SYMMETRIC SPACES WHICH ARE REAL COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard techniques, dropping the condition of simple connectivity in Kostant's work [2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space. Then M is a real cohomology (dim M)-sphere if and only if

(1) M is an odd dimensional sphere or real projective space; or

(2) $M = \overline{M}/\Gamma$ where (a) $\overline{M} = \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_m}$, $r_i > 0$, product of $m \ge 1$ even dimensional spheres, and (b) Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$, where γ_i is the identity map or the antipodal map of \mathbf{S}^{2r_i} , and the number of γ_i which are antipodal maps, is even; or

(3) M = SU(3)/SO(3) or $M = {SU(3)/Z_3}/SO(3)$; or

(4) $M = O(5)/O(2) \times O(3)$, non-oriented real grassmannian of 2-planes through 0 in \mathbb{R}^{5} .

In (2) we note $\pi_1(M) = \Gamma \cong (\mathbb{Z}_2)^{m-1}$; in particular the even dimensional spheres are the case m = 1. In (3) we note that the first case is the universal 3-fold covering of the second case. In (4) we have $\pi_1(M) \cong \mathbb{Z}_2$.

Theorem 1 is based on a series of lemmas which can be pushed, with appropriate modification, to the case of a real cohomology *n*-sphere of dimension greater than *n*. Here we make the convention that a 0-sphere is a single point. By using a cohomology theory which satisfies the homotopy axiom (such as singular theory) we can also drop the requirement of compactness. Thus we push the method of proof of Theorem 1 and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M is a real cohomology n-sphere, $0 \le n \le \dim M$, if and only if $M = M' \times M''$ where (α) M'' is a product whose $l \ge 0$ factors are euclidean spaces and irreducible symmetric spaces of noncompact type, and (β) M' is one of the following spaces.

(1) $M' = \overline{M} / \Gamma^{\theta}$, where $\overline{M} = \mathbf{S}^{2\tau_1} \times \cdots \times \mathbf{S}^{2\tau_m}$ is the product of $m \ge 0$ spheres of positive even dimensions $2r_i$, $\Gamma \cong (\mathbf{Z}_2)^m$ consists of all $\gamma_1 \times \cdots \times \gamma_m$ such that γ_i is the identity or antipodal map on $\mathbf{S}^{2\tau_i}$, θ is any one of the 2^m characters on Γ , and Γ^{θ} is the kernel of θ . Express $\theta = \theta_{i_1} \cdots \theta_{i_n}$, where

Communicated by S. Smale, January 12, 1967. Research partially supported by National Science Foundation Grant GP-5798.

 $1 \leq i_1 < \cdots < i_s \leq m$, and θ_i is the nontrivial character on the \mathbb{Z}_2 -factor of Γ for \mathbb{S}^{2r_i} . Then $n = 2r_{i_1} + \cdots + 2r_{i_m}$; so either $\theta = 1$ with n = 0 and $\Gamma^{\theta} = \Gamma \cong (\mathbb{Z}_2)^m$, or $\theta \neq 1$ with n > 0 and $\Gamma^{\theta} \cong (\mathbb{Z}_2)^{m-1}$.

(2a) $M' = (\mathbf{S}^{2r+1}/\mathbf{Z}_2) \times (\overline{M}/\Gamma), r \ge 1$, and \overline{M} and Γ as in (1), product of an odd dimensional real projective space with $m \ge 0$ even dimensional real projective spaces; n = 2r + 1.

(2b) $M' = (\mathbf{S}^{2r+1} \times \overline{M}) / \Gamma_{\theta}, r \ge 0$, and \overline{M} and Γ as in (1), where θ is any of the 2^{m} characters on Γ (viewed as taking values in the group \mathbf{Z}_{2} consisting of 1 and the antipodal map of \mathbf{S}^{2r+1}), and Γ_{θ} consists of all $\theta(\gamma) \times \gamma$ with $\gamma \in \Gamma$; n = 2r + 1 and $\Gamma_{\theta} \cong (\mathbf{Z}_{2})^{m}$.

(3) $M' = (\{\mathbf{SU}(3)/\mathbf{SO}(3)\} \times \overline{M})/\Psi$, where \overline{M} and Γ are as in (1), \mathbb{Z}_3 is the center of $\mathbf{SU}(3)$, and either $\Psi = \{1\} \times \Gamma \cong (\mathbb{Z}_2)^m$ or $\Psi = \mathbb{Z}_3 \times \Gamma \cong \mathbb{Z}_3 \times (\mathbb{Z}_2)^m$; n = 5.

(4) $M' = (\{\mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)\}/\mathbf{Z}_2) \times (\overline{M}/\Gamma)$, where \overline{M} and Γ are as in (1); the first factor of M' is the non-oriented grassmannian of 2-planes in \mathbf{R}^5 , expressed as quotient of the oriented grassmannian by $\{1, \eta\} = \mathbf{Z}_2$, where η changes the orientation of each 2-plane; n=6.

