a on the
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manifold lip) x Gq, where Gv denotes the classical group, which is of the
same type as G, and has p X p matrix representation, while G has n x n
matrix representation. In the language of differential equations, this means
that in Ciσ), Gv x —liq) is the stable manifold for a (i.e., the submanifold
of Ciσ) formed by all trajections of grad /, which end at a) and lip) x Gq is
the unstable manifold for σ. By dimensional reasons, it follows that Mσ is
non-degenerate. Also, at σ the tangent space of Gp X —liq) is the maximal
subspace on which the Hessian is negative definite, whence the index of Ma is
the dimension of Gp. If τ = gσg'1 is another point in Mσ, then the stable
manifold for τ is gσC'iσ)g~ι.

Let CGiσ) be the centralizer of σ in G, and CMiσ) the centralizer of σ in
M. Then Frankel has shown that grad / is tangent to CGiσ) and we have
shown that grad / is tangent to M. Hence grad / is tangent to CGiσ) Π M,
which is precisely CMiσ).

Hence, due to dimensional reasons, the stable manifold for σ in CMiσ) is
the (stable manifold for σ in CGiσ)) Π M, i.e., σC'iσ) ΠM = σC^iσ) say. A
similar statement holds for the unstable manifold for σ in CMiσ).

For example, if M = Uin)/Oin) and σ = lip) X —liq), p + q = n, then

C^Gr) =—5£2_χ —JL^L , because Uin)/Oin) is the set of all n x H symmetric
0(p) Oiq)

matrices in £/(n). The stable manifold for σ in CMiσ) is — ^ - x liq), and the
00?)

unstable manifold for σ in C^fa) is lip) X —^--.
Oiq)

If M = ϋi2n)/Spin), and σ ^ /pβ x 7M, 7M = 7(p) X -/(^) , then CMiσ)

is the set of all matrices XJjX'1]-1 (for all X e Uiln)) which commute with

<τ. Since σ and Jn commute, CMiσ) is the set of all XJnX~ι which commute

with (7. These are all skew-hermitian matrices of the form

P q P

* 0 * 0\

0 * 0 *

* 0 * 0

\ 0 * 0 * /

Hence multiplying on the right by J~ι we get CM(σ) = J^2£L X J ^ L ?

Sp(p) Sp(q)
because of the one-to-one correspondence between skew-hermitian matrices

in U(2k) and U(2k)/Sp(k). By a similar reasoning the stable manifold for σ in

CM(σ) is the set of all matrices of the form
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A

0

C

o
-h

0

0

B

0

D

0

0 \

0

0

- / „

where
\c υ is

Sp(p)
In the same way we also get the unstable manifold

for σ in CM(o).
If M = Wp+?ι2, and σ = /„_*,* X /,_*,*, then CM(σ) is the set of all

XlpqX-λIpq, which commute with a for all Z e U(p + q). Since / p β and a
commute, CM(o) is the set of all XIpqX~ι which commute with a for all
X e L'(p + q). Thus C»(σ) is the set of all hermitian symmetric matrices
obtained by conjugating Ipq by all X 6 U(p + q), which commute with σ. All
elements in Cx(σ) are of the form

k

A,

0

c,
0

p-k

0

A2

0
Q

k

Bλ

0

0

q-k

0 \

B2

0

where f̂ ,1 nM is 2k x 2k hermitian symmetric matrices of trace 0 (hence,
IA B\

all such matrices form W2Kk) and B\
D

2j i
is p + q — 2A: x p + q — 2k

hermitian symmetric matrices of trace p — q (hence all such matrices form
wp+q-ik,p-k)' Hence Cu(σ) =
for a in CM(σ) is

x W

/ -/*

0

0

0

p - k

0 0

A2 0

o -/*
c2 o

p + q-2kyp-k9

q-k

0 \

0

and the stable manifold

where the set of all matrices of the form B;
D,

is W p + q-2kyp-k

As in the case of the classical groups, if we consider another critical point
τ = kσk~ι> k € K', then the stable manifold for τ would be kσC^^k'1. The
representation for τ jwould not be unique, and if τ = kσk~ι is another
representation, then k — kc, where c e Cκ,(σ)9 the centralizer of σ in K\
Each of the two homeomorphisms x -> kxk~ι and x —• kxk~ι sending
σC^iσ) onto the stable manifold of kσC~ά(σ)k~ι induces an orientation on this
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stable manifold by means of a fixed orientation in σC^O). These two
orientations would agree if Cκ,(σ) is connected. But in the case of U(ri)/O(ri)
and the real Grassmannian, Cκ,(σ) consists of two disjoint pieces, and in these
two cases the negative normal bundles of the critical submanifolds need not
be orientable and we have to use Z 2 for coefficients in discussing homology.

