ON A PROBLEM OF NOMIZU-SMYTH ON A NORMAL CONTACT RIEMANNIAN MANIFOLD

KENTARO YANO \& SHIGERU ISHIHARA

The study of complex Einstein hypersurfaces of Kählerian manifolds of constant holomorphic sectional curvature has been initiated by Smyth [12] and continued by Nomizu and Smyth [7]. (See also, Ako [1], Chern [2], Kobayashi [5], Smyth [13], Takahashi [14], Yano and Ishihara [17]).

The main purpose of the present paper is to study the so-called invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold. We call a problem of this kind a problem of Nomizu-Smyth.

First of all we recall in $\S 1$ the definition and properties of contact Riemannian manifolds, and in $\S 2$ the fundamental formulas for submanifolds of codimension 2 in a Riemannian manifold.

In $\S \S 3,4$ we obtain the fundamental formulas respectively for submanifolds and invariant submanifolds of codimension 2 in a contact Riemannian manifold.

In the last §5, we study the problem of Nomizu-Smyth, that is, the problem of determining invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold of constant curvature.

1. Contact Riemmannian manifolds

First of all for later use we recall the definition and some properties of a contact Riemannian manifold. A $(2 n+1)$-dimensional differentiable manifold M is said to admit a contact structure if there exists on M a 1-form $E=E_{i} d x^{i}$ such that the rank of the tensor field

$$
\begin{equation*}
F_{j i}=\frac{1}{2}\left(\partial_{j} E_{i}-\partial_{i} E_{j}\right) \tag{1.1}
\end{equation*}
$$

is $2 n$ everywhere on M, where ∂_{i} denotes the operator $\partial / \partial x^{i},\left(x^{h}\right)$ are the local coordinates of M, the indices h, i, j, k, \ldots run over the range $\{1, \ldots$ $\cdots, 2 n+1\}$, and the so-called Einstein's summation convention is used with respect to this system of indices. A manifold admitting a contact structure is called a contact manifold.

If a contact manifold M is orientable, we can find a vector field E^{h} on M such that

$$
\begin{equation*}
F_{j i} E^{i}=0, \quad E_{i} E^{i}=1 \tag{1.2}
\end{equation*}
$$

It is now well-known that there exists on M a positive definite Riemannian metric $G_{j i}$ such that

$$
\begin{align*}
E_{i} & =G_{i n} E^{h}, \\
F_{t}{ }^{n} F_{i}{ }^{t} & =-\delta_{i}^{h}+E_{i} E^{h}, \tag{1.3}\\
F_{j}{ }^{t} F_{i}^{s} G_{t s} & =G_{j i}-E_{j} E_{i},
\end{align*}
$$

where

$$
\begin{equation*}
F_{i}^{h}=F_{i s} G^{s h} \tag{1.4}
\end{equation*}
$$

($G^{s h}$) being the inverse of the matrix ($G_{j i}$) (cf. [3]). A differentiable manifold admitting such a structure ($F_{i}{ }^{h}, E_{i}, E^{h}, G_{j i}$) is called a contact Riemannian manifold.

We denote by $N_{j i}{ }^{h}$ the Nijenhuis tensor formed with $F_{i}{ }^{h}$, i.e.,

$$
N_{j i}^{h}=F_{j}{ }^{t} \partial_{t} F_{j}^{h}-F_{i}{ }^{t} \partial_{t} F_{j}^{h}-\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) F_{t}^{h}
$$

If the tensor field

$$
S_{j i}^{h}=N_{j i}^{h}+\left(\partial_{j} E_{i}-\partial_{i} E_{j}\right) E^{h}
$$

vanishes identically, the contact Riemannian manifold is said to be normal (cf. [9], [10]). A contact Riemmanian manifold is normal if and only if

$$
\begin{gather*}
\nabla_{j} E_{i}=F_{j i} \tag{1.5}\\
\nabla_{j} F_{i}^{h}=-G_{j i} E^{h}+\delta_{j}^{n} E_{i} \tag{1.6}
\end{gather*}
$$

∇_{j} denoting the covariant differentiation with respect to the Riemannian connection $\left\{{ }_{j}{ }_{i}{ }_{i}\right\}$ determined by $G_{j i}$ (cf. [4]).

Differentiating (1.5) covariantly and taking account of (1.3) and (1.6), we have

$$
\nabla_{k} \nabla_{j} E^{h}=-G_{k j} E^{h}+\delta_{k}^{h} E_{j}
$$

which gives

$$
\begin{equation*}
K_{k j i}{ }^{h} E^{i}=\delta_{k}^{h} E_{j}-\delta_{j}^{h} E_{k}, \tag{1.7}
\end{equation*}
$$

where $K_{k j i}{ }^{h}=K_{k j i s} G^{s h}$ denotes the curvature tensor of $G_{j i}$. Transvecting (1.7) with arbitrary vectors X^{k} and Y_{h}, we find

$$
\left(E^{i} Y^{h} K_{i h k}\right) X^{k}=\left(Y_{s} X^{s}\right) E^{j}-\left(E_{s} X^{s}\right) Y^{\jmath}
$$

which shows that there exists a vector Y^{h} satisfying

$$
\left(E^{i} Y^{h} K_{i n k}\right) X^{k}=A^{j}
$$

for arbitrarily given vectors X^{h} and A^{h}. Thus we have
Lemma 1. Any normal contact Riemannian manifold is irreducible as a Riemannian manifold [15].