(5) $M' = (\{\mathbf{SO}(6) | \mathbf{SO}(3) \times \mathbf{SO}(3)\} | \mathbf{Z}_4) \times (\overline{M} | \Gamma)$, where \overline{M} and Γ are as in (1); the first factor of M' is quotient of the oriented grassmannian of 3-planes in \mathbb{R}^6 by $\{1, \beta, \beta^2, \beta^3\} = \mathbb{Z}_4$, where β is oriented orthocomplementation of 3-planes so $\beta^2 = \eta$ orientation change; n = 5.

As an immediate consequence of Theorem 2, or of Theorem 1 in the case $n = \dim M$ to which it applies, we have

Corollary. Let M be a connected riemannian symmetric space which is a real cohomology n-sphere. If a prime p > 3, then M is a \mathbb{Z}_p -cohomology n-sphere. M is an integral cohomology n-sphere if and only if $M = \mathbb{S}^n \times M''$ with M'' acyclic as in condition (α) of Theorem 2.

1. Cohomology invariants of deck transformations

Let M be a compact connected riemannian symmetric space. Let I(M) denote the full group of isometries of M, and $I_0(M)$ its identity component. Now M = G/K, where $G = I_0(M)$, compact connected Lie group, and K is the isotropy subgroup at a point $x \in M$. Let $s \in I(M)$ denote the symmetry at x. Then the Lie algebra of G decomposes as G = K + P into (± 1) -eigenspaces of ad(s), K being the subalgebra of G for K and P representing the tangent space of M at x. Using de Rham's Theorem and then averaging differential forms over G, one obtains a graded algebra isomorphism of $H^*(M; \mathbf{R})$ onto the space of $ad_G(K)$ -invariant elements of $\Lambda^*\mathbf{P}' = \Sigma \Lambda^k\mathbf{P}'$ where ' denotes dual space. That is \acute{E} . Cartans's representation of cohomology by invariant differential forms; an exposition is given in [4, § 8.5].

In particular, M is a real cohomology (dim M)-sphere if and only if the

only $ad_G(K)$ -invariants in $\Lambda^* \mathbf{P}'$ are the linear combinations of $1 \in \Lambda^0 \mathbf{P}'$ and the volume element $\omega \in \Lambda^n \mathbf{P}'$, $n = \dim M$.

M has universal riemannian covering $\varphi \colon N \to M$, where $N = N_0 \times M_1 \times \cdots \times M_\tau$, N_0 is a euclidean space, and the M_i are compact simply connected irreducible riemannian symmetric spaces. Let $\Delta \subset \mathbf{I}(N)$ be the group of deck transformations, so $M = N/\Delta$. Then $\Delta_0 = \Delta \cap \mathbf{I}(N_0)$ is a translation lattice on N_0 , so $M_0 = N_0/\Delta_0$ is a flat riemannian torus, and φ factors through $\pi \colon \overline{M} \to M = \overline{M}/\Gamma$ where

$$\overline{M} = M_0 \times M_1 \times \cdots \times M_r, \qquad \Gamma = \Delta/\Delta_0.$$

Let $\overline{G} = I_0(\overline{M})$, $\overline{x} \in \pi^{-1}(x)$, and \overline{K} be the isotropy subgroup of \overline{G} at \overline{x} . Then we have an identification of \overline{G} with \mathbf{G} , which matches $\overline{\mathbf{K}}$ with \mathbf{K} and $\overline{\mathbf{P}}$ with \mathbf{P} .

1.1. Lemma. Identify $H^*(\overline{M}; \mathbb{R})$ with the $ad_{\overline{G}}(\overline{K})$ -invariants on $\Lambda^*\mathbb{P}'$, and $H^*(M; \mathbb{R})$ with the $ad_{\overline{G}}(K)$ -invariants on $\Lambda^*\mathbb{P}'$. Then $H^*(M; \mathbb{R})$ consists of the Γ -invariants on $H^*(\overline{M}; \mathbb{R})$.

For $G = (\overline{G}\Gamma)/\Gamma$ and $K = (\overline{K}\Gamma)/\Gamma$, and the cohomology of M is given by G-invariant differential forms.

Let $G_i = \mathbf{I}_0(M_i)$, and let Z_i denote the centralizer of G_i in $\mathbf{I}(M_i)$. Then $Z_0 = G_0$, the other Z_i are finite, $\overline{G} = G_0 \times G_1 \times \cdots \times G_r$, and $\overline{Z} = Z_0 \times Z_1 \times \cdots \times Z_r$ is the centralizer of \overline{G} in $\mathbf{I}(\overline{M})$. Given a subgroup $\Psi \subset \mathbf{I}(\overline{M})$, one knows that $\overline{M} \to \overline{M}/\Psi$ is a riemannian covering with symmetric quotient, if and only if Ψ is a finite subgroup of \overline{Z} . Thus $\Gamma \subset \overline{Z}$. We write Γ_i for the projection of Γ to Z_i .

1.2. Lemma. Let M be a real cohomology n-sphere, $n = \dim M$. Then we have just one of the following situations.

(a) *M* is a circle.

(b) \overline{M} is irreducible, the Γ -invariants on $H^*(\overline{M}; \mathbf{R})$ are generated by 1 and the volume element, and the Z-invariants on $H^*(M; \mathbf{R})$ are generated either by 1 or by 1 and the volume element.

