SYMMETRIC SPACES WHICH ARE REAL COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard techniques, dropping the condition of simple connectivity in Kostant's work [2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space. Then M is a real cohomology $(\operatorname{dim} M)$-sphere if and only if
(1) M is an odd dimensional sphere or real projective space; or
(2) $M=\bar{M} / \Gamma$ where (a) $\bar{M}=\mathbf{S}^{2 r_{1}} \times \cdots \times \mathbf{S}^{2 r_{m}}, r_{i}>0$, product of $m \geq 1$ even dimensional spheres, and (b) Γ consists of all $\gamma=\gamma_{1} \times \cdots \times \gamma_{m}$, where γ_{i} is the identity map or the antipodal map of $\mathbf{S}^{2 r_{i}}$, and the number of γ_{i} which are antipodal maps, is even; or
(3) $\quad M=\mathbf{S U}(3) / \mathbf{S O}(3)$ or $M=\left\{\mathbf{S U}(3) / \mathbf{Z}_{3}\right\} / \mathbf{S O}(3)$; or
(4) $M=\mathbf{O}(5) / \mathbf{O}(2) \times \mathbf{O}(3)$, non-oriented real grassmannian of 2-planes through 0 in \mathbf{R}^{5}.

In (2) we note $\pi_{1}(M)=\Gamma \cong\left(\mathbf{Z}_{2}\right)^{m-1}$; in particular the even dimensional spheres are the case $m=1$. In (3) we note that the first case is the universal 3-fold covering of the second case. In (4) we have $\pi_{1}(M) \cong \mathbf{Z}_{2}$.

Theorem 1 is based on a series of lemmas which can be pushed, with appropriate modification, to the case of a real cohomology n-sphere of dimension greater than n. Here we make the convention that a 0 -sphere is a single point. By using a cohomology theory which satisfies the homotopy axiom (such as singular theory) we can also drop the requirement of compactness. Thus we push the method of proof of Theorem $\dot{1}$ and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M is a real cohomology n-sphere, $0 \leq n \leq \operatorname{dim} M$, if and only if $M=M^{\prime} \times M^{\prime \prime}$ where (α) $M^{\prime \prime}$ is a product whose $l \geq 0$ factors are euclidean spaces and irreducible symmetric spaces of noncompact type, and $(\beta) M^{\prime}$ is one of the following spaces.
(1) $M^{\prime}=\bar{M} / \Gamma^{\theta}$, where $\bar{M}=\mathbf{S}^{2 r_{1}} \times \ldots \times \mathbf{S}^{2 r_{m}}$ is the product of $m \geq 0$ spheres of positive even dimensions $2 r_{i}, \Gamma \cong\left(\mathbf{Z}_{2}\right)^{n}$ consists of all $\gamma_{1} \times \cdots \times \gamma_{m}$ such that γ_{i} is the identity or antipodal map on $\mathbf{S}^{2 r_{i}}, \theta$ is any one of the 2^{m} characters on Γ, and Γ^{θ} is the kernel of θ. Express $\theta=\theta_{i_{1}} \cdots \theta_{i_{s}}$, where

Communicated by S. Smale, January 12, 1967. Research partially supported by National Science Foundation Grant GP-5798.
$1 \leq i_{1}<\cdots<i_{s} \leq m$, and θ_{i} is the nontrivial character on the \mathbf{Z}_{2}-factor of Γ for $\mathbf{S}^{2 r_{i}}$. Then $n=2 r_{i_{1}}+\cdots+2 r_{i_{m}}$; so either $\theta=1$ with $n=0$ and $\Gamma^{\theta}=\Gamma \cong\left(\mathbf{Z}_{2}\right)^{m}$, or $\theta \neq 1$ with $n>0$ and $\Gamma^{\theta} \cong\left(\mathbf{Z}_{2}\right)^{m-1}$.
(2a) $\quad M^{\prime}=\left(\mathbf{S}^{2 r+1} / \mathbf{Z}_{2}\right) \times(\bar{M} / \Gamma), r \geq 1$, and \bar{M} and Γ as in (1), product of an odd dimensional real projective space with $m \geq 0$ even dimensional real projective spaces; $n=2 r+1$.
(2b) $\quad M^{\prime}=\left(\mathbf{S}^{2 r+1} \times \bar{M}\right) / \Gamma_{\theta}, r \geq 0$, and \bar{M} and Γ as in (1), where θ is any of the 2^{m} characters on Γ (viewed as taking values in the group \mathbf{Z}_{2} consisting of 1 and the antipodal map of $\mathbf{S}^{2 r+1}$), and Γ_{θ} consists of all $\theta(\gamma) \times \gamma$ with $\gamma \in \Gamma ; n=2 r+1$ and $\Gamma_{\theta} \cong\left(\mathbf{Z}_{2}\right)^{m}$.
(3) $\quad M^{\prime}=(\{\mathbf{S U}(3) / \mathbf{S O}(3)\} \times \bar{M}) / \Psi$, where \bar{M} and Γ are as in (1), \mathbf{Z}_{3} is the center of $\mathbf{S U}(3)$, and either $\Psi=\{1\} \times \Gamma \cong\left(\mathbf{Z}_{2}\right)^{m}$ or $\Psi=\mathbf{Z}_{3} \times \Gamma \cong$ $\mathbf{Z}_{3} \times\left(\mathbf{Z}_{2}\right)^{m} ; n=5$.
(4) $\quad M^{\prime}=\left(\{\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)\} / \mathbf{Z}_{2}\right) \times(\bar{M} / \Gamma)$, where \bar{M} and Γ are as in (1); the first factor of M^{\prime} is the non-oriented grassmannian of 2-planes in \mathbf{R}^{5}, expressed as quotient of the oriented grassmannian by $\{1, \eta\}=\mathbf{Z}_{2}$, where η changes the orientation of each 2-plane; $n=6$.
(5) $\quad M^{\prime}=\left(\{\mathbf{S O}(6) / \mathbf{S O}(3) \times \mathbf{S O}(3)\} / \mathbf{Z}_{4}\right) \times(\bar{M} / \Gamma)$, where \bar{M} and Γ are as in (1); the first factor of M^{\prime} is quotient of the oriented grassmannian of 3planes in \mathbf{R}^{6} by $\left\{1, \beta, \beta^{2}, \beta^{3}\right\}=\mathbf{Z}_{4}$, where β is oriented orthocomplementation of 3 -planes so $\beta^{2}=\eta$ orientation change; $n=5$.