When the Ricci tensor $K_{j i}=K_{s j i}{ }^{s}$ has components of the form

$$
\begin{equation*}
K_{j i}=a G_{j i}+b E_{j} E_{i} \tag{1.8}
\end{equation*}
$$

with constants a and b, the contact Riemannian manifold M is said to be a C-Einstein manifold. When $b=0$ in (1.8), the manifold M is an Einstein manifold.

Differentiating (1.8) covariantly, by virtue of (1.5) we have

$$
\begin{equation*}
\nabla_{k} K_{j i}=b\left(F_{k j} E_{i}+F_{k i} E_{j}\right), \tag{1.9}
\end{equation*}
$$

when the contact manifold M is normal. Conversely, if we assume that the normal contact Riemannian manifold satisfies the condition (1.9), by virtue of (1.5) we find

$$
\begin{equation*}
\nabla_{k}\left(K_{j i}-b E_{j} E_{i}\right)=0 . \tag{1.10}
\end{equation*}
$$

On the other hand, according to Lemma 1 , the normal contact Riemannian manifold M is irreducible. Thus, taking account of (1.10), we have

$$
K_{j i}-b E_{j} E_{i}=a G_{j i}
$$

with a constant a, since the left hand side is a symmetric tensor. That is to say, the manifold M is a C-Einstein manifold. Therefore, we have

Lemma 2. In order that a normal contact Riemannian manifold M is a C-Einstein manifold, it is necessary and sufficient that M satisfies the condition (1.9).

2. Submanifolds of codimension $\mathbf{2}$ in a Riemannian manifold

We consider a submanifold V of codimension 2 on a differentiable manifold M of dimension $2 n+1$ with positive definite Riemannian metric $G_{j i}$, and denote the parameter representation of the submanifold V by

$$
x^{h}=x^{h}\left(u^{a}\right)
$$

where $\left(u^{a}\right)$ are the local coordinates of V, and the indices a, b, c, d, e, f run over the range $\{1, \cdots, 2 n-1\}$.

Put

$$
B_{b}{ }^{h}=\partial_{b} x^{h},
$$

∂_{b} denoting the operator $\partial / \partial u^{b}$, and denote a pair of mutually orthogonal unit vector fields normal to V by C^{h} and D^{h}, which are locally defined in each coordinate neighborhood of V. Then the Riemannian metric induced on V is given by

$$
\begin{equation*}
g_{c b}=G_{j i} B_{c}{ }^{j} B_{b}{ }^{i} \tag{2.1}
\end{equation*}
$$

and we have

$$
\begin{gather*}
G_{j i} C^{j} B_{b}{ }^{i}=0, \quad G_{j i} D^{j} B_{b}{ }^{i}=0, \tag{2.2}\\
G_{j i} C^{j} C^{i}=1, \quad G_{j i} D^{j} C^{i}=0, \quad G_{j i} D^{j} D^{i}=1 .
\end{gather*}
$$

If we denote by ∇_{c} the so-called van der Waerden-Bortolotti covariant differentiation on V, i.e., if we put

$$
\begin{gather*}
\left.\nabla_{c} B_{b}{ }^{h}=\partial_{c} \boldsymbol{B}_{b}{ }^{h}+\left\{{ }_{j}{ }^{h}\right\}\right\} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{B}_{b}{ }^{i}-\left\{{ }_{c}{ }^{a}{ }_{b}\right\} \boldsymbol{B}_{a}{ }^{h}, \tag{2.3}\\
\nabla_{c} C^{h}=\partial_{c} C^{h}+\left\{{ }_{j}{ }^{h}{ }_{i}\right\} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{C}^{i}, \quad \nabla_{c} D^{h}=\partial_{c} D^{h}+\left\{{ }_{j}{ }^{h}\right\} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{D}^{i}, \tag{2.4}
\end{gather*}
$$

