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ON A PROBLEM OF NOMIZU-SMYTH ON A NORMAL
CONTACT RIEMANNIAN MANIFOLD

KENTARO YANO & SHIGERU ISHIHARA

The study of complex Einstein hypersurfaces of K#hlerian manifolds of
constant holomorphic sectional curvature has been initiated by Smyth [12]
and continued by Nomizu and Smyth [7]. (See also, Ako [1], Chern [2],
Kobayashi [5], Smyth [13], Takahashi [14], Yano and Ishihara [17]).

The main purpose of the present paper is to study the so-called invariant
C-Einstein submanifolds of codimension 2 in a normal contact Riemannian
manifold. We call a problem of this kind a problem of Nomizu-Smyth.

First of all we recall in §1 the definition and properties of contact Rieman-
nian manifolds, and in §2 the fundamental formulas for submanifolds of
codimension 2 in a Riemannian manifold.

In §§3, 4 we obtain the fundamental formulas respectively for submani-
folds and invariant submanifolds of codimension 2 in a contact Riemannian
manifold.

In the last §5, we study the problem of Nomizu-Smyth, that is, the problem
of determining invariant C-Einstein submanifolds of codimension 2 in a nor-
mal contact Riemannian manifold of constant curvature.

1. Contact Riemmannian manifolds

First of all for later use we recall the definition and some properties of a
contact Riemannian manifold. A (2n+ 1)-dimensional differentiable manifold
M is said to admit a contact structure if there exists on M a 1-form E = E,dx?
such that the rank of the tensor field

(1.1) Fy = -%-(ajEi — 0.E))

is 2n everywhere on M, where 9; denotes the operator 3/dx?, (x*) are the
local coordinates of M, the indices 4, i, j, k, - - - run over the range {1, - - -
-++,2n+ 1}, and the so-called Einstein’s summation convention is used
with respect to this system of indices. A manifold admitting a contact struc-
ture is called a contact manifold.
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If a contact manifold M is orientable, we can find a vector field E* on M
such that

(1.2) FJiE‘L - 0 ) E,LEL = .

It is now well-known that there exists on M a positive definite Riemannian
metric G;; such that

Ei = GihEh s
(1.3) F*F' = — ¢!+ EE",
Fj‘Fz-sGts = Gji — EjEi ,
where
(1.4) F;,» = F,,G*",

(G**) being the inverse of the matrix (G;;) (cf. [3]). A differentiable mani-
fold admitting such a structure (F;*, E;, E*, G;,) is called a contact Rieman-
nian manifold.

We denote by N,;* the Nijenhuis tensor formed with F,*, i.e.,

N;?* = F;'%9,F;» — F'9,F;» — (0,F;' — o,F;")F .
If the tensor field
Sjih = Njih' + (ajE,L —_ alEj)Eh

vanishes identically, the contact Riemannian manifold is said to be normal
(cf. [9], [10]). A contact Riemmanian manifold is normal if and only if

(1'5) VjE‘l = F11 3

V; denoting the covariant differentiation with respect to the Riemannian con-
nection {;*;} determined by G;; (cf. [4]).

Differentiating (1.5) covariantly and taking account of (1.3) and (1.6), we
have

VijEh = — ijEh + 5,’:Ej Py
which gives

where K;;;* = K,;,,G** denotes the curvature tensor of G,;. Transvecting
(1.7) with arbitrary vectors X* and Y, we find
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(E*Y"K; X" = (Y XHEI — (E XY,
which shows that there exists a vector Y* satisfying
(E*Y*K,, ) X* = AJ

for arbitrarily given vectors X* and A4*. Thus we have

Lemma 1. Any normal contact Riemannian manifold is irreducible as a
Riemannian manifold [15].

When the Ricci tensor K;; = K;;,* has components of the form

(1.8) Kji = aGy; + bEjEi

with constants a and b, the contact Riemannian manifold M is said to be a
C-Einstein manifold. When b =0 in (1.8), the manifold M is an Einstein
manifold.