As an immediate consequence of Theorem 2, or of Theorem 1 in the case $n=\operatorname{dim} M$ to which it applies, we have

Corollary. Let M be a connected riemannian symmetric space which is a real cohomology n-sphere. If a prime $p>3$, then M is a \mathbf{Z}_{p}-cohomology n-sphere. M is an integral cohomology n-sphere if and only if $M=\mathbf{S}^{n} \times M^{\prime \prime}$ with $M^{\prime \prime}$ acyclic as in condition (α) of Theorem 2.

1. Cohomology invariants of deck transformations

Let M be a compact connected riemannian symmetric space. Let $\mathbf{I}(M)$ denote the full group of isometries of M, and $\mathbf{I}_{0}(M)$ its identity component. Now $M=G / K$, where $G=\mathbf{I}_{0}(M)$, compact connected Lie group, and K is the isotropy subgroup at a point $x \in M$. Let $s \in \mathbf{I}(M)$ denote the symmetry at x. Then the Lie algebra of G decomposes as $\mathbf{G}=\mathbf{K}+\mathbf{P}$ into (± 1)-eigenspaces of $a d(s), \mathbf{K}$ being the subalgebra of \mathbf{G} for K and \mathbf{P} representing the tangent space of M at x. Using de Rham's Theorem and then averaging differential forms over G, one obtains a graded algebra isomorphism of $H^{*}(M ; \mathbf{R})$ onto the space of $a d_{G}(K)$-invariant elements of $\Lambda^{*} \mathbf{P}^{\prime}=\Sigma \Lambda^{k} \mathbf{P}^{\prime}$ where ' denotes dual space. That is É. Cartans's representation of cohomology by invariant differential forms; an exposition is given in [4, § 8.5].

In particular, M is a real cohomology $(\operatorname{dim} M)$-sphere if and only if the
only $a d_{G}(K)$-invariants in $\Lambda^{*} \mathbf{P}^{\prime}$ are the linear combinations of $1 \in \Lambda^{0} \mathbf{P}^{\prime}$ and the volume element $\omega \in \Lambda^{n} \mathbf{P}^{\prime}, n=\operatorname{dim} M$.
M has universal riemannian covering $\varphi: N \rightarrow M$, where $N=N_{0} \times M_{1} \times \cdots$ $\times M_{r}, N_{0}$ is a euclidean space, and the M_{i} are compact simply connected irreducible riemannian symmetric spaces. Let $\Delta \subset \mathbf{I}(N)$ be the group of deck transformations, so $M=N / \Delta$. Then $\Delta_{0}=\Delta \cap \mathbf{I}\left(N_{0}\right)$ is a translation lattice on N_{0}, so $M_{0}=N_{0} / \Delta_{0}$ is a flat riemannian torus, and φ factors through $\pi: \bar{M} \rightarrow M$ $=\bar{M} / \Gamma$ where

$$
\bar{M}=M_{0} \times M_{1} \times \cdots \times M_{r}, \quad \Gamma=\Delta / \Delta_{0}
$$

Let $\bar{G}=\mathbf{I}_{0}(\bar{M}), \bar{x} \in \pi^{-1}(x)$, and \bar{K} be the isotropy subgroup of \bar{G} at \bar{x}. Then we have an identification of $\overline{\mathbf{G}}$ with \mathbf{G}, which matches $\overline{\mathbf{K}}$ with \mathbf{K} and $\overline{\mathbf{P}}$ with \mathbf{P}.
1.1. Lemma. Identify $H^{*}(\bar{M} ; \mathbf{R})$ with the ad $\left(\bar{G}(\bar{K})\right.$-invariants on $\Lambda^{*} \mathbf{P}^{\prime}$, and $H^{*}(M ; \mathbf{R})$ with the ad (K)-invariants on $\Lambda^{*} \mathbf{P}^{\prime}$. Then $H^{*}(M ; \mathbf{R})$ consists of the Γ-invariants on $H^{*}(\bar{M} ; \mathbf{R})$.

For $G=(\bar{G} \Gamma) / \Gamma$ and $K=(\bar{K} \Gamma) / \Gamma$, and the cohomology of M is given by G-invariant differential forms.

Let $G_{i}=\mathbf{I}_{0}\left(M_{i}\right)$, and let Z_{i} denote the centralizer of G_{i} in $\mathbf{I}\left(M_{i}\right)$. Then $Z_{0}=G_{0}$, the other Z_{i} are finite, $\bar{G}=G_{0} \times G_{1} \times \cdots \times G_{r}$, and $\bar{Z}=Z_{0} \times Z_{1}$ $\times \cdots \times Z_{r}$ is the centralizer of \bar{G} in $\mathbf{I}(\bar{M})$. Given a subgroup $\Psi \subset \mathbf{I}(\bar{M})$, one knows that $\bar{M} \rightarrow \bar{M} / \Psi$ is a riemannian covering with symmetric quotient, if and only if Ψ is a finite subgroup of \bar{Z}. Thus $\Gamma \subset \bar{Z}$. We write Γ_{i} for the projection of Γ to Z_{i}.
1.2. Lemma. Let M be a real cohomology n-sphere, $n=\operatorname{dim} M$. Then we have just one of the following situations.
(a) M is a circle.
(b) \bar{M} is irreducible, the Γ-invariants on $H^{*}(\bar{M} ; \mathbf{R})$ are generated by 1 and the volume element, and the Z-invariants on $H^{*}(M ; \mathbf{R})$ are generated either by 1 or by 1 and the volume element.
(c) $\bar{M}=M_{1} \times \cdots \times M_{r}$ with $r>1$; for each $i, \operatorname{dim} M_{i}>0$ and the Z_{i}-invariants on $H^{*}\left(M_{i} ; \mathbf{R}\right)$ are just the elements $1 \cdot \mathbf{R}$ of degree 0.

