MINIMAL IMBEDDINGS OF R-SPACES

MASARU TAKEUCHI \& SHOSHICHI KOBAYASHI

1. Introduction

Let G be a connected real semi-simple Lie group without center and U a parabolic subgroup of G. The quotient space G / U is called an R-space. A maximal compact subgroup K of G is transitive on G / U so that an R-space is necessarily compact. Let $\mathfrak{F}=\Re+\Re$ be a Cartan decomposition of the Lie algebra © \mathfrak{G} of G with respect to the Lie algebra \AA of K. The main purpose of this paper is to construct a natural imbedding φ of an R-space G / U into \mathfrak{B} with the following properties:
(1) φ is K-equivariant;
(2) φ has minimum total curvature;
(3) If G is simple and $K / K \cap U$ is a symmetric space, then φ is isometric and $\varphi(G / U)$ is a minimal submanifold of a hypersphere in \Re in the sense that its mean curvature normal is zero.

In general, an n-dimensional submanifold M of the hypersphere $S^{N}(r)$ of radius r about the origin in the Euclidean space \boldsymbol{R}^{N+1} is a minimal submanifold if and only if

$$
\Delta y^{i}=-\frac{n}{r^{2}} y^{i} \text { on } M \text { for } i=1, \cdots, N+1
$$

where (y^{1}, \cdots, y^{N+1}) is a coordinate system for R^{N+1} and Δ is the Laplacian of M. For many symmetric R-spaces we verify that the Laplacian Δ for functions has no eigen-value between 0 and $-n / r^{2}$. We do not know whether this is true or not in general for all symmetric R-spaces.

Previously, it was known that φ has minimum total curvature if G / U is a Käehlerian C-space (Kobayashi [6]) or if G / U is a symmetric space of rank 1 (Tai [15]). For a symmetric R-space G / U, the imbedding φ has been considered by Nagano [13], and has also been conjectured to have minimum total curvature (Kobayashi [7]). The class of symmetric R-spaces includes
(i) all hermitian symmetric spaces of compact type;
(ii) Grassmann manifolds $O(p+q) / O(p) \times O(q), S p(p+q) / S p(p) \times$ $S p(q)$;

[^0](iii) the classical groups $S O(m), U(m), S p(m)$;
(iv) $U(2 m) / S p(m), U(m) / O(m)$;
(v) $(S O(p+1) \times S O(q+1)) / S(O(p) \times O(q))$, where $S(O(p) \times O(q))$ is the subgroup of $S O(p+1) \times S O(q+1)$ consisting of matrices of the form
\[

\left($$
\begin{array}{lll}
\varepsilon & 0 & \\
0 & A & \\
& & \\
& \varepsilon & 0 \\
& 0 & B
\end{array}
$$\right), \quad \varepsilon= \pm 1, \quad A \in O(p), \quad B \in O(q)
\]

(This R-space is covered twice by $S^{p} \times S^{q}$.)
(vi) the Cayley projective plane and three exceptional spaces.

An explicit formula for the imbedding φ of a symmetric R-space of classical type in $\Re>\beta$ in terms of matrices can be found in Kobayashi [7].

In § 3 we recall briefly the concept of minimum imbedding without mentioning that of total curvature. For the latter we refer the reader to Chern and Lashof [1], [2], Kuiper [9], [10] and references therein.

The result of this paper on the total curvature of φ relies heavily on the cellular decomposition of an R-space obtained by Takeuchi [16].

Our result on minimal submanifolds of a hypersphere is somewhat related to those of Takahashi [7] and Hsiang [4], and Proposition 5.1 on minimal submanifolds appears in Takahashi [17].

2. Parabolic subgroups and \boldsymbol{R}-spaces

Let G be a connected real semi-simple Lie group without center, and ©f its Lie algebra. Let \mathscr{G}_{C} be the complexification of \mathfrak{G}, and G_{C} the connected complex semi-simple Lie group without center generated by the Lie algebra \mathbb{H}_{c}. Then we may consider G as a subgroup of G_{c}. The complex conjugation σ of \mathscr{B}_{c} with respect to $\mathscr{B S}^{\text {S }}$ generates an automorphism σ of G_{C} which leaves G elementwise fixed.