$\left\{{ }_{j}{ }_{i}\right\}$ and $\left\{{ }_{c}{ }^{a}{ }_{b}\right\}$ being the Christoffel symbols formed respectively with $G_{j i}$ and $g_{c b}$, then, taking account of (2.2), we have

$$
\begin{gather*}
\nabla_{c} B_{b}^{h}=h_{c b} C^{h}+k_{c b} D^{h} \tag{2.5}\\
\nabla_{c} C^{h}=-h_{c}^{a} B_{a}^{h}+l_{c} D^{h}, \quad \nabla_{c} D^{h}=-k_{c}{ }^{a} B_{a}{ }^{h}-l_{c} C^{h} \tag{2.6}
\end{gather*}
$$

where $h_{c b}$ and $k_{c b}$ are the second fundamental tensors, and l_{c} the third fundamental tensor with respect to C^{h} and D^{h}. As is well-known, we have

$$
\begin{array}{ll}
h_{c b}=h_{b c}, & k_{c b}=k_{b c} \\
h_{c}{ }^{a}=h_{c b} g^{b a}, & k_{c}^{a}=k_{c b} g^{b a}
\end{array}
$$

where $\left(g^{c b}\right)$ is the inverse of the matrix $\left(g_{c b}\right)$. (2.5) are equations of Gauss, and (2.6) equations of Weingarten. We also have

$$
\begin{gather*}
\boldsymbol{K}_{k j i h} \boldsymbol{B}_{d}{ }^{k} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{B}_{b}{ }^{i} \boldsymbol{B}_{a}{ }^{h}=R_{d c b a}-\left(h_{d a} h_{c b}-h_{c a} h_{d b}+k_{d a} k_{c b}-k_{c a} k_{d b}\right), \tag{2.7}\\
K_{k j i n} \boldsymbol{B}_{d}{ }^{k} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{B}_{b}{ }^{i} C^{h}=\left(\nabla_{d} h_{c b}-\nabla_{c} h_{d b}\right)-\left(l_{d} k_{c b}-l_{c} k_{d b}\right), \tag{2.8}\\
K_{k j i n} \boldsymbol{B}_{d}{ }^{k} \boldsymbol{B}_{c}{ }^{j} \boldsymbol{B}_{b}{ }^{i} D^{h}=\left(\nabla_{d} k_{c b}-\nabla_{c} k_{d b}\right)+\left(l_{d} h_{c b}-l_{c} h_{d b}\right), \\
K_{k j i n h} B_{d}{ }^{k} \boldsymbol{B}_{c}{ }^{j} C^{i} D^{h}=\nabla_{d} l_{c}-\nabla_{c} l_{d}+h_{d}{ }^{a} k_{c a}-h_{c}{ }^{a} k_{d a}, \tag{2.9}
\end{gather*}
$$

where $K_{k j i n}$ and $R_{d c b a}$ are the curvature tensors of the enveloping manifold
M and the submanifold V respectively. (2.7) are equations of Gauss, (2.8) equations of Codazzi, and (2.9) equations of Ricci.

When the enveloping manifold M is of constant curvature c, that is, when $K_{k j i n}$ is of the form

$$
K_{k j i n}=c\left(G_{k h} G_{j i}-G_{j h} G_{k i}\right)
$$

equations (2.7), (2.8) and (2.9) become respectively

$$
\begin{align*}
R_{d c b a}= & c\left(g_{d a} g_{c b}-g_{c a} g_{d b}\right)+\left(h_{d a} h_{c b}-h_{c a} h_{d b}+k_{d a} k_{c b}-k_{c a} k_{d b}\right) \tag{2.10}\\
& \left(\nabla_{d} h_{c b}-l_{d} k_{c b}\right)-\left(\nabla_{c} h_{d b}-l_{c} k_{d b}\right)=0 \\
& \left(\nabla_{d} k_{c b}+l_{d} h_{c b}\right)-\left(\nabla_{c} k_{d b}+l_{c} h_{d b}\right)=0 \\
& \nabla_{d} l_{c}-\nabla_{c} l_{d}+h_{d}{ }^{a} k_{c a}-h_{c}{ }^{a} k_{d a}=0
\end{align*}
$$

Transvecting (2.10) with $g^{d a}$, we have

$$
\begin{equation*}
R_{c b}=2(n-1) c g_{c b}+\left(h_{e}^{e} h_{c b}+k_{e}^{e} k_{c b}\right)-h_{c a} h_{b}^{a}-k_{c a} k_{b}^{a} \tag{2.13}
\end{equation*}
$$

where $R_{c b}=g^{d a} R_{d c b a}$ is the Ricci tensor of the submanifold V.
Equations (2.11) imply
Lemma 3. For any submanifold of codimension 2 in a Riemannian manifold of constant curvature, the tensor fields

$$
h_{d c b}=\nabla_{d} h_{c b}-l_{d} k_{c b}, \quad k_{d c b}=\nabla_{d} k_{c b}+l_{d} h_{c b}
$$

are symmetric in all their indices d, c, b.

3. Submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the enveloping manifold M is a contact Riemannian manifold of dimension $2 n+1$ with structure ($F_{i}{ }^{h}, E_{i}, E^{h}, G_{j i}$), and that there is given in M a submanifold V of codimension 2. Then, for the transforms of $B_{b}{ }^{h}, C^{h}$ and D^{h} by $F_{i}{ }^{h}$, due to the relations $F_{j i} C^{j} C^{i}=F_{j i} D^{j} D^{i}=0$ and $F_{j i} C^{j} D^{i}=-F_{j i} D^{j} C^{i}$ we have equations of the form

$$
\begin{gather*}
F_{i}{ }^{h} B_{b}{ }^{i}=f_{b}{ }^{a} B_{a}^{h}+p_{b} C^{h}+q_{b} D^{h}, \tag{3.1}\\
F_{i}^{h} C^{i}=-p^{a} B_{a}^{h}+r D^{h}, \\
F_{i}{ }^{h} D^{i}=-q^{a} B_{a}^{h}-r C^{h}, \tag{3.2}
\end{gather*}
$$

where p^{a} and q^{a} are defined by

$$
p^{a}=p_{b} g^{b a}, \quad q^{a}=q_{b} g^{b a}
$$

respectively, $f_{b}{ }^{a}$ define a global tensor field of type $(1,1)$ in V, independent of the choice of C^{h} and D^{h}, p^{a} and q^{a} are two local vector fields, and r is a global scalar field in V, independent of the choice of C^{h} and D^{h}. On the submanifold V the vector field E^{h} has the form

$$
\begin{equation*}
E^{h}=e^{a} B_{a}^{h}+\alpha C^{h}+\beta D^{h}, \tag{3.3}
\end{equation*}
$$

where e^{a} define a global vector field in V and α, β two local scalar fields.
Considering the transform of (3.1) by $F_{i}{ }^{h}$ and taking account of (1.2), (3.1), (3.2) and (3.3), we find

$$
\begin{align*}
& f_{c}{ }^{a} f_{b}^{c}=-\delta_{b}^{a}+e_{b} e^{a}+p_{b} p^{a}+q_{b} q^{a}, \\
& f_{b}{ }^{a} p_{a}=\alpha e_{b}+r q_{b}, \tag{3.4}\\
& f_{b}^{a} q_{a}=\beta e_{b}-r p_{b},
\end{align*}
$$

where

$$
\begin{equation*}
e_{b}=g_{b a} e^{a} \tag{3.5}
\end{equation*}
$$

Similarly, we have from (3.2)

$$
\begin{equation*}
p_{a} p^{a}=1-\alpha^{2}-r^{2}, \quad q_{a} q^{a}=1-\beta^{2}-r^{2}, \quad p_{a} q^{a}=-\alpha \beta \tag{3.6}
\end{equation*}
$$

Taking the transform of (3.3) by $F_{i}{ }^{h}$ and using (3.1) and (3.2), we find

$$
\begin{equation*}
f_{b}^{a} e^{b}=\alpha p^{a}+\beta q^{a}, \quad p_{a} e^{a}=\beta r, \quad q_{a} e^{a}=-\alpha r \tag{3.7}
\end{equation*}
$$

On the other hand, due to $g_{j i} E^{j} E^{i}=1$, from (3.3) it follows

$$
\begin{equation*}
e_{a} e^{a}=1-\alpha^{2}-\beta^{2} \tag{3.8}
\end{equation*}
$$

Now differentiating (3.1) covariantly on the submanifold V and using (2.5), (2.6) we obtain

$$
\begin{align*}
& \left(\nabla_{j} F_{i}{ }^{h}\right) B_{c}{ }^{j} B_{b}{ }^{i}+F_{i}{ }^{h}\left(h_{c b} C^{i}+k_{c b} D^{i}\right) \\
& =\left(\nabla_{c} f_{b}^{a}\right) B_{a}{ }^{h}+f_{b}{ }^{a}\left(h_{c a} C^{h}+k_{c a} D^{h}\right) \tag{3.9}\\
& \quad+\left(\nabla_{c} p_{b}\right) C^{h}+p_{b}\left(-h_{c}{ }^{a} B_{a}{ }^{h}+l_{c} D^{h}\right) \\
& \quad+\left(\nabla_{c} q_{b}\right) D^{h}+q_{b}\left(-k_{c}{ }^{a} B_{a}{ }^{h}-l_{c} C^{h}\right) .
\end{align*}
$$

If we assume that the enveloping manifold M is normal, then we have, from (1.6) and (3.9),

$$
\begin{align*}
\nabla_{c} f_{b}{ }^{a} & =-g_{c b} e^{a}+\delta_{c}^{a} e_{b}-h_{c b} p^{a}+h_{c}{ }^{a} p_{b}-k_{c b} q^{a}+k_{c}{ }^{a} q_{b} \\
\nabla_{c} p_{b} & =-\alpha g_{c b}-r k_{c b}-h_{c a} f_{b}{ }^{a}+l_{c} q_{b} \tag{3.10}\\
\nabla_{c} q_{b} & =-\beta g_{c b}+r h_{c b}-k_{c a} f_{b}{ }^{a}-l_{c} p_{b}
\end{align*}
$$

Differentiating (3.2), (3.3) covariantly on the submanifold V and taking account of (1.5), (1.6), (3.1) and (3.2), for normal M we find

$$
\begin{align*}
\nabla_{c} r & =-h_{c b} q^{b}+k_{c b} p^{b}, \tag{3.11}\\
\nabla_{b} e^{a} & =f_{b}{ }^{a}+\alpha h_{b}{ }^{a}+\beta k_{b}^{a}, \\
\nabla_{b}{ }^{a}=p_{b}-h_{b a} e^{a} & +\beta l_{b}, \quad \nabla_{b} \beta=q_{b}-k_{b a} e^{a}-\alpha l_{b} .
\end{align*}
$$

4. Invariant submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the tangent space of the submanifold V of codimension 2 in a contact Riemannian manifold M is invariant under the action of $F_{i}{ }^{h}$ at every point, and we call such a submanifold an invariant submanifold.