Proof. Suppose $\operatorname{dim} M_{0}>0$. As Z_{0} acts trivially on $H^{*}\left(M_{0} ; \mathbf{R}\right)$ it follows that $H^{*}(M ; \mathbf{R})$ has nonzero elements of degree $\operatorname{dim} M_{0}$. Thus M is the torus M_{0}. Now $\operatorname{dim} M_{0}=1$, so M is a circle and we are in case (a).

If \bar{M} is irreducible, the part of (b) on Γ-invariants is obvious and the statement on Z-invariants follows.

Now suppose that we are neither in case (a) nor in case (b). Then $\operatorname{dim} M_{0}$ $=0$ and \bar{M} is reducible, so $\bar{M}=M_{1} \times \cdots \times M_{r}$ with $r>1$ and $\operatorname{dim} M_{i}>0$. If ψ is a Z_{i}-invariant of positive degree on $H^{*}\left(M_{i} ; \mathbf{R}\right)$, then ψ is Γ-invariant, so $\psi \in H^{*}(M ; \mathbf{R})$ with $0<\operatorname{deg} \psi<\operatorname{dim} M$. Thus the Z_{i}-invariants on $H^{*}\left(M_{i} ; \mathbf{R}\right)$ are of degree 0.

2. Admissible factors of \boldsymbol{M}

We go on to find the irreducible symmetric spaces which satisfy the conditions imposed by (b) or (c) of Lemma 1.2.
2.1. Proposition. Let M be a compact irreducible simply connected riemannian symmetric space, $G=\mathbf{I}_{0}(M)$, and Z be the centralizer of G in $\mathbf{I}(M)$. Then the Z-invariants on $H^{*}(M ; \mathbf{R})$
(i) are all of degree 0 , if and only if M is an even dimensional sphere;
(ii) are generated by 1 and the volume element, if and only if M is an odd dimensional sphere, $\mathbf{S U}(3) / \mathbf{S O}(3)$, or $\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$.

Proof. If M is a sphere the assertion is clear. If M is a real cohomology sphere but not a sphere, then [2] $M=\mathbf{S U}(3) / \mathbf{S O}(3)$, so $[4, \S 9.6] Z$ is the center of G and the assertion follows. Now suppose that M is not a real cohomology sphere. Then Z acts nontrivially on $H^{*}(M ; \mathbf{R})$, so $Z \not \subset G$. It follows [4, Chapters 8 and 9], $[3, \S 5$] that M is one of the spaces:
(1) $\quad M=\mathbf{S U}(2 n) / \mathbf{S}[\mathbf{U}(n) \times \mathbf{U}(n)], Z \cong \mathbf{Z}_{2} ;$
(2) $M=\mathbf{S U}(2 n) / \mathbf{S O}(2 n), Z \cong \mathbf{Z}_{2 n}$;
(3) $\quad M=\mathbf{S O}(2 r+2 s+1) / \mathbf{S O}(2 r) \times \mathbf{S O}(2 s+1), Z \cong \mathbf{Z}_{2}$;
(4) $\quad M=\mathbf{S O}(4 n) / \mathbf{U}(2 n), Z \cong \mathbf{Z}_{2}$;
(5) $\quad M=\mathbf{S O}(2 r+2 s) / \mathbf{S O}(2 r) \times \mathbf{S O}(2 s)$, $Z \cong \mathbf{Z}_{2}$ if $r \neq s, Z \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ if $r=s$;
(6) $\quad M=\mathbf{S O}(4 r+2) / \mathbf{S O}(2 r+1) \times \mathbf{S O}(2 r+1), Z \cong \mathbf{Z}_{4}$;
(7) $\quad M=\mathbf{S p}(n) / \mathbf{U}(n), Z \cong \mathbf{Z}_{2}$;
(8) $M=\mathbf{S p}(2 n) / \mathbf{S p}(n) \times \mathbf{S p}(n), Z \cong \mathbf{Z}_{2}$;
(9) $M=\mathbf{E}_{7} / \mathbf{A}_{7}, Z \cong \mathbf{Z}_{2}$;
(10) $\quad M=\mathbf{E}_{7} / \mathbf{E}_{6} \mathbf{T}_{1}, Z \cong \mathbf{Z}_{2}$.

Let $M=G / K$ be one of the spaces above. If $\operatorname{rank} G=\operatorname{rank} K$, i.e. if the Euler-Poincaré characteristic $\chi(M) \neq 0$, then we have $\chi(M)=\left|W_{G}\right| /\left|W_{K}\right|$ where $W_{L}=$ Weyl group of L. As cohomology occurs only in even degree, and as $\chi(M / Z)=\chi(M) /|Z|$, it follows that the two conditions for Z-invariants on $H^{*}(M ; \mathbf{R})$ can be phrased
(i) $\quad \chi(M / Z)=1$, i.e. $\left|W_{G}\right| /\left|W_{K}\right| \cdot|Z|=1$;
(ii) $\quad \chi(M / Z)=2$, i.e. $\left|W_{G}\right| /\left|W_{K}\right| \cdot|Z|=2$.

We run through the relevant cases.
(1) $\chi(M / Z)=(2 n)!/ n!n!2$ which is >2 whenever $n>1$; we exclude $n=1$ by the condition that M is not a sphere \mathbf{S}^{2}.
(3) $r \geq 1$ because $\operatorname{dim} M>0$, and $s \geq 1$ because M is not a sphere. Thus $t=\min (r, s) \geq 1$. Now

$$
\chi(M / Z)=2^{r+s}(r+s)!/\left\{2^{r-1} r!\right\}\left\{2^{s} s!\right\} 2=(r+s)!/ r!s!\geq(2 t)!/ t!t!
$$

with equality if and only if $r=s$, and $(2 t)!/ t!t!\geq 2$ with equality if and only if $t=1$. Thus $r=s=1$, so $M=\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$, and $\chi(M / Z)=2$.
(4) $\chi(M / Z)=2^{2 n-1}(2 n)!/(2 n)!2=2^{2 n-2}$ which is >2 whenever $n>1$; we exclude $n=1$ because M is not a product $\mathbf{S}^{2} \times \mathbf{S}^{2}$ of spheres.
(5) $r \geq 1$ and $s \geq 1$ because $\operatorname{dim} M>0$. We exclude the case $r=s=1$ because M is not a product $\mathbf{S}^{2} \times \mathbf{S}^{2}$ of spheres. Now we may assume $1 \leq r \leq s$ with $s>1$. If $r=s$, then

$$
\chi(M / Z)=2^{2 r-1}(2 r)!/\left\{2^{r-1} r!\right\}\left\{2^{r-1} r!\right\} 4=(2 r)!/ r!r!2 \geq 3 .
$$

