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ON A PROBLEM OF NOMIZU-SMYTH ON A NORMAL
CONTACT RIEMANNIAN MANIFOLD

KENTARO YANO & SHIGERU ISHIHARA

The study of complex Einstein hypersurfaces of Kahlerian manifolds of
constant holomorphic sectional curvature has been initiated by Smyth [12]
and continued by Nomizu and Smyth [7], (See also, Ako [1], Chern [2],
Kobayashi [5], Smyth [13], Takahashi [14], Yano and Ishihara [17]).

The main purpose of the present paper is to study the so-called invariant
C-Einstein submanifolds of codimension 2 in a normal contact Riemannian
manifold. We call a problem of this kind a problem of Nomizu-Smyth.

First of all we recall in §1 the definition and properties of contact Rieman-
nian manifolds, and in §2 the fundamental formulas for submanifolds of
codimension 2 in a Riemannian manifold.

In §§3, 4 we obtain the fundamental formulas respectively for submani-
folds and invariant submanifolds of codimension 2 in a contact Riemannian
manifold.

In the last §5, we study the problem of Nomizu-Smyth, that is, the problem
of determining invariant C-Einstein submanifolds of codimension 2 in a nor-
mal contact Riemannian manifold of constant curvature.

1. Contact Riemmannian manifolds

First of all for later use we recall the definition and some properties of a
contact Riemannian manifold. A (2n+l)-dimensional differentiable manifold
M is said to admit a contact structure if there exists on M a 1-form E = Eidx*
such that the rank of the tensor field

(1.1)

is In everywhere on M, where 3f denotes the operator 3/3**, (xh) are the
local coordinates of M, the indices h, i, j , k, - run over the range {1,
• , In + 1}, and the so-called Einstein's summation convention is used
with respect to this system of indices. A manifold admitting a contact struc-
ture is called a contact manifold.
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If a contact manifold M is orientable, we can find a vector field Eh on M
such that

(1.2) F,,£* = 0 , £ f £ ' = l .

It is now well-known that there exists on M a positive definite Riemannian
metric G5i such that

(1.3) F t * F f ' = -

F/F^Gts = G,, - £,E,,

where

(1.4) Ft

Λ = FuG",

(Gsh) being the inverse of the matrix (Gjt) (cf. [3]). A difϊerentiable mani-
fold admitting such a structure (Ff, Ei9 E

h, Gόi) is called a contact Rieman-
nian manifold.

We denote by Njt

h the Nijenhuis tensor formed with F t

f t, i.e.,

If the tensor field

vanishes identically, the contact Riemannian manifold is said to be normal
(cf. [9], [10]). A contact Riemmanian manifold is normal if and only if

(1.5) PjEi^Fjt,

(1.6) F/V>= -Gj^ + δϊEi,

Pj denoting the covariant differentiation with respect to the Riemannian con-
nection {/J determined by GH (cf. [4]).

Differentiating (1.5) covariantly and taking account of (1.3) and (1.6), we
have

VkVόE
h = - GkύE

h

which gives

(1.7) KkJi*E*=δiEjϊ

where Kkjί

h = KkjUGsh denotes the curvature tensor of Gόi. Transvecting
(1.7) with arbitrary vectors Xk and Yh, we find
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which shows that there exists a vector Yh satisfying

(E*Y*KihkOX* = AJ

for arbitrarily given vectors Xh and Ah. Thus we have
Lemma 1. Any normal contact Riemannian manifold is irreducible as a

Riemannian manifold [15].
When the Ricci tensor Kjt = Ksji

8 has components of the form

(1.8) KJt = aGjt + bEjE,

with constants a and b, the contact Riemannian manifold M is said to be a
C-Einstein manifold. When ft = 0 in (1.8), the manifold M is an Einstein
manifold.

Differentiating (1.8) covariantly, by virtue of (1.5) we have

(1.9) F^^biF.β. + F^Ej),

when the contact manifold M is normal. Conversely, if we assume that the
normal contact Riemannian manifold satisfies the condition (1.9), by virtue
of (1.5) we find

(1.10) FtiKjt-bEjEJ^O.