We summarize the results obtained so far:

Space

Ujn)
Oiή)

Spin)
Uin)

Spin)

Critical submanifolds
(all non-degenerate)

SOin)
SOin)Π{Oip)Xθiq)}

Uin)
Uip) X Uiq)

Spin)
Spip) X Spiq)

Index

Pip + 1)
2

Pip + 1)

In the above three cases p = 0,1, , n.

SOjlή)
Uin)

Ujlm)
Uilp) X

( n = 2m

In the above case p = 0,1, , m.

SOjp + q)
+ q)Γ){iOip)Xθip)}

Uip + q)

Qp+q,p —'

Uip) X Uiq)

Spjp + q)

Udp+ 1)X Ui2q) \P+<l=m

Gp,r X Gq,r

Qp,r X Qq,r

2pi2p -

IP+Q,P- Spip) X Spiq)

In the above three cases p > q and r = 0,1, , q.

ip - r)iq - r)

2ip - r)iq - r)

4(p - r)iq - r)

5. Morse-Bott inequalities and applications of fixed points theory

The results obtained so far can be expressed in terms of the following

inequalities:

^7T
O(n)

\ U(ή)

U(2ή)

\
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SOQn); < f; V ^ P - ^ H V S P 5 « . if π = 2m
p=o

< Σ *<-2p(2p+i)(^2m+if2*+i; JO, if w = 2m + 1 ,

bi(Gp+QiP; Z 2) < 2 ^ - ( p - r x β - n ί G ^ r X G β f T ; Z 2 ) ,

r=0

r=0

fti(βp+β,P;*) < Σ *<-4,,-r,w-,,(β,.r x β,, , ;«) ,
r=0

where fc^ is the i-th Betti number, Z2 the field of the integers mod. 2, and K
any field of coefficients.

Now we show that the Morse-Bott inequalities obtained for the classical
structures of symmetric spaces are in fact equalities this is done by means of

Theorem A (Floyd). If a transformation of period 2 acts on a compact
manifold M, and F is the fixed set, then

On G/K consider the transformation of period 2: m-*m~\ G/K is
imbedded in G by gK —» g-θig'1), g € G, and θ is the involution on G. Under
the mapping m —• m~\

g-θ(g'1) - θ(g-ιYιg-1

So m"1 corresponds to the coset Θ(g)-K and the transformation of period 2 is
really gK -> 0(s)£.

We know that the critical submanifolds of the trace function on M are all
m e M such that m2 = e, i.e., m = m"1, and these are precisely the fixed set
of the transformation m —> mrι. Thus Morse-Bott inequalities and the
inequalities in Theorem A are opposing inequalities, and putting them together
we get equalities, which can be expressed in terms of Poincare polynomials as
follows:

O(ή)
. λ =

1

( 2 ) P ( M ^ ή = Σ ^^ + 1 ) P(Ψ W t , 0 .
\ U(ri) I PO

(3) P ί^^ t) = Σ ^ - m , 0 .
\ 5p(«) / P=O
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I o
( 4 ) \V(n)

= Σ t2'(2P+1Ψ(W2m+lt2p+1; i) , if n = 2m + 1 .
p=0

( 5 ) P(G p + ί > p /) = Σ t^-^"-rψ(Gp<r /) P(G9,r t) .
r=0

( 6 ) P(Wp+g,p 0 = Σ tu>-rHq-r)P(Wp>r t) P{Wv.r 0
r = 0

( 7 ) P(β p + , , p 0 = Σ ί 4 ( p - r ) ( g - r ) P(β P ι r O P(β ί fr 0

It should be observed that the field of coefficients used is Z2. Next, we show
that (except for the cases (1) and (5)) any field of coefficients can be used.
This is done by elementary considerations for the cases (2), (4), (6) and (7).

Consider — . By induction it is easy to see that a cellular
t/(l) x U(n — 1)

decomposition of this space is e° U e2 U U e2n-2, where eι is an /-dimensional
cell. It should be observed that this space has only even dimensional cells.

Again, by induction, it can be shown that ^ "*" **'— has only even
U(p) X U(q) y

dimensional cells, because its critical submanifolds have even indices and even
dimensional cells by the induction hypothesis. Since the complex Grassmannian

has only cells of even dimension, ^ **'— has no torsion and its odd
ϋ(p) X U(q)

betti numbers are zero. Hence the Morse-Bott equalities hold for any field K
of coefficients.