If $r<s$, then
$\chi(M / Z)=2^{r+s-1}(r+s)!/\left\{2^{r-1} r!\right\}\left\{2^{s-1} s!\right\} 2=(r+s)!/ r!s!>(2 r)!/ r!r!\geq 2$.
(7) $n>1$ because M is not a sphere \mathbf{S}^{2}. If $n=2$ then $M=\mathbf{S p}(2) / \mathbf{U}(2)$ $=\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$ was considered under (3). Now suppose $n>2$; then $\chi(M / Z)=2^{n} n!/ n!2=2^{n-1}>2$.
(8) $\chi(M / Z)=2^{2 n}(2 n)!/\left\{2^{n} n!\right\}\left\{2^{n} n!\right\} 2=(2 n)!/ n!n!2$ which is >2 for $n>1$; and we exclude the case $n=1$ because M is not a sphere \mathbf{S}^{4}.
(9) $\chi(M / Z)=2^{10} \cdot 3^{4} \cdot 5 \cdot 7 / 8!\cdot 2=36>2$.
(10) $\quad \chi(M / Z)=2^{10} \cdot 3^{4} \cdot 5 \cdot 7 / 2^{8} \cdot 3^{4} \cdot 5=28>2$.

Hence our assertions are proved in case rank $G=\operatorname{rank} K$. Now we must check the spaces listed under (2) and (6). For those spaces $M=G / K$ we will decompose $\mathbf{I}(M)$ as a union of components $\alpha_{i} G, \alpha_{1}=1$, such that its isotropy subgroup is a union of components $\alpha_{i} K$. If $z \in Z$, say $z \in \alpha_{i} G$, then z and α_{i} have the same action on $H^{*}(M, \mathbf{R})$, the space of $a d_{G}(K)$-invariants on $\Lambda^{*} \mathbf{P}^{\prime}$. Thus we must analyse the action of K on \mathbf{P}^{\prime}, picking out an invariant $\varphi \in \Lambda^{k} \mathbf{P}^{\prime}$, such that $0<k<\operatorname{dim} M$ and such that $\alpha_{i}(\varphi)=\varphi$ whenever Z meets $\alpha_{i} G$.
(2) $\quad \mathbf{M}=\mathbf{S U}(2 n) / \mathbf{S O}(2 n)$. Here $G=\mathbf{S U}(2 n) /\{ \pm \mathbf{I}\}$ has center \mathbf{Z}_{n} which has index 2 in $Z \cong \mathbf{Z}_{2 n}$. Note that $n>1$ because M is not a sphere \mathbf{S}^{2}. We have [3, p. 88] $\mathbf{I}(M)=G \cup s G \cup \alpha G \cup s \alpha G$ with isotropy subgroup $K \cup s K$ $\cup \alpha K \cup s \alpha K$ where s is the symmetry and $\left.a d(\alpha)\right|_{K}=\left.a d(a)\right|_{K}$ for a matrix $a=\operatorname{diag}\{-1 ; 1, \cdots, 1\} \in \mathbf{O}(2 n)$. If \mathbf{Z}_{2} denotes the subgroup of order 2 in Z, then $\mathbf{Z}_{2}=\{1, \beta\}$ with $\beta \in \alpha G$. Thus we need only find a nonzero K-invariant $\varphi \in \Lambda^{k} \mathbf{P}^{\prime}, 0<k<\operatorname{dim} M$, such that $\alpha(\varphi)=\varphi$.

The action of $K=\mathbf{S O}(2 n)$ on the second symmetric power $S^{2}\left(\mathbf{R}^{2 n}\right)$ decomposes as $\psi \oplus \pi$, where ψ is the (trivial) representation on the span of the element representing the invariant inner product on $\mathbf{R}^{2 n}$, and π is equivalent to the representation of K on \mathbf{P}^{\prime}.

Let $\omega \in \Lambda^{2 n^{2}+n-1}\left(\mathbf{P}^{\prime}\right)$ denote the volume element of M. We check that $\alpha(\omega)$ $=-\omega$, i.e. that α has determinant -1 on \mathbf{P}^{\prime}. For if the matrix a of α has form $\operatorname{diag}\{-1 ; 1, \cdots, 1\}$ in a basis $\left\{v_{1}, \cdots, v_{2 n}\right\}$ of $\mathbf{R}^{2 n}$, then its (-1)eigenvectors on $S^{2}\left(\mathbf{R}^{2 n}\right)$ are the $v_{1} \cdot v_{i}, 2 \leq i \leq 2 n$, which are odd in number.