On the other hand, according to Lemma 1, the normal contact Riemannian
manifold M is irreducible. Thus, taking account of (1.10), we have

Kjt — bEjEi = aGji

with a constant a, since the left hand side is a symmetric tensor. That is to
say, the manifold M is a C-Einstein manifold. Therefore, we have

Lemma 2. In order that a normal contact Riemannian manifold M is a
C-Einstein manifold, it is necessary and sufficient that M satisfies the condition
(1.9).

2. Submanifolds of codimension 2 in a Riemannian manifold

We consider a submanifold V of codimension 2 on a differentiate manifold
M of dimension 2n + 1 with positive definite Riemannian metric Gjt, and
denote the parameter representation of the submanifold V by

χh = xh(ua)

where (wα) are the local coordinates of V, and the indices a, b, c, d, e, f run
over the range {1, . , In— 1}.
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Put

Bb

h = dbx
h ,

db denoting the operator d/dub, and denote a pair of mutually orthogonal unit
vector fields normal to V by Ch and Dh, which are locally defined in each
coordinate neighborhood of V. Then the Riemannian metric induced on V is
given by

(2.D geb = GjMBS ,

and we have

( 2 2 ) G tOBS = 0 , GsiDiBJ = 0 ,

GOC* = 1 , GjiD'C* = 0 , G^D'D' = 1 .

If we denote by Fc the so-called van der Waerden-Bortolotti covariant dif-
ferentiation on V, i.e., if we put

(2.3) F A * = 3 A * + {ό\}BciBj - { Λ W ,

(2.4) FCCΛ - BcC
h + {j\} BJO , FCZ)» = acD

Λ + {/,} BeW*,

{i

Λ

ί} and {c

α

6} being the Christofϊel symbols formed respectively with Gjt and
gcb, then, taking account of (2.2), we have

(2.5) FcBb

h = hcbC
h + kcbD* ,

(2.6) VcC
h = - Λ c

α 5 α

Λ + /CD* , F C D Λ = - ke*Ba

h - lcC
h ,

where hcb and kcb are the second fundamental tensors, and lc the third funda-
mental tensor with respect to Ch and Dh. As is well-known, we have

cb — rίbc 9 Λ c δ — Λ δ c •>

c — ncbS J κc — κcb5 J

where (gcb) is the inverse of the matrix (gcb). (2.5) are equations of Gauss,
and (2.6) equations of Weingarten. We also have

(2.7) KwBSBJBJBa* = Rdcba - (hdahcb - hcahdb + kdakcb - kcakdb),

KmnBd*BjBjCh = ( F A δ - ΓΛ&) - V*ke> - IJkat),

KkJihBd*Be'Bb*D* = (Fd/:cδ - FΛ») + ftΛ* - Ά 6 ) ,

(2.9) KkJihBd*BeiσD* = FJC - Fc/d + Λd

α^Cα - V*na >

where Xfc^Λ and i?ώ c 6 α are the curvature tensors of the enveloping manifold
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M and the submanifold V respectively. (2.7) are equations of Gauss, (2.8)
.equations of Codazzi, and (2.9) equations of Ricci.

When the enveloping manifold M is of constant curvature c, that is, when
Kkjih is of the form

Kkjih = cCGkhGJt — GjhGkί),

equations (2.7), (2.8) and (2.9) become respectively

(2.10) Rdcba = c(gdagcb - gcagdb) + (hdahcb - hcahdb + kdakcb - kcakdb),

(7 At - I At) ~ (FΛft ~ M*») = 0,
(FA* + I At) - (Vckdb + lchdb) = 0 ,

(2.12) Fdlc - Γ Λ + hfkca - Λ c ^ d α = 0 .

Transvecting (2.10) with gda, we have

(2.13) Rcb = 2(/i - l)c^c6 + (he

ehcb + ke

ekcb) - hcA
a

where JRC6 = gdaRdcba is the Ricci tensor of the submanifold V.
Equations (2.11) imply
Lemma 3. For any submanifold of codimension 2 in a Riemannian mani-

fold of constant curvature, the tensor fields

"deb — Fdncb — ldkcb , kdcb — Fdkcb -f ldhcb

are symmetric in all their indices d, c, b.

3. Submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the enveloping manifold M is a contact Riemannian
manifold of dimension 2 / 7 + 1 with structure (F f

Λ , Eu £ Λ , G^), and that there
is given in M a submanifold V of codimension 2. Then, for the transforms of
£ 6 \ Ch and Dh by Ff, due to the relations FSiOO = F^DΦ1 = 0 and
FjiCΦ* — — FμD'O we have equations of the form

(3.1) F,*Bft« = U*Ba

h + pbC
h

= - qaBa

h - rCh ,

where pa and ^ α are defined by

Pa=pbg
ba, qa
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respectively, fb

a define a global tensor field of type (1, 1) in V, independent
of the choice of Ch and £>Λ, pa and qa are two local vector fields, and r is a
global scalar field in V, independent of the choice of Ch and Dh. On the sub-
manifold V the vector field Eh has the form

(3.3) Eh = eaBa

h + aCh + βDh ,

where ea define a global vector field in V and a, β two local scalar fields.
Considering the transform of (3.1) by Ff and taking account of (1.2),

(3.1), (3.2) and (3.3), we find

fcahc = - δi + ebe* + pbp
a + qbq* ,

(3.4) fb

apa = aeb + rqb ,

haqa = βeb - rpb ,

where

(3.5) eb - gbae* .

Similarly, we have from (3.2)

(3.6) Pap* = 1 - a2 - r 2 , 4 ^ = 1 — j8» — r», pα(?α = - αjS .

Taking the transform of (3.3) by Ff and using (3.1) and (3.2), we find

(3.7) fb

aeb = apa + βqa , pae
a = βr , 4αeα = - ar .

On the other hand, due to gjiE^Ei = 1, from (3.3) it follows

(3.8) eae
a = 1 - a2 - β2.

Now differentiating (3.1) covariantly on the submanifold V and using (2.5),

(2.6) we obtain

= (VcU)Ba + 1ΛKaC + ΛcαD)

+ (FcP>)CΛ + p δ ( - V B α * + hDh)

+ ^ & ( ~ *e J5β* - /CCΛ) .

If we assume that the enveloping manifold M is normal, then we have, from

(1.6) and (3.9),

Pcfb

a = - Λftβ* + δ ^ δ - K*Pa + Λc

α/?6 - kcbq
a + ke*qb ,

(3.10) Fepb = - agcb - rkcb - hejb* + /e«d ,
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Differentiating (3.2), (3.3) covariantly on the submanifold V and taking
account of (1.5), (1.6), (3.1) and (3.2), for normal M we find

(3.11) Fcr= -hcbq
b + kcbp

b,

Fbe
a = fb

a + ahb« + βkb* ,

f Y = Pi - hbae" + βlb , Fbβ = qb- kbae
a - alb .

4. Invariant submanifolds of codimension 2 in a contact
Riemannian manifold

We now assume that the tangent space of the submanifold V of codimen-
sion 2 in a contact Riemannian manifold M is invariant under the action of
Ft

h at every point, and we call such a submanifold an invariant submanifolά*
For an invariant submanifold, we obtain

(4.1)

that is,

(4.2)

in (3.1)

from (3

(4.3)

. Thus we have

.2),

FfBS =

Pt = O,

* = rDh ,

fcahe = - i

UaBa

h

Fi

hDi

ΐ + «ι

:0

= -rCh

,ea,

= 0 , βeb = 0

from (3.4),

(4.5) 1 - a2 - r2 = 0 , 1 - /32 - r2 = 0 , αβ = 0

from (3.6), and finally

(4.6) Uaeh = 0 , βr = 0 , ar = 0

from (3.7). Moreover, equations (4.5) imply

α = j8 = 0 , r2 = 1 .

Conversely, if r2 = 1, then equations (3.6) show that pa = 0, ^α = 0, a = 0,
j8 = 0, and consequently F is invariant because of (3.1) and the Riemannian
metric gcb being positively definite.
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Thus, in order that a submanifold V of codimension 2 in a contact Rie-
mannian manifold M be invariant, it is necessary and sufficient that r2 = 1 in
(3.2) (c/. [8]).

In the sequal, we always consider invariant submanifolds and hence may
assume that r — 1. We then have, for an invariant submanifold V,

(4.7) Ft

hBb* = fb"Ba

h , FfC* = Dh , FfD* = - Ch

(4.8) Eh = e*Ba*

(4.9) fc<lfbC = ~ δ* + βhβa '
f b

a e b = 0 , eae« = 1 .