A subgroup of G_{C} is called a parabolic subgroup of G_{C} if it contains a maximal solvable subgroup of $G_{\boldsymbol{c}}$; it is always connected. A subgroup of G is called a parabolic subgroup of G if it is the intersection of G and a σ-invariant parabolic subgroup of G_{C}. A parabolic subgroup of G may not be connected, but it is still uniquely determined by its Lie algebra alone. A subalgebra of ©s is called a parabolic subalgebra if it is the Lie algebra of a parabolic subgroup of G. If Z is an element of ©f such that $a d Z$ is a semi-simple endomorphism of $\mathscr{\&}$ whose eigen-values are all real, then the direct sum \mathfrak{H} of all eigen-spaces corresponding to the non-negative eigen-values of ad Z is a parabolic subalgebra of \mathbb{E}. Conversely, every parabolic subalgebra of ©f can be obtained in this fashion (cf. Matsumoto [11]).

An R-space is, by definition, a quotient space $M=G / U$, where G is a connected real semi-simple Lie group without center and U is a parabolic subgroup of G. Given an R-space $M=G / U$, we choose once and for all an
element $Z \in \mathbb{B}$ which determines the parabolic subalgebra \mathfrak{U}, the Lie algebra of U, in the manner described above. (Such an element Z is not unique.) We choose also a maximal compact subgroup K of G such that Z is perpendicular to the Lie algebra Ω of K with respect to the Killing form (,) of \mathfrak{B}. In the Cartan decomposition $\mathscr{S}=\mathfrak{R}+\mathfrak{P}, Z$ is then contained in \mathfrak{P}. We choose a maximal abelian subalgebra \mathfrak{A} of \mathfrak{P}, which contains Z, and introduce a linear order in the dual space of \mathfrak{H} in such a way that $\gamma(Z) \geq 0$ for all positive roots γ of \mathscr{B} with respect to \mathfrak{N}. Let \mathfrak{R} be the direct sum of the root spaces corresponding to the positive roots. Then \mathfrak{N} is a nilpotent subalgebra of \mathfrak{G}. Let N be the connected subgroup of G generated by \mathfrak{R}, and set

$$
K_{0}=\{k \in K ;(A d k) Z=Z\} .
$$

Then we have (Takeuchi [16])
Proposition 2.1. (i) $K U=G$ and $K \cap U=K_{0}$ so that $M=K / K_{0}$; (ii) If we denote by $N_{K}(\mathfrak{H})$ (resp. $N_{K_{0}}(\mathfrak{H})$) the normalizer of \mathfrak{A} in K (resp. in K_{0}), then $N_{K}(\mathfrak{H}) / N_{K_{0}}(\mathfrak{H})$ is finite. If $k_{1}, \cdots, k_{b} \in N_{K}(\mathfrak{H})$ are complete representatives of $N_{K}(\mathfrak{H}) / N_{K_{0}}(\mathfrak{H})$ and if o denotes the origin of G / U, then the orbits $N k_{1} o, \cdots, N k_{b} o$ of N through $k_{1} o, \cdots, k_{b} o$ give a cellular decomposition of M, and these cells are all cycles mod 2.

As a consequence, we have $\sum_{i} \operatorname{dim} H_{i}\left(M, Z_{2}\right)=b$. From (i) we see that the mapping $\varphi: M=K / K_{0} \rightarrow \mathfrak{P}$ defined by

$$
\varphi\left(k K_{0}\right)=(A d k) Z, \quad k K_{0} \in K / K_{0}
$$

is a K-equivariant imbedding of M into \mathfrak{B}. The purpose of this paper is to study geometric properties of this imbedding φ.
Proposition 2.2. Let X be a regular element of \mathfrak{F}. Then the number of zero points of the vector field on M generated by X coincides with the number b of the elements in $N_{K}(\mathfrak{U}) / N_{K_{0}}(\mathfrak{Q})$.

Proof. We first prove
Lemma. If we set $\mathfrak{B}_{0}=\{X \in \mathfrak{B} ;[Z, X]=0\}$, then $\mathfrak{H} \cap \mathfrak{P}=\mathfrak{B}_{0}$.
Proof of Lemma. From the definitions of \mathfrak{l} and $\mathfrak{\Re}_{0}$ we have clearly $\mathfrak{B}_{0} \subset \mathfrak{U} \cap \mathfrak{P}$. Let $X \in \mathfrak{U} \cap \mathfrak{P}$ and write