Borel [1] has shown that the real cohomology of M is that of $\left\{\mathbf{S}^{5} \times \mathbf{S}^{9} \times \ldots\right.$ $\left.\times \mathbf{S}^{4 n-3}\right\} \times \mathbf{S}^{2 n}$. First let $n=2$. Then the product is $\mathbf{S}^{4} \times \mathbf{S}^{5}$ so that $H^{*}(M ; \mathbf{R})$ has basis $\left\{1, \varphi_{4}, \varphi_{5}, \omega\right\}$, where $\varphi_{i} \in H^{i}(M ; \mathbf{R})$ and $\varphi_{4} \wedge \varphi_{5}=\omega$. Furthermore
$\alpha(\omega)=-\omega$ and $\chi\left(M / \mathbf{Z}_{2}\right)=\frac{1}{2} \chi(M)=0$ imply $\alpha\left(\varphi_{4}\right)=-\varphi_{4}$ and $\alpha\left(\varphi_{5}\right)=\varphi_{5}$.
Thus M / \mathbf{Z}_{2} is a real cohomology 5-sphere of dimension 9. Now let $n>2$, so that $H^{*}(M ; \mathbf{R})$ is generated by elements $\varphi_{i} \in H^{i}(M ; \mathbf{R})$ of degrees $5,9, \cdots$, $4 n-3$, and $2 n$ such that $\left(\varphi_{5} \wedge \varphi_{9} \wedge \cdots \wedge \varphi_{4 n-3}\right) \wedge \varphi_{2 n}=\omega$. If $\alpha\left(\varphi_{i}\right)=\varphi_{i}$ and $\alpha\left(\varphi_{j}\right)=\varphi_{j}$ for two distinct indices i, j, then M / Z is not a real cohomology sphere of any sort. If $\alpha\left(\varphi_{i}\right)=\varphi_{i}$ for a unique index i, then $\alpha\left(\varphi_{j}\right)=-\varphi_{j}$ for $j \neq i$. There are two indices $j \neq k$ distinct from i because $n \geq 3$, and now α preserves both φ_{i} and $\varphi_{j} \wedge \varphi_{k}$, so again M / Z is not a real cohomology sphere of any sort.
(6) $\quad M=\mathbf{S O}(4 r+2) / \mathbf{S O}(2 r+1) \times \mathbf{S O}(2 r+1)$, grassmannian of oriented $(2 r+1)$-planes in an oriented $\mathbf{R}^{4 r+2}$. Then $Z=\left\{1, \beta, \beta^{2}, \beta^{3}\right\} \cong \mathbf{Z}_{4}$, where β is orthocomplementation, and $\beta^{2}=-I$ reverses orientation of $(2 r+1)$-planes. We have $K=K_{1} \times K_{2}$ with $K_{i} \cong \mathbf{S O}(2 r+1)$. Let αG denote the component of $\mathbf{I}(M)$ containing β. Then $\operatorname{ad}(\alpha)$ has order 2 and interchanges K_{1} with K_{2}. Viewing \mathbf{G} as the space of antisymmetric real matrices of degree $4 r+2$, we identify an element of \mathbf{P} with its upper right hand block of degree $2 r+1$, and then $K=K_{1} \times K_{2}$ acts on \mathbf{P} by $\left(k_{1}, k_{2}\right): \mathbf{A} \rightarrow k_{1} A k_{2}^{-1}$. Now α acts on \mathbf{P} by $A \rightarrow{ }^{t} A$ transpose, so the multiplicity of its (-1)-eigenvalue there is $(2 r+1)(2 r) / 2=2 r^{2}+r$. Thus α acts on the volume element ω by: $\alpha(\omega)=\omega$ if r is even, $\alpha(\omega)=-\omega$ if r is odd.

If $r=1$, then $M=\mathbf{S O}(6) / \mathbf{S O}(3) \times \mathbf{S O}(3)=\mathbf{S U}(4) / \mathbf{S O}(4)$, and, as seen above, the 9 -dimensional manifold M / Z is a real cohomology 5 -sphere. Now suppose $r \geq 2$, so that $\operatorname{dim} M \geq 25$. Then the inclusion of M into the grassmannian of oriented ($2 r+1$)-planes in \mathbf{R}^{∞} is an isomorphism on cohomology of degrees 4 and 8 , so the Pontrjagin classes p_{1} and p_{2} of M are nonzero. Recall $p_{i}=(-1)^{i} c_{2 i}\left(\tau_{C}\right)$, and $c_{2 i}(\eta)=c_{2 i}(\bar{\eta})$ for any complex vector bundle η, where c_{j} is the j-th Chern class, and τ is the tangent bundle. As $\alpha\left(\tau_{C}\right)$ is τ_{C} or $\bar{\tau}_{C}$, now $\alpha\left(p_{1}\right)=p_{1}$ and $\alpha\left(p_{2}\right)=p_{2}$. Thus M / Z is not a real cohomology sphere.

3. Products of even spheres

We now work out the last ingredient of our main result, proving
3.1. Proposition. Let $\bar{M}=\mathbf{S}^{2 r_{1}} \times \cdots \times \mathbf{S}^{2 r_{n}}$, product of $m \geq 1$ even dimensional spheres, and $\Gamma \subset \mathbf{I}(\bar{M})$ be a finite subgroup such that $M=\bar{M} / \Gamma$ is a riemannian symmetric space.

1. $H^{*}(M ; \mathbf{R})=H^{0}(M ; \mathbf{R})$ if and only if Γ consists of all $\gamma=\gamma_{1} \times \cdots$ $\times \gamma_{m}$, where γ_{i} is either the identity map or the antipodal map of the i-th factor $\mathbf{S}^{2 r_{i}}$ of \bar{M}.
2. M is a real cohomology $(\operatorname{dim} M)$-sphere if and only if Γ consists of all $\gamma=\gamma_{1} \times \cdots \times \gamma_{m}$ as above such that the number of γ_{i} which are antipodal maps, is even.

Proof. Let $\nu_{i} \in \mathbf{I}(\bar{M})$ act on the factors of \bar{M} by the identity on $\mathbf{S}^{2 r_{s}}$ for
$i \neq s$, and by the antipodal map on $\mathbf{S}^{2 r_{i}}$. Let Δ denote the group generated by the ν_{i}, Δ^{\prime} the subgroup of index 2 consisting of products of an even number of ν_{i}, and θ_{i} denote the character on Δ such that $\theta_{i}\left(\nu_{s}\right)=1$ for $i \neq s$, and $\theta_{i}\left(\nu_{i}\right)=-1$. Then the 2^{m} characters $\theta_{i_{1}} \theta_{i_{2}} \cdots \theta_{i_{s}}, 1 \leq i_{1}<\cdots<i_{s} \leq m$, are all the characters of Δ, and $\theta_{1} \theta_{2} \cdots \theta_{m}$ is the only nontrivial one which annihilates Δ^{\prime}.