(c) $\overline{M} = M_1 \times \cdots \times M_r$ with r > 1; for each *i*, dim $M_i > 0$ and the Z_i -invariants on $H^*(M_i; \mathbf{R})$ are just the elements $1 \cdot \mathbf{R}$ of degree 0.

Proof. Suppose dim $M_0 > 0$. As Z_0 acts trivially on $H^*(M_0; \mathbf{R})$ it follows that $H^*(M; \mathbf{R})$ has nonzero elements of degree dim M_0 . Thus M is the torus M_0 . Now dim $M_0 = 1$, so M is a circle and we are in case (a).

If \overline{M} is irreducible, the part of (b) on Γ -invariants is obvious and the statement on Z-invariants follows.

Now suppose that we are neither in case (a) nor in case (b). Then dim $M_0 = 0$ and \overline{M} is reducible, so $\overline{M} = M_1 \times \cdots \times M_r$ with r > 1 and dim $M_i > 0$. If ϕ is a Z_i -invariant of positive degree on $H^*(M_i; \mathbf{R})$, then ϕ is Γ -invariant, so $\phi \in H^*(M; \mathbf{R})$ with $0 < \deg \phi < \dim M$. Thus the Z_i -invariants on $H^*(M_i; \mathbf{R})$ are of degree 0.

JOSEPH A. WOLF

2. Admissible factors of M

We go on to find the irreducible symmetric spaces which satisfy the conditions imposed by (b) or (c) of Lemma 1.2.

2.1. Proposition. Let M be a compact irreducible simply connected riemannian symmetric space, $G = I_0(M)$, and Z be the centralizer of G in I(M). Then the Z-invariants on $H^*(M; \mathbb{R})$

(i) are all of degree 0, if and only if M is an even dimensional sphere;

(ii) are generated by 1 and the volume element, if and only if M is an odd dimensional sphere, SU(3)/SO(3), or $SO(5)/SO(2) \times SO(3)$.

Proof. If M is a sphere the assertion is clear. If M is a real cohomology sphere but not a sphere, then [2] M = SU(3)/SO(3), so [4, § 9.6] Z is the center of G and the assertion follows. Now suppose that M is not a real cohomology sphere. Then Z acts nontrivially on $H^*(M; \mathbf{R})$, so $Z \not\subset G$. It follows [4, Chapters 8 and 9], $[3, \S 5]$ that M is one of the spaces:

- (1) $M = \mathrm{SU}(2n)/\mathrm{S}[\mathrm{U}(n) \times \mathrm{U}(n)], Z \cong \mathbb{Z}_{2};$
- (2) $M = \mathbf{SU}(2n)/\mathbf{SO}(2n), Z \cong \mathbf{Z}_{2n};$
- (3) $M = \mathbf{SO}(2r + 2s + 1) / \mathbf{SO}(2r) \times \mathbf{SO}(2s + 1), Z \cong \mathbf{Z}_2;$
- (4) $M = \mathbf{SO}(4n) / \mathbf{U}(2n), Z \cong \mathbf{Z}_2;$
- (5) $M = \mathbf{SO}(2r + 2s) / \mathbf{SO}(2r) \times \mathbf{SO}(2s),$
- $Z \cong \mathbf{Z}_2 \text{ if } r \neq s, Z \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \text{ if } r = s;$ $M = \mathbf{SO}(4r+2)/\mathbf{SO}(2r+1) \times \mathbf{SO}(2r+1), Z \cong \mathbf{Z}_4;$ (6)

6)
$$M = SU(4r + 2)/SU(2r + 1) \times SU(2r + 1), Z \cong L_4$$

- (7) $M = \operatorname{Sp}(n)/\operatorname{U}(n), Z \cong \mathbb{Z}_2;$
- (8) $M = \operatorname{Sp}(2n)/\operatorname{Sp}(n) \times \operatorname{Sp}(n), Z \cong \mathbb{Z}_2;$

$$(9) \quad M = \mathbf{E}_{7}/\mathbf{A}_{7}, \ Z \cong \mathbf{Z}_{2};$$

(10) $M = \mathbf{E}_7 / \mathbf{E}_6 \mathbf{T}_1, Z \cong \mathbf{Z}_2.$

Let M = G/K be one of the spaces above. If rank $G = \operatorname{rank} K$, i.e. if the Euler-Poincaré characteristic $\chi(M) \neq 0$, then we have $\chi(M) = |W_G| / |W_K|$ where W_L = Weyl group of L. As cohomology occurs only in even degree, and as $\chi(M/Z) = \chi(M)/|Z|$, it follows that the two conditions for Z-invariants on $H^*(M; \mathbf{R})$ can be phrased

- (i) $\chi(M/Z) = 1$, i.e. $|W_G|/|W_K| \cdot |Z| = 1$;
- (ii) $\chi(M/Z) = 2$, i.e. $|W_G|/|W_K| \cdot |Z| = 2$.

We run through the relevant cases.

(1) $\chi(M/Z) = (2n)!/n!n!2$ which is > 2 whenever n > 1; we exclude n = 1 by the condition that M is not a sphere S².