Transvecting (4.8) with GiΛB6* and taking account of (2.1), (3.5) and (4.1),
we find

(4.10) £4B6* = eb .

If we transvert the last equation of (1.3) with BciBb

l and take account of
(2.1), (4.7) and (4.10), then we obtain

(4-11) fcefbd8ed = Scb — eceb

On the other hand, we have, from (1.1) and (1.4),

Transvecting this equation with BJBb\ and taking account of (2.1), (4.7),
(4.10) and 3cBb

h = 3bBc

h, we find

(4.12) 1-gab = ±(dceb - dbec) .

Thus equations (3.5), (4.9), (4.11) and (4.12) show that any invariant sub-
manifold of codimension 2 in a contact Riemannian manifold is also a contact
Riemannian manifold.

We now assume that the enveloping contact Riemannian manifold M is
normal and the submanifold V is invariant. From the first equations of (3.12)
and (3.10) we then have, respectively,

(4.13) F ^ = / 6 %

?cha = - gcbe
a + 3?β»

by virtue of pa = 0, qa = 0, a = 0, β = 0.
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Equations (4.13) show that any invariant submanifold of codimension 2 in
a normal contact Riemannian manifold is also a normal contact Riemannian
manifold.

When the enveloping manifold M is normal and the submanifold V is in-
variant, from the second and third equations of (3.10) and (3.12), by virtue
of pb = 0, qb = 0, a = 0, β = 0, r = 1 we obtain, respectively,

(4.14) kcb = - hcafb

a , hcb =

(4.15) hbae* = O, kbae
a = O.

Since fcb = /c

dgd6 is skew-symmetric, and Ac6, Λc6 are symmetric, equations
(4.14) give

(4.16) hcafb« - hbaf« = 0 , *eβf,
β - *ftβ/β« = 0 ,

(4.17) hc

c = Λc6g
cδ = 0 , kc< = ftc6r

δ = 0 ,

which thus show that αn y invariant submanifojd of codimension 2 in a normal
contact Riemannian manifold is minimal (cf. [8]).

Denote the tensor fields hb

a, kb

a and fb

a of type (1, 1) by h, k and / respec-
tively. Then (4.14), (4.6) are respectively equivalent to the conditions

(4.18) h = kf, k=-hf,

(4.19) hf + fh = 0 , kf + fk = 0 .

From (4.18) and (4.19), we thus have h2 = Λ(fc/) = - ft(/Jfc) = - (ftβjfc
= k2, or

(4.20)

and also hk = (&j

(4.21)

Λ2 = i

0* = Λ(/Λ) = - k{kf)

hk + kh

k2,

= — kh, or

= 0 .

5. Invariant C-Einstein submanifolds of codimension 2 in a
normal contact Riemannian manifold

We assume that the enveloping manifold M is a normal contact Riemannian
manifold of constant curvature, which necessarily equals to 1 (cf. [6], [10],
[11], [16]), and the invariant submanifold V of codimension 2 imbedded in
M is a C-Einstein manifold. Taking account of (2.13) with c — 1 and (4.17),
we then see that the Ricci tensor of V has the form

Rcb = 2(π - l)gcb - hcahb

a - kcakb

a .
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On the other hand, since V is a C-Einstein manifold, we have

Rcb = ageb + beceb

with constants a and b. Thus

(5.1) agcb + beceb = 2(/ι - l)geb - hcahb

a — Λ c α £ 6

α .

If the submanifold V is an Einstein manifold, i.e.,ifft = 0in(5.1), then
from (4.20) and (5.1) we find

h2 = k2 = λl

with constant λ and the identity tensor /. Since the induced metric of the
submanifold is positive definite, the above equation, together with (4.15),
implies

Thus we have
Proposition 5.1. Any invariant Einstein submanifold V in a normal con-

tact Riemannian manifold of constant curvature is totally geodesic.
Taking account of (4.20), from (5.1) we have

KJιb

a = kcakb

a = U — 1 — f - W — y *Λ >

from which, taking account of (4.15), we find

(5.2) heahb

a = kcakb

a = μ(gcb - eceb)

with a constant μ. Transvecting (5.2) with fd

b and taking account of (4.14),
we obtain

(5.3) hdakc

a = μfdc, ΛdβΛe

β = - μUt -

Differentiating both equations of (4.14) covariantly and taking account of
(4.13), (4.14) and (4.15), we find

"dcδ = kdcafba

^dcδ : = — hdcaf

where

(5.5) hdcb = FdΛcδ - ZdΛc6 , Λdc6 = FdΛc6 + ldhcb .