Let $\omega_{i} \in H^{*}(\bar{M} ; \mathbf{R})$ be the $\mathbf{I}_{0}(\bar{M})$-invariant differential form of degree $2 r_{i}$, which annihilates the tangent space to the factors $\mathbf{S}^{2 r_{s}}, s \neq i$, of \bar{M}, and restricts to the volume element of $\mathbf{S}^{2 r_{i}}$. Then $\nu_{i}^{*} \omega_{s}=\theta_{s}\left(\nu_{i}\right) \cdot \omega_{s}$. If $\delta \in \Delta$, then δ acts on $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}}$ by scalar multiplication with $\left(\theta_{i_{1}} \cdots \theta_{i_{s}}\right)(\delta)$. But the 2^{m} elements $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}}, 1 \leq i_{1}<\cdots<i_{s} \leq m$, are a basis of of $H^{*}(\bar{M} ; \mathbf{R})$. Hence
3.2. Lemma. If $\Psi \subset \Delta$, then the Ψ-invariants on $H^{*}(\bar{M} ; \mathbf{R})$ are just the span of the $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}}$ such that $\theta_{i_{1}} \cdots \theta_{i_{s}}$ annihilates Ψ.

Now let Γ be a subgroup of Δ, i.e. suppose that \bar{M} / Γ is symmetric. Then $H^{*}(\bar{M} / \Gamma ; \mathbf{R})=H^{0}(\bar{M} / \Gamma ; \mathbf{R})$ if and only if none of the $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}}$ are Γ-invariant for $s>0$. By Lemma 3.2 this latter condition is that no nontrivial character on Δ can annihilate Γ, i.e. Δ / Γ has no nontrivial character, i.e. $\Gamma=\Delta$. Thus the first assertion of the proposition is proved. \bar{M} / Γ is a real cohomology sphere if and only if 1 and $\omega_{1} \wedge \cdots \wedge \omega_{m}$ generate the Γ invariants on $H^{*}(\bar{M} ; \mathbf{R})$. Lemma 3.2 formulates the latter as the condition that $\theta_{1} \theta_{2} \cdots \theta_{m}$ is the only nontrivial character on Δ, which annihilates Γ, i.e. that $\Gamma=\Delta^{\prime}$. Thus the second assertion of the proposition is proved.

4. Proof of Theorem 1

We prove Theorem 1, stated at the beginning of this note.
M is a compact connected riemannian symmetric space, and $M=\bar{M} / \Gamma$ as in the notation of $\S 1$.

If \bar{M} is an odd sphere $\mathbf{S}^{2 n-1}$, then $Z=\{ \pm I\} \subset G=\mathbf{S O}(2 n)$ acts trivially on the real cohomology of \bar{M}; so \bar{M} and its associated projective space \bar{M} / Z $=\mathbf{S}^{2 n-1} /\{ \pm I\}$ are real cohomology spheres. If \bar{M} is a product of even spheres, and Γ is the group described in case (2) of the theorem, then \bar{M} / Γ is a real cohomology sphere by Proposition 3.1. If \bar{M} is $\mathbf{S U}(3) / \mathbf{S O}(3)$, then $\operatorname{dim} \bar{M}=5$, and

$$
\begin{aligned}
& H^{1}(\bar{M} ; \mathbf{R})=0, \text { because } \bar{M} \text { is simply connected } \\
& H^{2}(\bar{M} ; \mathbf{R})=0, \text { because } \bar{M} \text { is not hermitian symmetric, } \\
& H^{3}(\bar{M} ; \mathbf{R})=H^{4}(\bar{M} ; \mathbf{R})=0 \text { by Poincaré duality }
\end{aligned}
$$

so \bar{M} is a real cohomology sphere; further $Z=\mathbf{Z}_{3}$, center of $G=\mathbf{S U}(3)$, so $\bar{M} / Z=\left\{\mathbf{S U}(3) / \mathbf{Z}_{3}\right\} / \mathbf{S O}(3)$ is a real cohomology sphere. Finally if $\bar{M}=\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$ (oriented real grassmannian), then \bar{M} / Z
$=\bar{M} /\{ \pm I\}=\mathbf{O}(5) / \mathbf{O}(2) \times \mathbf{O}(3)$ (nonoriented real grassmannian) is a real cohomology sphere by Proposition 2.1. Thus the spaces M listed in Theorem 1 are real cohomology $(\operatorname{dim} M)$-spheres.
Conversely, let M be a real cohomology ($\operatorname{dim} M$)-sphere. We run through the alternatives of Lemma 1.2. If M is a circle, it is an odd sphere, listed under (1) in Theorem 1. If M is irreducible, then it is a sphere, $\mathbf{S U}(3) / \mathbf{S O}(3)$, or $\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$, by Proposition 2.1, and then M is a sphere or real projective space, $\mathbf{S U}(3) / \mathbf{S O}(3)$ or $\left\{\mathbf{S U}(3) / \mathbf{Z}_{3}\right\} / \mathbf{S O}(3)$, or $\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$ or $\mathbf{O}(5) / \mathbf{O}(2) \times \mathbf{O}(3)$; even projective spaces are eliminated both by nonorientability and by $\chi=1$, and $\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$ is eliminated by $\chi=4$; thus M is listed under (1), (2), (3) or (4) of Theorem 1. If \bar{M} is reducible, then it is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1, and then M is listed under (2) of Theorem 1, by Proposition 3.1.

5. Extension to Theorem 2

We modify the proof of Theorem 1 in such a way as to obtain Theorem 2.
Let M be a connected riemannian symmetric space. Then we have the universal riemannian covering $\varphi: N \rightarrow M=N / \Delta$, and decompose $N=N_{0}$ $\times N^{\prime} \times N^{\prime \prime}$, where N_{0} is a euclidean space, N^{\prime} a product of compact simply connected irreducible symmetric spaces, and $N^{\prime \prime}$ a product of noncompact irreducible symmetric spaces. Δ has trivial projection on $\mathbf{I}\left(N^{\prime \prime}\right)$, so $\Delta \subset \mathbf{I}\left(N_{0}\right)$ $\times \mathbf{I}\left(N^{\prime}\right) ; \Delta$ has finite projection on $\mathbf{I}\left(N^{\prime}\right)$, so $\Delta_{0}=\Delta \cap \mathbf{I}\left(N_{0}\right)$ is a subgroup of finite index; in particular Δ_{0} has finite index in the projection of Δ to $\mathbf{I}\left(N_{0}\right)$. The projection of Δ to $\mathbf{I}\left(N_{0}\right)$ is a group of euclidean translations, and this decomposes $N_{0}=N_{0}^{\prime} \times N_{0}^{\prime \prime}$, where Δ acts trivially on $N_{0}^{\prime \prime}$, and N_{0}^{\prime} has compact quotient by the projection of Δ to $\mathbf{I}\left(N_{0}\right)$. Now define