(3) $r \ge 1$ because dim M > 0, and $s \ge 1$ because M is not a sphere. Thus $t = \min(r, s) \ge 1$. Now

$$\chi(M/Z) = 2^{r+s}(r+s)!/\{2^{r-1}r!\}\{2^{s}s!\}2 = (r+s)!/r!s! \ge (2t)!/t!t!$$

with equality if and only if r = s, and $(2t)!/t!t! \ge 2$ with equality if and only if t = 1. Thus r = s = 1, so $M = SO(5)/SO(2) \times SO(3)$, and $\chi(M/Z) = 2$.

(4) $\chi(M/Z) = 2^{2n-1}(2n)!/(2n)!2 = 2^{2n-2}$ which is > 2 whenever n > 1; we exclude n = 1 because M is not a product $\mathbf{S}^2 \times \mathbf{S}^2$ of spheres.

(5) $r \ge 1$ and $s \ge 1$ because dim M > 0. We exclude the case r = s = 1 because M is not a product $S^2 \times S^2$ of spheres. Now we may assume $1 \le r \le s$ with s > 1. If r = s, then

$$\chi(M/Z) = 2^{2r-1}(2r)!/\{2^{r-1}r!\}\{2^{r-1}r!\}4 = (2r)!/r!r!2 \ge 3.$$

If r < s, then

$$\chi(M/Z) = 2^{r+s-1}(r+s)! / \{2^{r-1}r!\} \{2^{s-1}s!\} 2 = (r+s)! / r!s! > (2r)! / r!r! \ge 2.$$

(7) n > 1 because M is not a sphere S^2 . If n = 2 then $M = Sp(2)/U(2) = SO(5)/SO(2) \times SO(3)$ was considered under (3). Now suppose n > 2; then $\chi(M/Z) = 2^n n! / n! 2 = 2^{n-1} > 2$.

(8) $\chi(M/Z) = 2^{2n}(2n)!/\{2^n n!\} = (2n)!/n!n!2$ which is >2 for n > 1; and we exclude the case n = 1 because M is not a sphere S^4 .

(9) $\gamma(M/Z) = 2^{10} \cdot 3^4 \cdot 5 \cdot 7/8! \cdot 2 = 36 > 2.$

(10) $\chi(M/Z) = 2^{10} \cdot 3^4 \cdot 5 \cdot 7/2^8 \cdot 3^4 \cdot 5 = 28 > 2.$

Hence our assertions are proved in case rank $G = \operatorname{rank} K$. Now we must check the spaces listed under (2) and (6). For those spaces M = G/K we will decompose I(M) as a union of components $\alpha_i G$, $\alpha_1 = 1$, such that its isotropy subgroup is a union of components $\alpha_i K$. If $z \in Z$, say $z \in \alpha_i G$, then z and α_i have the same action on $H^*(M, \mathbb{R})$, the space of $ad_G(K)$ -invariants on $\Lambda^* \mathbb{P}'$. Thus we must analyse the action of K on \mathbb{P}' , picking out an invariant $\varphi \in \Lambda^k \mathbb{P}'$, such that $0 < k < \dim M$ and such that $\alpha_i(\varphi) = \varphi$ whenever Z meets $\alpha_i G$.

(2) M = SU(2n)/SO(2n). Here $G = SU(2n)/\{\pm I\}$ has center \mathbb{Z}_n which has index 2 in $Z \cong \mathbb{Z}_{2n}$. Note that n > 1 because M is not a sphere S^2 . We have [3, p. 88] $I(M) = G \cup sG \cup \alpha G \cup s\alpha G$ with isotropy subgroup $K \cup sK$ $\cup \alpha K \cup s\alpha K$ where s is the symmetry and $ad(\alpha)|_K = ad(a)|_K$ for a matrix $a = \text{diag}\{-1; 1, \dots, 1\} \in O(2n)$. If \mathbb{Z}_2 denotes the subgroup of order 2 in Z, then $\mathbb{Z}_2 = \{1, \beta\}$ with $\beta \in \alpha G$. Thus we need only find a nonzero K-invariant $\varphi \in \Lambda^k \mathbf{P}', 0 < k < \dim M$, such that $\alpha(\varphi) = \varphi$.

The action of $K = \mathbf{SO}(2n)$ on the second symmetric power $S^2(\mathbf{R}^{2n})$ decomposes as $\psi \oplus \pi$, where ψ is the (trivial) representation on the span of the element representing the invariant inner product on \mathbf{R}^{2n} , and π is equivalent to the representation of K on \mathbf{P}' .

Let $\omega \in \Lambda^{2n^2+n^{-1}}(\mathbf{P}')$ denote the volume element of M. We check that $\alpha(\omega) = -\omega$, i.e. that α has determinant -1 on \mathbf{P}' . For if the matrix a of α has form diag $\{-1; 1, \dots, 1\}$ in a basis $\{v_1, \dots, v_{2n}\}$ of \mathbf{R}^{2n} , then its (-1)-eigenvectors on $S^2(\mathbf{R}^{2n})$ are the $v_1 \cdot v_i$, $2 \le i \le 2n$, which are odd in number.