Transvecting (5.4) with eb and taking account of (4.9), we have
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(5.6) hdcbe
b = kdc, kdcbe

b = - hdc.

If we differentiate (5.2) covariantly and take account of (4.13) and (5.3),
then we find

KcbKh + hdabhc

b = - μ(fdcea + fdaec),

kdcbka + kdabkc* = ~~ f*(fdcea + fdaec)

According to Lemma: 3 stated in §2, we have kcdb = Λc6d, which and the
second equation of (5.4) imply

Transvecting the above equation with fa

b and taking account of Lemma 3,
(4.9), (4.14) and (5.6), we have, after changing the indices,

"deb = = — fd ffhfeb ~t~ ^db^c 4" keb^d

If we substitute the equation above into the first equation of (5.7) written
as

hdcbha

b + hdboh
b = - μ(fdcea + fdaec) ,

and take account of (4.15) and (5.3), then we find

ίdf{Uehc

hhfea + f c % e b h a

b - μg/cea} = 0 ,

from which

(5.8) hehc

bhfea + fcehfebha

b - μgfCea = eflca ,

where lca is a certain tensor field of type (0, 2), because fd

fef = 0 and / / is of
rank In — 2. Transvecting (5.8) with ef and taking account of (5.6), we have

which reduces to

ha =

because of (4.18), (4.19) and (5.2). If we substitute this in (5.8), then we
obtain

fbehc

bhfea + ίeehfebKb = 2μ(gca - ecea)ef + μ(gfc - efec)ea .

If we transvect the above equation with fd

c and take account of (4.9), (4.18),
(4.19), (5.3) and (5.6), then we find
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hd

ehfea - hfdbha

b + μfafed = μ(2fdaef - ffdea) ,

that is,

hd

ehfea — hfdbha

b = μ(2fdaef — ffdea — fafed) ,

from which and (5.7) it follows that

hfeaK* = ~ μ(JjΛea + fad*/) .

Transvecting the above equation with hb

d and taking account of (4.14),
(5.2) and (5.6), we find

(5.9) hfba = kfbea + kafeb + kbaef .

Similarly, we have

(5.10) kfba = - hfbea - ha/eb - hbaef .

Thus from (5.5), (5.9) and (5.10) we arrive at
Proposition 5.2. Let V be an invariant submanifold of codimension 2 in

a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

Vfkba + lfhba = - hfbea - hafeb - hbaef .

Differentiating (2.10) covariantly and using the above condition (A) we ob-
tain

Proposition 5.3. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(B) reRdcba = Sedcbea + Secdaeb 4" ^ebadec 4" ^

where

(5.10) $edcb = = kedhcb — ^ec^dδ 4" heckdb — hedkcb .

If we transvect equation (B) with gda and take account of (4.17), (5.3) and
(5.10), then we have

Proposition 5.4 Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(C) FeRcb = b(feceb + febec),

b being constant.
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Any invariant submanifold in a normal contact Riemannian manifold is also

a normal contact Riemannian manifold. Taking account of Lemma 2 stated

in § 1 , from Propositions 5.2, 5.3 and 5.4 we thus obtain

Theorem. For an invariant submanifold V of codimension 2 in a normal

contact Riemannian manifold of constant curvature, the condition that V be

a C-Einstein manifold is equivalent to one of the conditions (A), (B) and (C).

Transvecting (B) with ea and taking account of (4.15) and (5.10), we find

Sedcb — \^e^dcba)e<L >

substitution of which in the condition (B) gives immediately

Proposition 5.5. // an invariant submanifold of codimension 2 in a nor-

mal contact Riemannian manifold of constant curvature is a CΈinstein mani-

fold, then the identity

+ (FeRdcfa)efeb

ec + (VeRfcha)efed

holds.
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