$$
\bar{M}=\bar{M}^{\prime} \times \bar{M}^{\prime \prime}, \quad \bar{M}^{\prime}=\left(N_{0}^{\prime} \times N^{\prime}\right) / \Delta_{0}, \quad \bar{M}^{\prime \prime}=N_{0}^{\prime \prime} \times N^{\prime \prime}
$$

so that

$$
M=M^{\prime} \times M^{\prime \prime}, \quad \text { where } \quad M^{\prime}=\bar{M}^{\prime} / \Gamma, \quad M^{\prime \prime}=\bar{M}^{\prime \prime}, \quad \Gamma=\Delta / \Delta_{0},
$$

and $\varphi: N \rightarrow M$ factors through the covering $\pi: \bar{M} \rightarrow M=\bar{M} / \Gamma . M^{\prime}$ is a compact connected riemannian symmetric space; $M^{\prime \prime}$ is contractible because it is the product of a euclidean space $N_{0}^{\prime \prime}$ and a product $N^{\prime \prime}$ of noncompact irreducible symmetric spaces; under the inclusion $\iota: M^{\prime} \rightarrow M$, now $\iota^{*}: H^{*}(M ; A) \cong H^{*}\left(M^{\prime} ; A\right)$ for any coefficient ring A. This reduces the proof of Theorem 2 to the case $\operatorname{dim} M^{\prime \prime}=0$ where M is compact.

Now let M be a compact connected riemannian symmetric space which is a real cohomology n-sphere, where $0 \leq n \leq \operatorname{dim} M$. Recall our convention that a 0 -sphere means a single point. As in $\S 1$ we decompose $M=\bar{M} / \Gamma$, $\bar{M}=M_{0} \times M_{1} \times \cdots \times M_{r}$, where M_{0} is a flat riemannian torus and the
other M_{i} are compact simply connected irreducible symmetric spaces. Lemma 1.1 holds but Lemma 1.2 must be modified.

If $\operatorname{dim} M_{0}>0$, then, as before, $n=1$ and M_{0} is a circle. For $i>0$, now M_{i} contributes nothing to $H^{*}(M ; \mathbf{R})$, so M_{i} is an even dimensional sphere $\mathbf{S}^{2 r_{i}}$ by Proposition 2.1. Let Γ^{\prime} denote the projection of Γ to $\mathbf{I}\left(M_{1} \times \cdots \times M_{r}\right)$. Then $\Gamma \rightarrow \Gamma^{\prime}$ is an isomorphism by construction of M_{0}, and $\Gamma^{\prime} \cong\left(\mathbf{Z}_{2}\right)^{r}$ consisting of all $\gamma^{\prime}=\gamma_{1} \times \cdots \times \gamma_{r}$ where γ_{i} is 1 or the antipodal map on $M_{i}=\mathbf{S}^{2 r_{i}}$, by Proposition 3.1. Thus Γ consists of all $\gamma=\gamma_{0} \times \gamma^{\prime}$, where $\gamma^{\prime} \in \Gamma^{\prime}$ as just described, and $\gamma_{0}=\theta\left(\gamma^{\prime}\right)$ for some arbitrary fixed character θ on Γ^{\prime}. Since there are 2^{r} choices of θ, our assertions of Theorem 2 are now proved for the case $\operatorname{dim} M_{0}>0$.

Now we assume $\operatorname{dim} M_{0}=0$, so $M=M_{1} \times \cdots \times M_{r}$.
Suppose that \bar{M} / Z is a real cohomology 0 -sphere, i.e. that $H^{*}(\bar{M} / Z ; \mathbf{R})$ $=\boldsymbol{H}^{0}(\bar{M} / Z ; \mathbf{R})$. Then Proposition 2.1 tells us that $M_{i}=\mathbf{S}^{2 r_{i}}$ even sphere. If $n=0$, then Proposition 3.1 says $\Gamma=Z$. If $n>0$, then Lemma 3.2 says that $H^{*}(M ; \mathbf{R})$ is spanned by 1 and by some $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}}$, where ω_{i} is the volume element of $M_{i}, 1 \leq i_{1}<\cdots<i_{s} \leq r, s>0, n=2 r_{i_{1}}+\cdots+2 r_{i_{s}}$, and $\Gamma \cong\left(\mathbf{Z}_{2}\right)^{r-1}$ is the kernel of the character $\theta_{i_{1}} \cdots \theta_{i_{s}}$. Thus there are $2^{r}-1$ possibilities for Γ, and the assertions of Theorem 2 is proved for the case where M / Z is a real cohomology 0 -sphere.

Now we assume that M / Z is not a real cohomology 0 -sphere. Then $n>0$, and M / Z is a real cohomology n-sphere. We re-order the M_{i} now, so that M_{1} / Z_{1} is a real cohomology n-sphere and the other M_{i} / Z_{i} are real cohomology 0 -spheres. Proposition 2.1 tells us
(i) if $i>1$, then M_{1} is an even dimensional sphere;
(ii) if $n=\operatorname{dim} M_{1}$, then M_{1} is an odd sphere, is $\mathbf{S U (3)} / \mathbf{S O}$ (3) or is $\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$.
5.1. Lemma. Let M_{1} be a compact simply connected irreducible riemannian symmetric space, and Z_{1} the centralizer of $\mathbf{I}_{0}\left(M_{1}\right)$ in $\mathbf{I}\left(M_{1}\right)$, and suppose that M_{1} / Z_{1} is a real cohomology n-sphere where $0<n<\operatorname{dim} M_{1}$. Then $n=5, \operatorname{dim} M_{1}=9$ and $M_{1}=\mathbf{S U}(4) / \mathbf{S O}(4)=\mathbf{S O}(6) / \mathbf{S O}(3) \times \mathbf{S O}(3)$.

Proof. Let $m=\operatorname{dim} M_{1}$. Then $H^{m}\left(M_{1} / Z_{1} ; \mathbf{R}\right)=0$ says that Z_{1} acts nontrivially on $H^{*}\left(M_{1} ; \mathbf{R}\right)$, so M_{1} is one of the ten (types of) spaces listed at the beginning of the proof of Proposition 2.1.