Borel [1] has shown that the real cohomology of M is that of $\{\mathbf{S}^5 \times \mathbf{S}^9 \times \cdots \times \mathbf{S}^{4n-3}\} \times \mathbf{S}^{2n}$. First let n = 2. Then the product is $\mathbf{S}^4 \times \mathbf{S}^5$ so that $H^*(M; \mathbf{R})$ has basis $\{1, \varphi_4, \varphi_5, \omega\}$, where $\varphi_i \in H^i(M; \mathbf{R})$ and $\varphi_4 \wedge \varphi_5 = \omega$. Furthermore

$$\alpha(\omega) = -\omega$$
 and $\chi(M/\mathbb{Z}_2) = \frac{1}{2}\chi(M) = 0$ imply $\alpha(\varphi_4) = -\varphi_4$ and $\alpha(\varphi_5) = \varphi_5$.

Thus M/\mathbb{Z}_2 is a real cohomology 5-sphere of dimension 9. Now let n > 2, so that $H^*(M; \mathbb{R})$ is generated by elements $\varphi_i \in H^i(M; \mathbb{R})$ of degrees 5, 9, ..., 4n - 3, and 2n such that $(\varphi_5 \land \varphi_9 \land \cdots \land \varphi_{4n-3}) \land \varphi_{2n} = \omega$. If $\alpha(\varphi_i) = \varphi_i$ and $\alpha(\varphi_j) = \varphi_j$ for two distinct indices i, j, then M/Z is not a real cohomology sphere of any sort. If $\alpha(\varphi_i) = \varphi_i$ for a unique index i, then $\alpha(\varphi_j) = -\varphi_j$ for $j \neq i$. There are two indices $j \neq k$ distinct from i because $n \geq 3$, and now α preserves both φ_i and $\varphi_j \land \varphi_k$, so again M/Z is not a real cohomology sphere of any sort.

(6) $M = \mathbf{SO}(4r+2)/\mathbf{SO}(2r+1) \times \mathbf{SO}(2r+1)$, grassmannian of oriented (2r+1)-planes in an oriented \mathbf{R}^{4r+2} . Then $Z = \{1, \beta, \beta^2, \beta^3\} \cong \mathbf{Z}_4$, where β is orthocomplementation, and $\beta^2 = -I$ reverses orientation of (2r+1)-planes. We have $K = K_1 \times K_2$ with $K_i \cong \mathbf{SO}(2r+1)$. Let αG denote the component of $\mathbf{I}(M)$ containing β . Then $ad(\alpha)$ has order 2 and interchanges K_1 with K_2 . Viewing **G** as the space of antisymmetric real matrices of degree 4r + 2, we identify an element of **P** with its upper right hand block of degree 2r + 1, and then $K = K_1 \times K_2$ acts on **P** by (k_1, k_2) : $\mathbf{A} \to k_1 A k_2^{-1}$. Now α acts on **P** by $A \to {}^t A$ transpose, so the multiplicity of its (-1)-eigenvalue there is $(2r + 1)(2r)/2 = 2r^2 + r$. Thus α acts on the volume element ω by: $\alpha(\omega) = \omega$ if r is even, $\alpha(\omega) = -\omega$ if r is odd.

If r = 1, then $M = \mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3) = \mathbf{SU}(4)/\mathbf{SO}(4)$, and, as seen above, the 9-dimensional manifold M/Z is a real cohomology 5-sphere. Now suppose $r \ge 2$, so that dim $M \ge 25$. Then the inclusion of M into the grassmannian of oriented (2r + 1)-planes in \mathbb{R}^{∞} is an isomorphism on cohomology of degrees 4 and 8, so the Pontrjagin classes p_1 and p_2 of M are nonzero. Recall $p_i = (-1)^i c_{2i}(\tau_C)$, and $c_{2i}(\eta) = c_{2i}(\overline{\eta})$ for any complex vector bundle η , where c_j is the j-th Chern class, and τ is the tangent bundle. As $\alpha(\tau_C)$ is τ_C or $\overline{\tau}_C$, now $\alpha(p_1) = p_1$ and $\alpha(p_2) = p_2$. Thus M/Z is not a real cohomology sphere.

3. Products of even spheres

We now work out the last ingredient of our main result, proving

3.1. Proposition. Let $\overline{M} = \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_n}$, product of $m \ge 1$ even dimensional spheres, and $\Gamma \subset \mathbf{I}(\overline{M})$ be a finite subgroup such that $M = \overline{M}/\Gamma$ is a riemannian symmetric space.

1. $H^*(M; \mathbf{R}) = H^0(M; \mathbf{R})$ if and only if Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$, where γ_i is either the identity map or the antipodal map of the *i*-th factor $\mathbf{S}^{2\tau_i}$ of \overline{M} .

2. *M* is a real cohomology (dim *M*)-sphere if and only if Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$ as above such that the number of γ_i which are antipodal maps, is even.

Proof. Let $\nu_i \in I(\overline{M})$ act on the factors of \overline{M} by the identity on S^{2r_s} for

SYMMETRIC SPACES

 $i \neq s$, and by the antipodal map on $\mathbf{S}^{2\tau_i}$. Let Δ denote the group generated by the ν_i , Δ' the subgroup of index 2 consisting of products of an even number of ν_i , and θ_i denote the character on Δ such that $\theta_i(\nu_s) = 1$ for $i \neq s$, and $\theta_i(\nu_i) = -1$. Then the 2^m characters $\theta_{i_1}\theta_{i_2}\cdots\theta_{i_s}$, $1 \leq i_1 < \cdots < i_s \leq m$, are all the characters of Δ , and $\theta_1\theta_2\cdots\theta_m$ is the only nontrivial one which annihilates Δ' .