$$
X=X_{0}+X_{+},
$$

where $\left[Z, X_{0}\right]=0$ and X_{+}is in the direct sum of the eingen-spaces corresponding to the positive eigen-values of $a d Z$. We wish to show $X_{+}=0$. Let τ be the involutive automorphism of $\left(\leftrightarrow\right.$ such that $\left.\tau\right|_{\mathcal{R}}=$ identity and $\tau \mid \mathcal{\beta}=$ -identity. Then $\tau Z=-Z$ and hence $\tau \circ(a d Z)=-(a d Z) \circ \tau$. It follows that $\left[Z, \tau X_{0}\right]=0$ and that τX_{+}is in the direct sum of the eigen-spaces corresponding to the negative eigen-values of $a d Z$. On the other hand, since X
is in \mathfrak{P}, we have $\tau X=-X$ and $\tau X \in \mathfrak{H} \cap \mathfrak{B}$. Since $\tau X=\tau X_{0}+\tau X_{+}$is in \mathfrak{U}, it follows that $X_{+}=0$. This completes the proof of the lemma.

Let X be a regular element of \mathfrak{P}. For each $k \in K, X$ and $(A d k) X$ generate vector fields on M with the same number of zero points on M. Since (Adk) $X \in \mathfrak{A}$ for a suitable k, we may assume that X is a regular element of \mathfrak{U}. It suffices therefore to prove that, for a regular element X of \mathfrak{A}, the zero points of the vector field generated by X coincide with the orbit $N_{K}(\mathfrak{H}) o$ of $N_{K}(\mathfrak{H})$ through the origin o of $M=K / K_{0}$. Let $k o(k \in K)$ be a zero point of the vector field generated by X. Then $X \in(A d k) \mathfrak{U}$ and hence $\left(A d k^{-1}\right) X \in \mathfrak{U}$. Since $\left(A d k^{-1}\right) X \in \mathfrak{P}$, the lemma above implies $\left(A d k^{-1}\right) X \in \mathfrak{B}_{0}$. If we set \mathscr{G}_{0} $=\{Y \in \mathbb{S} ;[Z, Y]=0\}$, then \mathfrak{G}_{0} is a reductive Lie algebra, and $\mathfrak{G}_{0}=\mathfrak{R}_{0}+\mathfrak{B}_{0}$ is a Cartan decomposition of $\mathbb{\oiint}_{0}$. Since \mathfrak{A} is a maximal abelian subalgebra of \mathfrak{B}_{0}, there exists an element $k_{0} \in K_{0}$ such that $\left(A d k_{0}^{-1}\right)\left(A d k^{-1}\right) X \in \mathfrak{Q}$. If we set $k^{\prime}=k k_{0}$, then $\left(A d k^{\prime-1}\right) X \in \mathfrak{H}$. Since X is a regular element of \mathfrak{A}, k^{\prime} lies in $N_{K}(\mathfrak{U})$. On the other hand, $k^{\prime} o=k k_{0} o=k o$. It is easy to see the converse that $N_{K}(\mathfrak{Y}) o$ is contained in the set of zero points of the vector field generated by X.

3. Minimum imbeddings

Let M be a compact manifold, and \mathscr{F} the set of C^{∞} functions f on M whose critical points are all isolated and non-degenerate. For each $f \in \mathscr{F}$, we denote by $\beta(f)$ the number of the critical points of f on M. Set

$$
\beta=\inf _{f \in \mathscr{F}} \beta(f)
$$

Then β depends only on the differentiable structure of M, and the theory of Morse tells us that, for any coefficient field F, the following inequality holds:

$$
\beta \geq \sum_{i} \operatorname{dim} H_{i}(M, F) .
$$

Let φ be an imbedding of M into a real vector space V. Then for almost ${ }^{1}$ all linear functional u on V, the function $u \circ \varphi$ belongs to the family \mathscr{F}. We say that the imbedding $\varphi: M \rightarrow V$ is minimum if $\beta=\beta(u \circ \varphi)$ for almost all linear functionals u on V such that $u \circ \varphi$ belongs to the family \mathscr{F}. Since $\beta(u \circ \varphi) \geq \beta \geq \sum_{i} \operatorname{dim} H_{i}(M, F)$ always, φ is minimum if $\beta(u \circ \varphi)=$ $\sum_{i} \operatorname{dim} H_{i}(M, F)$ for some coefficient field F and almost all linear functionals u such that $(u \circ \varphi) \in \mathscr{F}$.