If $\chi\left(M_{1}\right) \neq 0$, then $H^{k}\left(M_{1} ; \mathbf{R}\right)=0$ for k odd, so $H^{k}\left(M_{1} / Z_{1} ; \mathbf{R}\right)=0$ for k odd; thus n is even and $\chi\left(M_{1} / Z_{1}\right)=2$. Following the proof of Proposition 2.1 for that case, we see $M_{1}=\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)$, so $n=m=6$, contradicting $n<m$. Thus $\chi\left(M_{1}\right)=0$. Following the proof of Proposition 2.1 for that case we see that M_{1} is the 9 -dimensional $\mathbf{S U}(4) / \mathbf{S O}(4)=\mathbf{S O}(6) / \mathbf{S O}(3) \times \mathbf{S O}(3)$ with $Z_{1} \cong \mathbf{Z}_{4}$ and $n=5$.
q.e.d.

Returning to the proof of Theorem 2, let $t=r-1$; then we need only examine the cases
(1) $\bar{M}=\mathbf{S}^{2 m+1} \times \mathbf{S}^{2 r_{1}} \times \cdots \times \mathbf{S}^{2 r_{t}}, \quad m>0, \quad t \geq 0 ;$
(2) $\bar{M}=\{\mathbf{S U (3)} / \mathbf{S O}(3)\} \times \mathbf{S}^{2 r_{1}} \times \ldots \times \mathbf{S}^{2 r_{t}}$;
(3) $\bar{M}=\{\mathbf{S O}(5) / \mathbf{S O}(2) \times \mathbf{S O}(3)\} \times \mathbf{S}^{2 r_{1}} \times \cdots \times \mathbf{S}^{2 r_{t}}$;
(4) $\bar{M}=\{\mathbf{S O}(6) / \mathbf{S O}(3) \times \mathbf{S O}(3)\} \times \mathbf{S}^{2 r_{1}} \times \ldots \times \mathbf{S}^{2 r_{t}}$.

In each case let Γ^{\prime} be the projection of Γ to $\mathbf{I}\left(\mathbf{S}^{2 r_{1}} \times \cdots \times \mathbf{S}^{2 r_{t}}\right)$. Then Proposition 3.1 says that $\Gamma^{\prime} \cong\left(\mathbf{Z}_{2}\right)^{t}$ consists of all $\gamma^{\prime}=\gamma_{1} \times \cdots \times \gamma_{t}$ where γ_{i} is 1 or the antipodal map on $\mathbf{S}^{2 r_{i}}$. And in each case let $\Gamma^{0}=\Gamma \cap \mathbf{I}\left(M_{1}\right)$, kernel of $\Gamma \rightarrow \Gamma^{\prime}$.

In cases (1) and (2), where Z_{1} acts trivially on $H^{*}\left(M_{1} ; \mathbf{R}\right)$, the symmetric space \bar{M} / Ψ is a real cohomology $\left(\operatorname{dim} M_{1}\right)$-sphere if and only if Ψ projects onto $\Gamma^{\prime}=Z_{2} \times Z_{3} \times \cdots \times Z_{t+1} \cong\left(\mathbf{Z}_{2}\right)^{t}$. For the action of $\gamma=\gamma^{0} \times \gamma^{\prime} \in Z$ $=Z_{1} \times \Gamma^{\prime}$ on real cohomology of \bar{M} is just that of $1 \times \gamma^{\prime}$. In case (1) this means that Γ can be $Z \cong\left(Z_{2}\right)^{t+1}$ if $\Gamma^{0} \neq\{1\}$; if $\Gamma^{0}=\{1\}$ then Γ can be any of the 2^{t} groups

$$
\Gamma_{\theta}=\left\{\theta\left(\gamma^{\prime}\right) \times \gamma^{\prime}: \gamma^{\prime} \in \Gamma^{\prime}\right\} \cong\left(\mathbf{Z}_{2}\right)^{t}
$$

where θ is a character on Γ^{\prime}. In case (2) it means either that $\Gamma^{0} \neq\{1\}$ and $\Gamma=Z \cong \mathbf{Z}_{3} \times\left(\mathbf{Z}_{2}\right)^{t}$, or that $\Gamma^{0}=\{1\}$ and $\Gamma=\Gamma^{\prime} \cong\left(\mathbf{Z}_{2}\right)^{t}$.

In cases (3) and (4), where M_{1} is not a real cohomology sphere because of a nonzero element $\omega_{0} \in H^{4}\left(M_{1} ; \mathbf{R}\right)$, that element ω_{0} is sent to its negative by a generator z_{0} of Z_{1}. Let ω_{i} denote the volume element of $\mathbf{S}^{2 r_{i}}$; now we require that no form $\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{s}} \neq 1,0 \leq i_{1}<\cdots<i_{s} \leq t$, can be Γ-invariant. As for Proposition 3.1, it follows that Γ separately contains the generator of each Z_{i}. Thus $\Gamma=Z$, so $\Gamma \cong\left(\mathbf{Z}_{2}\right)^{t+1}$ in case (3) and $\Gamma \cong \mathbf{Z}_{4} \times\left(\mathbf{Z}_{2}\right)^{t}$ in case (4). Conversely, $\Gamma=Z$ implies $M=\left(M_{1} / Z_{1}\right) \times\left(\mathbf{S}^{2 r_{i}} / \mathbf{Z}_{2}\right) \times \cdots \times\left(\mathbf{S}^{2 r_{t}} / \mathbf{Z}_{2}\right)$, \mathbf{R}-cohomologically equivalent to the real cohomology sphere M_{1} / Z_{1}. Hence the proof of Theorem 2 is complete.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groups de Lie compacts, Ann. of Math. 57 (1953) 115-207.
[2] B. Kostant, On invariant skew tensors, Proc. Nat. Acad. Sci. U.S.A. 42 (1955) 148-151.
[3] J. A. Wolf, Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962) 65-101.
[4] -, Spaces of constant curvature, McGraw-Hill, New York, 1967.
University of California, Berkeley