Let $\omega_i \in H^*(\overline{M}; \mathbf{R})$ be the $\mathbf{I}_0(\overline{M})$ -invariant differential form of degree $2r_i$, which annihilates the tangent space to the factors \mathbf{S}^{2r_s} , $s \neq i$, of \overline{M} , and restricts to the volume element of \mathbf{S}^{2r_i} . Then $\nu_i^*\omega_s = \theta_s(\nu_i) \cdot \omega_s$. If $\delta \in \Delta$, then δ acts on $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$ by scalar multiplication with $(\theta_{i_1} \cdots \theta_{i_s})(\delta)$. But the 2^m elements $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$, $1 \leq i_1 < \cdots < i_s \leq m$, are a basis of of $H^*(\overline{M}; \mathbf{R})$. Hence

3.2. Lemma. If $\Psi \subset \Delta$, then the Ψ -invariants on $H^*(\overline{M}; \mathbb{R})$ are just the span of the $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$ such that $\theta_{i_1} \cdots \theta_{i_s}$ annihilates Ψ .

Now let Γ be a subgroup of Δ , i.e. suppose that \overline{M}/Γ is symmetric. Then $H^*(\overline{M}/\Gamma; \mathbf{R}) = H^0(\overline{M}/\Gamma; \mathbf{R})$ if and only if none of the $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$ are Γ -invariant for s > 0. By Lemma 3.2 this latter condition is that no nontrivial character on Δ can annihilate Γ , i.e. Δ/Γ has no nontrivial character, i.e. $\Gamma = \Delta$. Thus the first assertion of the proposition is proved. \overline{M}/Γ is a real cohomology sphere if and only if 1 and $\omega_1 \wedge \cdots \wedge \omega_m$ generate the Γ -invariants on $H^*(\overline{M}; \mathbf{R})$. Lemma 3.2 formulates the latter as the condition that $\theta_1 \theta_2 \cdots \theta_m$ is the only nontrivial character on Δ , which annihilates Γ , i.e. that $\Gamma = \Delta'$. Thus the second assertion of the proposition is proved.

4. Proof of Theorem 1

We prove Theorem 1, stated at the beginning of this note.

M is a compact connected riemannian symmetric space, and $M = \overline{M}/\Gamma$ as in the notation of § 1.

If \overline{M} is an odd sphere \mathbf{S}^{2n-1} , then $Z = \{\pm I\} \subset G = \mathbf{SO}(2n)$ acts trivially on the real cohomology of \overline{M} ; so \overline{M} and its associated projective space $\overline{M}/Z = \mathbf{S}^{2n-1}/\{\pm I\}$ are real cohomology spheres. If \overline{M} is a product of even spheres, and Γ is the group described in case (2) of the theorem, then \overline{M}/Γ is a real cohomology sphere by Proposition 3.1. If \overline{M} is $\mathbf{SU}(3)/\mathbf{SO}(3)$, then dim $\overline{M} = 5$, and

> $H^{1}(\overline{M}; \mathbf{R}) = 0$, because \overline{M} is simply connected, $H^{2}(\overline{M}; \mathbf{R}) = 0$, because \overline{M} is not hermitian symmetric, $H^{3}(\overline{M}; \mathbf{R}) = H^{4}(\overline{M}; \mathbf{R}) = 0$ by Poincaré duality,

so \overline{M} is a real cohomology sphere; further $Z = \mathbb{Z}_3$, center of G = SU(3), so $\overline{M}/Z = \{SU(3)/\mathbb{Z}_3\}/SO(3)$ is a real cohomology sphere. Finally if $\overline{M} = SO(5)/SO(2) \times SO(3)$ (oriented real grassmannian), then \overline{M}/Z

 $= \overline{M}/\{\pm I\} = \mathbf{O}(5)/\mathbf{O}(2) \times \mathbf{O}(3)$ (nonoriented real grassmannian) is a real cohomology sphere by Proposition 2.1. Thus the spaces *M* listed in Theorem 1 are real cohomology (dim *M*)-spheres.

Conversely, let *M* be a real cohomology (dim *M*)-sphere. We run through the alternatives of Lemma 1.2. If *M* is a circle, it is an odd sphere, listed under (1) in Theorem 1. If *M* is irreducible, then it is a sphere, SU(3)/SO(3), or $SO(5)/SO(2) \times SO(3)$, by Proposition 2.1, and then *M* is a sphere or real projective space, SU(3)/SO(3) or $\{SU(3)/Z_3\}/SO(3)$, or $SO(5)/SO(2) \times SO(3)$ or $O(5)/O(2) \times O(3)$; even projective spaces are eliminated both by nonorientability and by $\chi = 1$, and $SO(5)/SO(2) \times SO(3)$ is eliminated by $\chi = 4$; thus *M* is listed under (1), (2), (3) or (4) of Theorem 1. If \overline{M} is reducible, then it is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1, and then *M* is listed under (2) of Theorem 1, by Proposition 3.1.