Differentiating (1.8) covariantly, by virtue of (1.5) we have

(1.9) Vchji = b(ijEi + FkiEj) s

when the contact manifold M is normal. Conversely, if we assume that the
normal contact Riemannian manifold satisfies the condition (1.9), by virtue
of (1.5) we find

(1.10) Vk(K]‘l hnd bEjEi) == O B

On the other hand, according to Lemma 1, the normal contact Riemannian
manifold M is irreducible. Thus, taking account of (1.10), we have

Kj‘l hand bEjE.l = ani

with a constant a, since the left hand side is a symmetric tensor. That is to
say, the manifold M is a C-Einstein manifold. Therefore, we have

Lemma 2. In order that a normal contact Riemannian manifold M is a
C-Einstein manifold, it is necessary and sufficient that M satisfies the condition
(1.9).

2. Submanifolds of codimension 2 in a Riemannian manifold

We consider a submanifold ¥ of codimension 2 on a differentiable manifold
M of dimension 2n + 1 with positive definite Riemannian metric G,;, and
denote the parameter representation of the submanifold ¥ by

xt = xM(u®)

where (u2) are the local coordinates of V, and the indices a, b, ¢, d, e, f Tun
over the range {1, ..., 2n—1}.
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Put
Bbh = abxh Py

d, denoting the operator 3/0u’, and denote a pair of mutually orthogonal unit
vector fields normal to ¥ by C* and D*, which are locally defined in each
coordinate neighborhood of V. Then the Riemannian metric induced on V is
given by

(21) 8cr = Gjchiji )
and we have

GjiCiji = 0 Py GjiDiji = 0 P

2.2)
Gj,;CjC’: = 1 Py G‘“chi = 0 > Gj.leDi p— 1 .

If we denote by F/, the so-called van der Waerden-Bortolotti covariant dif-
ferentiation on V, i.e., if we put
(2.3) VcBbh = 0.By" + {jhi} Bchbi - {cab}Bah s
(2.4 V.Cr = 9,C* + {jhi} B/Ct, V.D*=3§.D"* + {jhi} B/D*,

{;*:} and {,%,} being the Christoffel symbols formed respectively with G;; and
8., then, taking account of (2.2), we have

(2.5) VcBbh = hcbch + kcth’ )
(2.6) V.Ch= — heB,r + 1.D*, V.D'= — kaB,» — IC*,

where h,, and k., are the second fundamental tensors, and /, the third funda-
mental tensor with respect to C* and D*. As is well-known, we have

hcb = hbc s kcb = kbc )
hca = hcbgba ) kca = kcbgba ’

where (g¢) is the inverse of the matrix (g,,). (2.5) are equations of Gauss,
and (2.6) equations of Weingarten. We also have

(2'7) KkjithchijiBah = Rdcba - (hdahcb - hcuhdb + kdakcb - kcakdb) ’

KkjithchijiCh = (thrb - Vchdb) - (ldkcb - lckdb) ’

2.8
@8 Ky ;inBi*BIByiD* = (V3kop — Vekay) + (sheo — Lhas)

(2.9 KkjithchjCiDh = lec - Vcld + hdakca - hcakda, s

where K, ;;, and R, are the curvature tensors of the enveloping manifold
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M and the submanifold V' respectively. (2.7) are equations of Gauss, (2.8)
equations of Codazzi, and (2.9) equations of Ricci.

When the enveloping manifold M is of constant curvature c, that is, when
K, ;:n is of the form

Kkjin. = C(Gthji - Gthki) s
equations (2.7), (2.8) and (2.9) become respectively

(2-10) Rdcba = C(gdagcb - gcagdb) + (hdahcb - hcahdb + kda.kcb - kcakdb)’
(thcb - ldkcb) - (Vchdb - lckdb) =0 )

. (2.11)

Wokey + lihey) — Wokygy + Lhy) =0,
(2.12) Ve = Vely + hykee — h ke = 0.
Transvecting (2.10) with g¢¢, we have
2.13) R, =2(n— 1)cgey + (Blhey + kfkey) — heohy® — kooky®

where R,, = g%*R,... is the Ricci tensor of the submanifold V.

Equations (2.11) imply

Lemma 3. For any submanifold of codimension 2 in a Riemannian mani-
fold of constant curvature, the tensor fields

hdcb = thco - ldkcb ) kdcb = decb + ldhcb

are symmetric in all their indices d, c, b.

3. Submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the enveloping manifold M is a contact Riemannian
manifold of dimension 2n + 1 with structure (F;*, E;, E*, G,,), and that there
is given in M a submanifold V' of codimension 2. Then, for the transforms of
B,*, C* and D* by F;*, due to the relations F;C/C! = F;D'D* = 0 and

F;CiD* = — F;;DIC* we have equations of the form
3.1 Fi"B,t = f,°B," + poC" + q,D",
FCi = — p*B,” 4 rD*,
(3.2) ‘ P
FDt = — q°B,* — rC*,

where p® and g¢ are defined by

P*=p,8’®, q° = q,8*°
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respectively, f,% define a global tensor field of type (1, 1) in ¥, independent
of the choice of C* and D”*, pe and gq* are two local vector fields, and r is a
global scalar field in V, independent of the choice of C* and D*. On the sub-
manifold ¥ the vector field E*» has the form

(3.3) E* = e®B,* + aC* + pD*,

where e® define a global vector field in V and «, 8 two local scalar fields.
Considering the transform of (3.1) by F;* and taking account of (1.2),
(3.1), (3.2) and (3.3), we find

fofs® = — 05 + e,e® + pyp® + q59°,
(3.4) f2°Pa = @€, + 14, ,

f1*qa = Bey, — 1Py,
where
(3.5) eb = gbaea .

Similarly, we have from (3.2)
(B.6) ppt=1—a"—1r, qq*°=1—-F—r, pg°*=—af.
Taking the transform of (3.3) by F;* and using (3.1) and (3.2), we find
3.7 f,%€® = ap® + Bq®, p.e* = Pr, q.e* = —ar.
On the other hand, due to g;,E/E* = 1, from (3.3) it follows
(3.8) eet =1— o — B

Now differentiating (3.1) covariantly on the submanifold V' and using (2.5),
(2.6) we obtain
(V,F»)BB,* + F*h,,Ct + kDY)
= (Vcfo)Bo" + fo2(heoC* + keoD")
+ Ze2o)C* + po(— hB,* + 1.DY)
+ (F.q)D* + q(— kLB, — 1.C") .

If we assume that the enveloping manifold M is normal, then we have, from
(1.6) and (3.9),

3.9)

Vefe® = — 8c€® + 7€, — heoD® + heDy — keng® + k%qs
(3-10) chh = — 08 — rkcb - hcajba + lcqb s
chb = - ﬁgcb + rhcb - kcafba - lcpb .
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Differentiating (3.2), (3.3) covariantly on the submanifold V' and taking
account of (1.5), (1.6), (3.1) and (3.2), for normal M we find

(3.11) Vcr = - hcbqb + kcbpb s

V,e¢ = f,* + ah,® + Bk,*,
(3' 12) b fb b ﬁ b
Vba = pb —_ hoae“ + ‘Blb s Vbﬁ =gy — kbaea —_ alb .
4. Invariant submanifolds of codimension 2 in a contact
Riemannian manifold

We now assume that the tangent space of the submanifold V' of codimen-
sion 2 in a contact Riemannian manifold M is invariant under the action of
F;* at every point, and we call such a submanifold an invariant submanifold.

For an invariant submanifold, we obtain

(4'1) Fithi = fbaBa,h ’
that is,
4.2) =0, ¢=0

in (3.1). Thus we have

F*Ct = rD*, FM"Dt = — rC*
from (3.2),
4.3) foht = — 0% + e,
ae, =0, Be,=0
from (3.4),
4.5) l1—a*—r=0, 1-p~-r=0, af=0

from (3.6), and finally
(4.6) fr2¢* =0, pr=0, ar=0
from (3.7). Moreover, equations (4.5) imply
a=8=0, r=1.
Conversely, if 7 = 1, then equations (3.6) show that p¢ =0, g¢ =0, @ = 0,

£ =0, and consequently V is invariant because of (3.1) and the Riemannian
metric g,, being positively definite.



52 KENTARO YANO & SHIGERU ISHIHARA

Thus, in order that a submanifold V of codimension 2 in a contact Rie-
mannian manifold M be invariant, it is necessary and sufficient that r* = 1 in

(3.2) (cf. [8D.
In the sequal, we always consider invariant submanifolds and hence may
assume that r = 1. We then have, for an invariant submanifold V,

@.7)  F/Bji =f,*B,*, F#Ci=D", FMDi= —Ct;
4.8) ‘ E* = e2B,* ;

fefs® = — 07 + ee®,
free® =0, et =1.