For an invariant submanifold, we obtain

$$
\begin{equation*}
\boldsymbol{F}_{i}{ }^{h} \boldsymbol{B}_{b}{ }^{i}=f_{b}{ }^{a} \boldsymbol{B}_{a}{ }^{h}, \tag{4.1}
\end{equation*}
$$

that is,

$$
\begin{equation*}
p_{b}=0, \quad q_{b}=0 \tag{4.2}
\end{equation*}
$$

in (3.1). Thus we have

$$
F_{i}{ }^{h} C^{i}=r D^{h}, \quad F_{i}{ }^{h} D^{i}=-r C^{h}
$$

from (3.2),

$$
\begin{align*}
& f_{c}^{a} f_{b}^{c}=-\delta_{b}^{a}+e_{b} e^{a}, \tag{4.3}\\
& \alpha e_{b}=0, \quad \beta e_{b}=0
\end{align*}
$$

from (3.4),

$$
\begin{equation*}
1-\alpha^{2}-r^{2}=0, \quad 1-\beta^{2}-r^{2}=0, \quad \alpha \beta=0 \tag{4.5}
\end{equation*}
$$

from (3.6), and finally

$$
\begin{equation*}
f_{b}{ }^{a} e^{b}=0, \quad \beta r=0, \quad \alpha r=0 \tag{4.6}
\end{equation*}
$$

from (3.7). Moreover, equations (4.5) imply

$$
\alpha=\beta=0, \quad r^{2}=1
$$

Conversely, if $r^{2}=1$, then equations (3.6) show that $p^{a}=0, q^{a}=0, \alpha=0$, $\beta=0$, and consequently V is invariant because of (3.1) and the Riemannian metric $g_{c b}$ being positively definite.

Thus, in order that a submanifold V of codimension 2 in a contact Riemannian manifold M be invariant, it is necessary and sufficient that $r^{2}=1$ in (3.2) (cf. [8]).

In the sequal, we always consider invariant submanifolds and hence may assume that $r=1$. We then have, for an invariant submanifold V,

$$
\begin{gather*}
F_{i}{ }^{h} \boldsymbol{B}_{b}{ }^{i}=f_{b}{ }^{a} B_{a}{ }^{h}, \quad F_{i}{ }^{h} C^{i}=D^{h}, \quad F_{i}{ }^{h} D^{i}=-C^{h} ; \tag{4.7}\\
E^{h}=e^{a} B_{a}{ }^{h} ; \tag{4.8}\\
f_{c}{ }^{a} f_{b}{ }^{c}=-\delta_{b}^{a}+e_{b} e^{a} \\
f_{b}{ }^{a} e^{b}=0, \quad e_{a} e^{a}=1 \tag{4.9}
\end{gather*}
$$

Transvecting (4.8) with $G_{i h} B_{b}{ }^{i}$ and taking account of (2.1), (3.5) and (4.1), we find

$$
\begin{equation*}
E_{i} B_{b}^{i}=e_{b} \tag{4.10}
\end{equation*}
$$

If we transvert the last equation of (1.3) with $B_{c}{ }^{j} B_{b}{ }^{i}$ and take account of (2.1), (4.7) and (4.10), then we obtain

$$
\begin{equation*}
f_{c}{ }^{e} f_{b}{ }^{d} g_{e d}=g_{c b}-e_{c} e_{b} . \tag{4.11}
\end{equation*}
$$

On the other hand, we have, from (1.1) and (1.4),

$$
F_{j}{ }^{h} G_{i h}=\frac{1}{2}\left(\partial_{j} E_{i}-\partial_{i} E_{j}\right) .
$$

Transvecting this equation with $\boldsymbol{B}_{c}{ }^{j} \boldsymbol{B}_{b}{ }^{i}$, and taking account of (2.1), (4.7), (4.10) and $\partial_{c} B_{b}{ }^{h}=\partial_{b} B_{c}{ }^{h}$, we find

$$
\begin{equation*}
f_{c}^{a} g_{a b}=\frac{1}{2}\left(\partial_{c} e_{b}-\partial_{b} e_{c}\right) . \tag{4.12}
\end{equation*}
$$

Thus equations (3.5), (4.9), (4.11) and (4.12) show that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold.