5. Extension to Theorem 2

We modify the proof of Theorem 1 in such a way as to obtain Theorem 2. Let M be a connected riemannian symmetric space. Then we have the universal riemannian covering $\varphi: N \to M = N/\Delta$, and decompose $N = N_0$ $\times N' \times N''$, where N_0 is a euclidean space, N' a product of compact simply connected irreducible symmetric spaces, and N'' a product of noncompact irreducible symmetric spaces. Δ has trivial projection on I(N''), so $\Delta \subset I(N_0)$ $\times I(N')$; Δ has finite projection on I(N'), so $\Delta_0 = \Delta \cap I(N_0)$ is a subgroup of finite index; in particular Δ_0 has finite index in the projection of Δ to $I(N_0)$. The projection of Δ to $I(N_0)$ is a group of euclidean translations, and this decomposes $N_0 = N'_0 \times N''_0$, where Δ acts trivially on N''_0 , and N'_0 has compact quotient by the projection of Δ to $I(N_0)$. Now define

$$\overline{M} = \overline{M}' imes \overline{M}'', \quad \overline{M}' = (N_0' imes N') / \varDelta_0, \quad \overline{M}'' = N_0'' imes N'',$$

so that

$$M = M' \times M''$$
, where $M' = \overline{M}'/\Gamma$, $M'' = \overline{M}''$, $\Gamma = \Delta/\Delta_0$,

and $\varphi: N \to M$ factors through the covering $\pi: \overline{M} \to M = \overline{M}/\Gamma$. M' is a compact connected riemannian symmetric space; M'' is contractible because it is the product of a euclidean space N_0'' and a product N'' of noncompact irreducible symmetric spaces; under the inclusion $\iota: M' \to M$, now $\iota^*: H^*(M; A) \cong H^*(M'; A)$ for any coefficient ring A. This reduces the proof of Theorem 2 to the case dim M'' = 0 where M is compact.

Now let M be a compact connected riemannian symmetric space which is a real cohomology *n*-sphere, where $0 \le n \le \dim M$. Recall our convention that a 0-sphere means a single point. As in §1 we decompose $M = \overline{M}/\Gamma$, $\overline{M} = M_0 \times M_1 \times \cdots \times M_r$, where M_0 is a flat riemannian torus and the other M_i are compact simply connected irreducible symmetric spaces. Lemma 1.1 holds but Lemma 1.2 must be modified.

If dim $M_0 > 0$, then, as before, n = 1 and M_0 is a circle. For i > 0, now M_i contributes nothing to $H^*(M; \mathbb{R})$, so M_i is an even dimensional sphere $S^{2\tau_i}$ by Proposition 2.1. Let Γ' denote the projection of Γ to $I(M_1 \times \cdots \times M_r)$. Then $\Gamma \to \Gamma'$ is an isomorphism by construction of M_0 , and $\Gamma' \cong (\mathbb{Z}_2)^r$ consisting of all $\gamma' = \gamma_1 \times \cdots \times \gamma_r$ where γ_i is 1 or the antipodal map on $M_i = S^{2\tau_i}$, by Proposition 3.1. Thus Γ consists of all $\gamma = \gamma_0 \times \gamma'$, where $\gamma' \in \Gamma'$ as just described, and $\gamma_0 = \theta(\gamma')$ for some arbitrary fixed character θ on Γ' . Since there are 2^r choices of θ , our assertions of Theorem 2 are now proved for the case dim $M_0 > 0$.

Now we assume dim $M_0 = 0$, so $M = M_1 \times \cdots \times M_r$.

Suppose that \overline{M}/Z is a real cohomology 0-sphere, i.e. that $H^*(\overline{M}/Z; \mathbf{R}) = H^0(\overline{M}/Z; \mathbf{R})$. Then Proposition 2.1 tells us that $M_i = \mathbf{S}^{2r_i}$ even sphere. If n = 0, then Proposition 3.1 says $\Gamma = Z$. If n > 0, then Lemma 3.2 says that $H^*(M; \mathbf{R})$ is spanned by 1 and by some $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$, where ω_i is the volume element of M_i , $1 \le i_1 \le \cdots \le i_s \le r$, s > 0, $n = 2r_{i_1} + \cdots + 2r_{i_s}$, and $\Gamma \cong (\mathbf{Z}_2)^{r-1}$ is the kernel of the character $\theta_{i_1} \cdots \theta_{i_s}$. Thus there are $2^r - 1$ possibilities for Γ , and the assertions of Theorem 2 is proved for the case where M/Z is a real cohomology 0-sphere.

Now we assume that M/Z is not a real cohomology 0-sphere. Then n > 0, and M/Z is a real cohomology *n*-sphere. We re-order the M_i now, so that M_1/Z_1 is a real cohomology *n*-sphere and the other M_i/Z_i are real cohomology 0-spheres. Proposition 2.1 tells us

(i) if i > 1, then M_1 is an even dimensional sphere;

(ii) if $n = \dim M_1$, then M_1 is an odd sphere, is SU(3)/SO(3) or is $SO(5)/SO(2) \times SO(3)$.

5.1. Lemma. Let M_1 be a compact simply connected irreducible riemannian symmetric space, and Z_1 the centralizer of $I_0(M_1)$ in $I(M_1)$, and suppose that M_1/Z_1 is a real cohomology n-sphere where $0 < n < \dim M_1$. Then n = 5, $\dim M_1 = 9$ and $M_1 = SU(4)/SO(4) = SO(6)/SO(3) \times SO(3)$.