4.9

Transvecting (4.8) with G,,B,? and taking account of (2.1), (3.5) and (4.1),
we find

(4.10) EiBbi = eb .

If we transvert the last equation of (1.3) with B,B,* and take account of
(2.1), (4.7) and (4.10), then we obtain

(4-11) fcefbdged = 8cp — €€ -

On the other hand, we have, from (1.1) and (1.4),
F Gy, = %(a,Ei _3.E).

Transvecting this equation with B./B,?, and taking account of (2.1), (4.7),
(4.10) and 4.B,* = 9,B,", we find

4.12) nwm=%@%—mm.

Thus equations (3.5), (4.9), (4.11) and (4.12) show that any invariant sub-
manifold of codimension 2 in a contact Riemannian manifold is also a contact

Riemannian manifold.
We now assume that the enveloping contact Riemannian manifold M is

normal and the submanifold V is invariant. From the first equations of (3.12)
and (3.10) we then have, respectively,
V bea = fba' ’

4.13)
Vefo® = — 80€® + 7€

by virtue of p» =0, ¢* =0, =0, § = 0.
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Equations (4.13) show that any invariant submanifold of codimension 2 in
a normal contact Riemannian manifold is also a normal contact Riemannian

manifold. . o
When the enveloping manifold M is normal and the submanifold V is in-

variant, from the second and third equations of (3.10) and (3.12), by virtue
of p,=0, g, =0, a =0, § =0, r =1 we obtain, respectively,

(414) kcb = - hcafba ’ hcb = kcafba s
4.15) hyget =0, k,,e® =0.

Since f,, = f.%84, is skew-symmetric, and h,,, k. are symmetric, equations
(4.14) give

(4'16) hcafba - hbafca =0 ’ kcajba - kbajc”’ =0 ’
4.17) h' =h,g* =0, ke = hcbng =0,

which thus show that any invariant submanifojd of codimension 2 in a normal
contact Riemannian manifold is minimal (cf. [8]).

Denote the tensor fields A,2, k,2 and f,* of type (1, 1) by A, k and f respec-
tively. Then (4.14), (4.6) are respectively equivalent to the conditions

4.18) h = kf, k= —hf,
(4.19) hf +fh =0, kf +fk=0.

From (4.18) and (4.19), we thus have A* = h(kf) = — h(fk) = — (h)k
= k%, or

4.20) =k,
and also hk = (kf)k = k(fk) = — k(kf) = — kh, or
“4.21) hk + kh =0.
5. Invariant C-Einstein submanifolds of codimension 2 in a

normal contact Riemannian manifold

We assume that the enveloping manifold M is a normal contact Riemannian
manifold of constant curvature, which necessarily equals to 1 (cf. [6], [10],
[11], [16]), and the invariant submanifold ¥V of codimension 2 imbedded in
M is a C-Einstein manifold. Taking account of (2.13) with ¢ = 1 and (4.17),
we then see that the Ricci tensor of ¥ has the form

Rcb = 2(” el l)gcb -_ hcahba bl kcakba .
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On the other hand, since V is a C-Einstein manifold, we have
R, = ag., + be.e,

with constants a and b. Thus

5.1 ag,, + be.e, = 2(n — 1)g.; — hoohy® — kyoky® .

If the submanifold V is an Einstein manifold, i.e., if » = 0 in (5.1), then
from (4.20) and (5.1) we find

=k =2

with constant 1 and the identity tensor I. Since the induced metric of the
submanifold is positive definite, the above equation, together with (4.15),
implies

h=k=0.

Thus we have

Proposition 5.1. Any invariant Einstein submanifold V in a normal con-
tact Riemannian manifold of constant curvature is totally geodesic.

Taking account of (4.20), from (5.1) we have

hcahba = kca,kba = (l’l o %)gcb - %‘eceb )

from which, taking account of (4.15), we find
(5-2) hcahba = kcakba = ﬂ(gcb - eceb)

with a constant p. Transvecting (5.2) with f,* and taking account of (4.14),
we obtain

(5.3) hdakca = #fdc ’ kdahca = - ﬂfdc .