We now assume that the enveloping contact Riemannian manifold M is normal and the submanifold V is invariant. From the first equations of (3.12) and (3.10) we then have, respectively,

$$
\begin{gather*}
\nabla_{b} e^{a}=f_{b}^{a}, \tag{4.13}\\
\nabla_{c} f_{b}^{a}=-g_{c b} e^{a}+\delta_{c}^{a} e_{b}
\end{gather*}
$$

by virtue of $p^{a}=0, q^{a}=0, \alpha=0, \beta=0$.

Equations (4.13) show that any invariant submanifold of codimension 2 in a normal contact Riemannian manifold is also a normal contact Riemannian manifold.

When the enveloping manifold M is normal and the submanifold V is invariant, from the second and third equations of (3.10) and (3.12), by virtue of $p_{b}=0, q_{b}=0, \alpha=0, \beta=0, r=1$ we obtain, respectively,

$$
\begin{gather*}
k_{c b}=-h_{c a} f_{b}{ }^{a}, \quad h_{c b}=k_{c a} f_{b}{ }^{a}, \tag{4.14}\\
h_{b a} e^{a}=0, \quad k_{b a} e^{a}=0 . \tag{4.15}
\end{gather*}
$$

Since $f_{c b}=f_{c}{ }^{d} g_{d b}$ is skew-symmetric, and $h_{c b}, k_{c b}$ are symmetric, equations (4.14) give

$$
\begin{align*}
h_{c a} f_{b}^{a}-h_{b a} f_{c}^{a}=0, & k_{c a} f_{b}^{a}-k_{b a} f_{c}^{a}=0, \tag{4.16}\\
h_{c}{ }^{c}=h_{c b} g^{c b}=0, & k_{c}{ }^{c}=h_{c b} g^{c b}=0, \tag{4.17}
\end{align*}
$$

which thus show that any invariant submanifojd of codimension 2 in a normal contact Riemannian manifold is minimal (cf. [8]).

Denote the tensor fields $h_{b}{ }^{a}, k_{b}{ }^{a}$ and $f_{b}{ }^{a}$ of type $(1,1)$ by h, k and f respectively. Then (4.14), (4.6) are respectively equivalent to the conditions

$$
\begin{gather*}
h=k f, \quad k=-h f, \tag{4.18}\\
h f+f h=0, \quad k f+f k=0 \tag{4.19}
\end{gather*}
$$

From (4.18) and (4.19), we thus have $h^{2}=h(k f)=-h(f k)=-(h f) k$ $=k^{2}$, or

$$
\begin{equation*}
h^{2}=k^{2} \tag{4.20}
\end{equation*}
$$

and also $h k=(k f) k=k(f k)=-k(k f)=-k h$, or

$$
\begin{equation*}
h k+k h=0 \tag{4.21}
\end{equation*}
$$

5. Invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold

We assume that the enveloping manifold M is a normal contact Riemannian manifold of constant curvature, which necessarily equals to 1 (cf. [6], [10], [11], [16]), and the invariant submanifold V of codimension 2 imbedded in M is a C-Einstein manifold. Taking account of (2.13) with $c=1$ and (4.17), we then see that the Ricci tensor of V has the form

$$
R_{c b}=2(n-1) g_{c b}-h_{c a} h_{b}{ }^{a}-k_{c a} k_{b}{ }^{a} .
$$

On the other hand, since V is a C-Einstein manifold, we have

$$
R_{c b}=a g_{c b}+b e_{c} e_{b}
$$

with constants a and b. Thus

$$
\begin{equation*}
a g_{c b}+b e_{c} e_{b}=2(n-1) g_{c b}-h_{c a} h_{b}^{a}-k_{c a} k_{b}^{a} . \tag{5.1}
\end{equation*}
$$

If the submanifold V is an Einstein manifold, i.e., if $b=0$ in (5.1), then from (4.20) and (5.1) we find

$$
h^{2}=k^{2}=\lambda I
$$

with constant λ and the identity tensor I. Since the induced metric of the submanifold is positive definite, the above equation, together with (4.15), implies

$$
h=k=0
$$

Thus we have
Proposition 5.1. Any invariant Einstein submanifold V in a normal contact Riemannian manifold of constant curvature is totally geodesic.