Proof. Let $m = \dim M_1$. Then $H^m(M_1/Z_1; \mathbf{R}) = 0$ says that Z_1 acts nontrivially on $H^*(M_1; \mathbf{R})$, so M_1 is one of the ten (types of) spaces listed at the beginning of the proof of Proposition 2.1.

If $\chi(M_1) \neq 0$, then $H^k(M_1; \mathbf{R}) = 0$ for k odd, so $H^k(M_1/Z_1; \mathbf{R}) = 0$ for k odd; thus n is even and $\chi(M_1/Z_1) = 2$. Following the proof of Proposition 2.1 for that case, we see $M_1 = \mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)$, so n = m = 6, contradicting n < m. Thus $\chi(M_1) = 0$. Following the proof of Proposition 2.1 for that case we see that M_1 is the 9-dimensional $\mathbf{SU}(4)/\mathbf{SO}(4) = \mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3)$ with $Z_1 \cong \mathbf{Z}_4$ and n = 5.

Returning to the proof of Theorem 2, let t = r - 1; then we need only examine the cases

(1) $\overline{M} = \mathbf{S}^{2m+1} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t}, m > 0, t \ge 0;$

- (2) $\overline{M} = {\mathbf{SU}(3) / \mathbf{SO}(3)} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t};$
- (3) $\underline{M} = {\{\mathbf{SO}(5) | \mathbf{SO}(2) \times \mathbf{SO}(3)\} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t};}$
- (4) $\overline{M} = \{\mathbf{SO}(6) | \mathbf{SO}(3) \times \mathbf{SO}(3)\} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t}.$

In each case let Γ' be the projection of Γ to $\mathbf{I}(\mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t})$. Then Proposition 3.1 says that $\Gamma' \cong (\mathbf{Z}_2)^t$ consists of all $\gamma' = \gamma_1 \times \cdots \times \gamma_t$ where γ_i is 1 or the antipodal map on \mathbf{S}^{2r_i} . And in each case let $\Gamma^0 = \Gamma \cap \mathbf{I}(M_1)$, kernel of $\Gamma \to \Gamma'$.

In cases (1) and (2), where Z_1 acts trivially on $H^*(M_1; \mathbb{R})$, the symmetric space \overline{M}/Ψ is a real cohomology (dim M_1)-sphere if and only if Ψ projects onto $\Gamma' = Z_2 \times Z_3 \times \cdots \times Z_{t+1} \cong (\mathbb{Z}_2)^t$. For the action of $\gamma = \gamma^0 \times \gamma' \in \mathbb{Z}$ $= Z_1 \times \Gamma'$ on real cohomology of \overline{M} is just that of $1 \times \gamma'$. In case (1) this means that Γ can be $\mathbb{Z} \cong (\mathbb{Z}_2)^{t+1}$ if $\Gamma^0 \neq \{1\}$; if $\Gamma^0 = \{1\}$ then Γ can be any of the 2^t groups

$$\Gamma_{\theta} = \{\theta(\gamma') \times \gamma' \colon \gamma' \in \Gamma'\} \cong (\mathbf{Z}_2)^t$$
,

where θ is a character on Γ' . In case (2) it means either that $\Gamma^0 \neq \{1\}$ and $\Gamma = Z \cong \mathbb{Z}_3 \times (\mathbb{Z}_2)^t$, or that $\Gamma^0 = \{1\}$ and $\Gamma = \Gamma' \cong (\mathbb{Z}_2)^t$.

In cases (3) and (4), where M_1 is not a real cohomology sphere because of a nonzero element $\omega_0 \in H^4(M_1; \mathbf{R})$, that element ω_0 is sent to its negative by a generator z_0 of Z_1 . Let ω_i denote the volume element of \mathbf{S}^{2r_i} ; now we require that no form $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \neq 1$, $0 \leq i_1 < \cdots < i_s \leq t$, can be Γ -invariant. As for Proposition 3.1, it follows that Γ separately contains the generator of each Z_i . Thus $\Gamma = Z$, so $\Gamma \cong (\mathbf{Z}_2)^{t+1}$ in case (3) and $\Gamma \cong \mathbf{Z}_4 \times (\mathbf{Z}_2)^t$ in case (4). Conversely, $\Gamma = Z$ implies $M = (M_1/Z_1) \times (\mathbf{S}^{2r_i}/\mathbf{Z}_2) \times \cdots \times (\mathbf{S}^{2r_t}/\mathbf{Z}_2)$, **R**-cohomologically equivalent to the real cohomology sphere M_1/Z_1 . Hence the proof of Theorem 2 is complete.

References

- [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groups de Lie compacts, Ann. of Math. 57 (1953) 115-207.
- [2] B. Kostant, On invariant skew tensors, Proc. Nat. Acad. Sci. U.S.A. 42 (1955) 148-151.
- [3] J. A. Wolf, Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962) 65-101.
- [4] —, Spaces of constant curvature, McGraw-Hill, New York, 1967.

UNIVERSITY OF CALIFORNIA, BERKELEY

68