Also, by induction, the total betti numbers of the complex Grassmannian
Wn,q is

where I ̂  1 denotes the binomial coefficients. Hence

( 8 ) Σ Σbi(Wn,q;K)=
q = 0 i q

Same sort of argument holds in the case of quaternionic Grassmannians.
This space consists of cells of dimension = O(mod 4), and therefore has no
torsion and bt — 0 if i ^ 0 (mod 4) and bt Φ 0 if / = 0 (mod 4). Also

( 9 ) Σ Σbi(Qniq;K) = 2*.
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Thus, by Morse theory we obtain the two equalities (8) and (9) which were
used by Frankel [1], whose proofs are, however, non-Morse theoretic.

For the cases SO(2ri)/U(n) and Sp(ή)/U(ri) we observe that the critical
submanifolds have cells of even dimensions and the index of the critical sets
is also even. Thus the cellular decompositions which can be obtained for the
two spaces have only even dimensional cells, and therefore they have no
torsion and their odd betti numbers are zero. Hence the Morse-Bott equalities
hold for any field K of coefficients.

The case U(2ri)/Sp(ri) has to be handled separately. For this case we apply
Floyd's

Theorem B. // a toral group operates on a compact manifold M, and F
is the fixed set (i.e., the set of points fixed under each transformation of the
group), then

where K is either R or Zp with prime p.
Since the group Sp(ri) acts on M = U(2n)/Sp(n} by the adjoint action,

the torus TSp{n} acts on M also by the adjoint action. The fixed set n
F = TU{2n) DM, and TM = ( ^ ( 2 n ) Π M ) e is the identity component. Hence

2* = Σ HTM\ K) < Σ btf K) < Σ bi

Since Σ Σ &i(β»,* K) = 2\ we have ξ Σ UQn,κ K) < Σ

which, together with the Morse-Bott inequality, gives the result for the case
V(2ή)[Sp{ή).

Remark. Frankel has obtained Morse decomposition for Kahler manifolds
[Fixed points and torsion on Kahler manifolds, Ann. of Math. (2) 7ft (1959)
1-8]. The complex Grassmannians, 5O(2n)/C/(n), zndSpξritfUin) arehermitian
symmetric and hence Kahlerian (see [2, p. 301]). It should be pointed out
that the results of the present paper are not explicitly contained in the paper of
Frankel on Kahler maniolds. For the results of Frankel on Kahler manifolds
when applied to the three symmetric spaces mentioned above give only the
critical points but not the critical submanifolds. In order to obtain the critical
sets of Kahler manifolds, Frankel essentially used Floyd's Theorem B, and
these critical sets turn out to be the fixed set of the adjoint action of certain

toral group on these manifolds. For the space Sp^ , SO^2n^ and

/ * J , p + q= n, the adjoint action of the toral group TU{n)

(standard maximal torus of U(ri)) has been considered in [4], and the fixed
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set has been obtained as follows:

Space Fixed set

Sp(ή)/U(n) 2n distinct points

SO(2n) I U(n) 2n ~ι distinct points

+ «> (P + ^ distinct points(
U(p) X U(q) \ P

Hence in the two setups, we get two different results. Finally, it should be
mentioned that by induction we can find cell-decompositions and the Poincare
polynomials of the symmetric spaces considered in this paper.

Appendix

Here we mention briefly the non-degenerate critical manifold theory. Let
Hf be the Hessian quadratic form of / at a critical point σ of M if X is a
tangent vector at a, then Hf(X) = DxDx(f), where Dx is the directional

derivative for X. In local coordinates, Dx = 2] X1 and Hf(X) =
i dXι

2] (—L-\χίχj. Index λ of a is defined to be the dimension of the largest
Uj \dxvdxjl

subspace of the tangent space at a on which Hf is negative definite. Critical
manifold Mβ is non-degenerate if the null-space of Hf is exactly the tangent
space of Mo at each of its points. (The null space of Hf always contains this
tangent space.) If the critical manifolds are connected, then λ is independent
of the point on Mσ in this case λ is called the index of the critical submanifold.

If M is a compact manifold, and / a real-valued function having only non-
degenerate critical submanifolds {Ma} each with index λa, then M = ξh(MJ
U . . . (j ξlk(Mk) (homotopy equivalence), where ^(M^) means a λr

dimensional plane bundle over Mt. If these negative normal bundles are
orientable, then

biίM K)^ Σ bi->a(Ma; K) ,
a

where bt is ήh Betti number using coefficient field K if they are not known
to be orientable, then only Z2 (integers mod 2) may be used for coefficients.
These inequalities are called Morse-Bott inequalities.
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