Taking account of (4.20), from (5.1) we have

$$
h_{c a} h_{b}^{a}=k_{c a} k_{b}^{a}=\left(n-1-\frac{a}{2}\right) g_{c b}-\frac{b}{2} e_{c} e_{b}
$$

from which, taking account of (4.15), we find

$$
\begin{equation*}
h_{c a} h_{b}^{a}=k_{c a} k_{b}^{a}=\mu\left(g_{c b}-e_{c} e_{b}\right) \tag{5.2}
\end{equation*}
$$

with a constant μ. Transvecting (5.2) with $f_{d}{ }^{b}$ and taking account of (4.14), we obtain

$$
\begin{equation*}
h_{d a} k_{c}{ }^{a}=\mu f_{d c}, \quad k_{d a} h_{c}^{a}=-\mu f_{d c} \tag{5.3}
\end{equation*}
$$

Differentiating both equations of (4.14) covariantly and taking account of (4.13), (4.14) and (4.15), we find

$$
\begin{align*}
& h_{d c b}=k_{d c a} f_{b}{ }^{a}+k_{d c} e_{b} \\
& k_{d c b}=-h_{d c a} f_{b}{ }^{a}-h_{d c} e_{b} \tag{5.4}
\end{align*}
$$

where

$$
\begin{equation*}
h_{d c b}=\nabla_{d} h_{c b}-l_{d} k_{c b}, \quad k_{d c b}=\nabla_{d} k_{c b}+l_{d} h_{c b} \tag{5.5}
\end{equation*}
$$

Transvecting (5.4) with e^{b} and taking account of (4.9), we have

$$
\begin{equation*}
h_{d c b} e^{b}=k_{d c}, \quad k_{d c b} e^{b}=-h_{d c} \tag{5.6}
\end{equation*}
$$

If we differentiate (5.2) covariantly and take account of (4.13) and (5.3), then we find

$$
\begin{align*}
& h_{d c b} h_{a}^{b}+h_{d a b} h_{c}^{b}=-\mu\left(f_{d c} e_{a}+f_{d a} e_{c}\right), \tag{5.7}\\
& k_{d c b} k_{a}{ }^{b}+k_{d a b} k_{c}{ }^{b}=-\mu\left(f_{d c} e_{a}+f_{d a} e_{c}\right) .
\end{align*}
$$

According to Lemma 3 stated in §2, we have $k_{c a b}=k_{c b d}$, which and the second equation of (5.4) imply

$$
h_{d c e} f_{b}^{e}+h_{d c} e_{b}=h_{c b e} f_{d}^{e}+h_{c b} e_{d} .
$$

Transvecting the above equation with $f_{a}{ }^{b}$ and taking account of Lemma 3, (4.9), (4.14) and (5.6), we have, after changing the indices,

$$
h_{d c b}=-f_{d}{ }^{f} f_{c}^{e} h_{f e b}+k_{d b} e_{c}+k_{c b} e_{d} .
$$

If we substitute the equation above into the first equation of (5.7) written as

$$
h_{d c b} h_{a}^{b}+h_{d b a} h_{c}^{b}=-\mu\left(f_{d c} e_{a}+f_{d a} e_{c}\right),
$$

and take account of (4.15) and (5.3), then we find

$$
f_{d}{ }^{f}\left\{f_{b}{ }^{e} h_{c}{ }^{b} h_{\text {fea }}+f_{c}{ }^{e} h_{f e b} h_{a}{ }^{b}-\mu g_{f c} e_{a}\right\}=0,
$$

from which

$$
\begin{equation*}
f_{b}{ }^{e} h_{c}{ }^{b} h_{f e a}+f_{c}^{e} h_{f e b} h_{a}^{b}-\mu g_{f c} e_{a}=e_{f} l_{c a} \tag{5.8}
\end{equation*}
$$

where $l_{c a}$ is a certain tensor field of type (0,2), because $f_{d}{ }^{f} e_{f}=0$ and $f_{d}{ }^{f}$ is of rank $2 n-2$. Transvecting (5.8) with e^{f} and taking account of (5.6), we have

$$
l_{c a}=f_{b}^{e} h_{c}{ }^{b} k_{e a}+f_{c}{ }^{e} k_{e b} h_{a}{ }^{b}-\mu e_{c} e_{a},
$$

which reduces to

$$
l_{c a}=\mu\left(2 g_{c a}-3 e_{c} e_{a}\right)
$$

because of (4.18), (4.19) and (5.2). If we substitute this in (5.8), then we obtain

$$
f_{b}^{e} h_{c}{ }^{b} h_{f e a}+f_{c}^{e} h_{f e b} h_{a}^{b}=2 \mu\left(g_{c a}-e_{c} e_{a}\right) e_{f}+\mu\left(g_{f c}-e_{f} e_{c}\right) e_{a}
$$

If we transvect the above equation with $f_{d}{ }^{c}$ and take account of (4.9), (4.18), (4.19), (5.3) and (5.6), then we find

$$
h_{d}{ }^{e} h_{f e a}-h_{f d b} h_{a}{ }^{b}+\mu f_{a f} e_{d}=\mu\left(2 f_{d a} e_{f}-f_{f d} e_{a}\right),
$$

that is,

$$
h_{d}{ }^{e} h_{f e a}-h_{f d b} h_{a}^{b}=\mu\left(2 f_{d a} e_{f}-f_{f d} e_{a}-f_{a f} e_{d}\right)
$$

from which and (5.7) it follows that

$$
h_{f e a} h_{d}^{e}=-\mu\left(f_{f d} e_{a}+f_{a d} e_{f}\right)
$$

Transvecting the above equation with $h_{b}{ }^{d}$ and taking account of (4.14), (5.2) and (5.6), we find

$$
\begin{equation*}
h_{f b a}=k_{f b} e_{a}+k_{a f} e_{b}+k_{b a} e_{f} \tag{5.9}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
k_{f b a}=-h_{f b} e_{a}-h_{a f} e_{b}-h_{b a} e_{f} \tag{5.10}
\end{equation*}
$$