Differentiating both equations of (4.14) covariantly and taking account of
(4.13), (4.14) and (4.15), we find

hdcb = kdcajba + kdceb ’

5.9
kdcb = - hdcafba - hdceb s
where
5.5 heep = Vahey — likes koo = Vakey + lahes -

Transvecting (5.4) with e® and taking account of (4.9), we have
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b — b —
(5’6) hdcbe - kdc H kdcbe - = hdc .

If we differentiate (5.2) covariantly and take account of (4.13) and (5.3),
then we find

hdcbhab + hdabhcb = - ,u(fdcea + fda,ec) ’

5.7
¢ kdcbkab + kdabkcb = - /l(fdcea + fdaec) .

According to Lemma 3 stated in §2, we have k.,, = k.4, Which and the
second equation of (5.4) imply

hdcefbe + hdceb = hcbsfde + hcbed .

Transvecting the above equation with f,* and taking account of Lemma 3,
(4.9), (4.14) and (5.6), we have, after changing the indices,

haey = — fa'ffhyer + kave. + ke, .

If we substitute the equation above into the first equation of (5.7) written
as

hacohe® + havoh® = — p(facea + facee) 5
and take account of (4.15) and (5.3), then we find
fa{fo*he’hrea + fRreshs® — pgsc€a} = 0,
from which
(5.8) fo°h’hyeq + fehrenha® — p18c€0 = €flea

where [, is a certain tensor field of type (0, 2), because f,’e, = 0 and f,” is of
rank 2n — 2. Transvecting (5.8) with e/ and taking account of (5.6), we have

leo = fo°hlkeq + fofkephy® — Hec€q 5
which reduces to
lca = F‘(cha - 3ecea)

because of (4.18), (4.19) and (5.2). If we substitute this in (5.8), then we
obtain

fbehcbhfea + fcehfebhab = zﬂ(gca - ecea,)e/ + ﬂ(gfc - efec)ea, .

If we transvect the above equation with f,° and take account of (4.9), (4.18),
(4.19), (5.3) and (5.6), then we find
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hathseq — hrashe® + pfasea = p(2face; — fra€a) »
that is,

hdehfea - hftlbha,b = #(Zfdaef — fraa — fased) »
from which and (5.7) it follows that

hreohy® = — p(fraeq + faaey) -

Transvecting the above equation with #4,% and taking account of (4.14),
(5.2) and (5.6), we find

(5.9 hrpo = kppeo + kosey + kye; .
Similarly, we have
(5.10) kipo = — hppe, — hysey, — hyge; .

Thus from (5.5), (5.9) and (5.10) we arrive at

Proposition 5.2. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

Vihyo — Likso = kpveo + koger + Kyoey s
kaba. + ljhba. = — hfbea - hafe,, _ hbaef .

A)

Differentiating (2.10) covariantly and using the above condition (A) we ob-
tain

Proposition 5.3. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(B) VeRdcba = Sedcbea, + Secda,eb + Sebadec + Seabced >
where
(5.10) Sedcb = kedhcb - kechdb + heckdb - hedkcb .

If we transvect equation (B) with g2 and take account of (4.17), (5.3) and
(5.10), then we have

Proposition 5.4. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(C) VeRca = b(feceb + febec) ’

b being constant.
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Any invariant submanifold in a normal contact Riemannian manifold is also
a normal contact Riemannian manifold. Taking account of Lemma 2 stated
in §1, from Propositions 5.2, 5.3 and 5.4 we thus obtain

Theorem. For an invariant submanifold V of codimension 2 in a normal
contact Riemannian manifold of constant curvature, the condition that V be
a C-Einstein manifold is equivalent to one of the conditions (A), (B) and (C).

Transvecting (B) with e® and taking account of (4.15) and (5.10), we find

Seaco = (VeRycrr)e®,

substitution of which in the condition (B) gives immediately

Proposition 5.5. If an invariant submanifold of codimension 2 in a nor-
mal contact Riemannian manifold of constant curvature is a C-Einstein mani-
fold, then the identity

VeRdcba = (VeRdcbf)efea + (VeRdcfa)efeb
+ (VeRdfba)efec + (Vechba)efed

holds.
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