Thus from (5.5), (5.9) and (5.10) we arrive at
Proposition 5.2. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C Einstein manifold, then

$$
\begin{align*}
& \nabla_{f} h_{b a}-l_{f} k_{b a}=k_{f b} e_{a}+k_{a f} e_{b}+k_{b a} e_{f}, \\
& \nabla_{f} k_{b a}+l_{f} h_{b a}=-h_{f b} e_{a}-h_{a f} e_{b}-h_{b a} e_{f} . \tag{A}
\end{align*}
$$

Differentiating (2.10) covariantly and using the above condition (A) we obtain

Proposition 5.3. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C Einstein manifold, then
(B)

$$
\nabla_{e} R_{d c b a}=S_{e d c b} e_{a}+S_{e c a a} e_{b}+S_{e b a d} e_{c}+S_{e a b c} e_{d}
$$

where

$$
\begin{equation*}
S_{e a c b}=k_{e d} h_{c b}-k_{e c} h_{d b}+h_{e c} k_{d b}-h_{e d} k_{c b} \tag{5.10}
\end{equation*}
$$

If we transvect equation (B) with $g^{d a}$ and take account of (4.17), (5.3) and (5.10), then we have

Proposition 5.4. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C Einstein manifold, then
(C)

$$
\nabla_{e} R_{c b}=b\left(f_{e c} e_{b}+f_{e b} e_{c}\right)
$$

b being constant.

Any invariant submanifold in a normal contact Riemannian manifold is also a normal contact Riemannian manifold. Taking account of Lemma 2 stated in $\S 1$, from Propositions 5.2, 5.3 and 5.4 we thus obtain

Theorem. For an invariant submanifold V of codimension 2 in a normal contact Riemannian manifold of constant curvature, the condition that V be a C-Einstein manifold is equivalent to one of the conditions (A), (B) and (C).

Transvecting (B) with e^{a} and taking account of (4.15) and (5.10), we find

$$
S_{e d c b}=\left(\nabla_{e} R_{d c b a}\right) e^{a},
$$

substitution of which in the condition (B) gives immediately
Proposition 5.5. If an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature is a C-Einstein manifold, then the identity

$$
\begin{aligned}
\nabla_{e} R_{d c b a}= & \left(\nabla_{e} R_{d c b f}\right) e^{f} e_{a}+\left(\nabla_{e} R_{d c f a}\right) e^{f} e_{b} \\
& +\left(\nabla_{e} R_{d f b a}\right) e^{f} e_{c}+\left(\nabla_{e} R_{f c b a}\right) e^{f} e_{d}
\end{aligned}
$$

holds.

Bibliography

[1] M. Ako, Submanifolds in Fubinian manifolds, Kōdai Math. Sem Rep. 19 (1967) 103-128.
[2] S. S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967) 21-31.
[3] Y. Hatakeyama, On the existence of Riemannian metric associated with a 2-form of rank 2r, Tôhoku Math. J. 14 (1962) 162-166.
[4] Y. Hatakeyama, Y. Ogawa \& S. Tanno, Some properties of manifolds with contact metric structures, Tôhoku Math. J. 15 (1963) 42-48.
[5] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry 1 (1967) 369-370.
[6] M. Kurita, On a normal contact metric manifolds, J. Math. Soc. Japan 13 (1963) 304-318.
[7] K. Nomizu \& S. Smyth, Differential geometry of complex hypersurfaces. II, to appear.
[8] M. Okumura, On contact metric immersion, to appear in Kōdai Math. Sem. Rep.
[9] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tôhoku Math. J. 12 (1960) 459-476.
[10] S. Sasaki \& Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure. II, Tôhoku Math. J. 13 (1961) 281-294.
[11] -, On differentiable manifolds with contact metric structure, J. Math. Soc. Japan 14 (1962) 249-271.
[12) B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
[13] -, Homogeneous complex hypersurfaces, to appear.
[14] T. Takahashi, Hypersurfaces with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967) 199-204.
[15] Y. Tashiro, On contact structure of hypersurfaces in complex manifolds. I, II, J. Math. Soc. Japan 14 (1962) 249-271.
[16] Y. Tashiro \& S. Tachibana, On Fubinian and C-Fubinian manifolds, Ködai Math. Sem. Rep. 15 (1963) 176-183.
[17] K. Yano \& S. Ishihara, Normal circle bundles of complex hypersurfaces, Kōdai Math. Sem. Rep. 20 (1968) 29-53.

Tokyo Institute of Technology