We shall prove the following theorem:
Theorem 3.1. Let $M=G / U$ be an R-space, and $\varphi: M \rightarrow \Re$ the imbedding defined in $\S 2$. Then φ is minimum, and

[^1]$$
\beta=\sum_{i} H_{i}\left(M, Z_{2}\right)
$$

We shall first outline the proof. Let X be any element of \Re, and u_{X} the linear functional on \mathfrak{B} which corresponds to X under the duality defined by the Killing form (,) of \mathfrak{G}. We define a suitable Riemannian metric \ll, \gg and show that the 1 -form $d\left(u_{X} \circ \varphi\right)$ corresponds to the vector field generated by X by the duality defined by \ll, \gg. Then the critical points of $u_{X} \circ \varphi$ coincide with the zero points of the vector field generated by X. Since the singular elements of \mathfrak{P} form a set of measure zero, the theorem will then follow immediately from Propositions 2.1 and 2.2. We now give the details of the proof.

Let \AA_{0} be the Lie algebra of K_{0}. The Killing form (,) of $\mathfrak{C S}$ is negative definite on \mathfrak{R}. Let \mathfrak{M} be the orthogonal complement of Ω_{0} in \mathfrak{R} with respect to the Killing form (,). Then \mathfrak{D} is invariant by $\operatorname{Ad} K_{0}$. As in the proof of Lemma for Proposition 2.2, let τ be the involutive automorphism of © defined by $\left.\tau\right|_{\Omega}=$ identity and $\tau \mid \Re=-$ identity. Since $\tau \circ(a d Z)=-(a d Z) \circ \tau$ as we have shown earlier in the proof of Proposition 2.2, we have $\tau \circ(a d Z)^{2}=$ $(a d Z)^{2} \circ \tau$. Hence $(\operatorname{ad} Z)^{2}$ leaves \Re and \Re invariant. Since $\operatorname{ad} Z$ leaves the Killing form (,) invariant, $(a d Z)^{2}$ is a symmetric endomorphism of © \mathbb{S} with respect to (,). If we denote by \mathfrak{B}_{+}the direct sum of the eigen-spaces corresponding to the positive eigen-values of $(a d Z)^{2}{ }_{1}$, then $\mathfrak{B}=\mathfrak{\Re}_{0}+\mathfrak{B}_{+}$, and \mathfrak{B}_{0} and \mathfrak{B}_{+}are mutually orthogonal with respect to the Killing form (,). Since $(\operatorname{ad} Z)^{2}$ maps $\mathfrak{\Omega}_{0}$ into 0 , (ad $\left.Z\right)^{2}$ leaves \mathfrak{M} invariant. Let $\gamma_{1}, \cdots, \gamma_{n}$ be the set of roots γ (multiplicity counted) of \mathbb{E} with respect to \mathfrak{N} such that $r(Z)>0$. Then we know (Takeuchi [16]) that there exist a basis S_{1}, \cdots, S_{n} for \mathfrak{M} and a basis T_{1}, \cdots, T_{n} for \mathfrak{B}_{+}such that

$$
\begin{array}{ll}
& -\left(S_{i}, S_{j}\right)=\delta_{i j}, \quad\left(T_{i}, T_{j}\right)=\delta_{i j} \text { for } \quad 1 \leq i, j \leq n ; \\
\text { (*) } \quad\left[H, S_{i}\right]=\gamma_{i}(H) T_{i},\left[H, T_{i}\right]=\gamma_{i}(H) S_{i} \quad \text { for } H \in \mathfrak{U} \text { and } 1 \leq i \leq n ; \\
& S_{i}+T_{i} \in \mathfrak{U} \quad \text { for } \quad 1 \leq i \leq n .
\end{array}
$$

By setting $H=Z$ in (*), we see that $[Z, \mathfrak{M}]=\mathfrak{B}_{+}$and $\left[Z, \mathfrak{P}_{+}\right]=\mathfrak{M}$ and that (ad $Z)^{2} \mid \mathfrak{N}$ is a positive definite symmetric endomcrphism of \mathfrak{M} with respect to $-($,$) . Let \zeta$ be a positive definite symmetric endomorphism of \mathfrak{M} with respect to $-\left(\right.$,) such that $\zeta^{2}=(a d Z)^{2} \mid \mathfrak{n}$. Then $\zeta S_{i}=\gamma_{i}(Z) S_{i}$ for $1 \leq i \leq n$. Since $(\operatorname{Adk}) Z=Z$ for $k \in K_{0}$, we have $(\operatorname{Adk}) \zeta X=\zeta(A d k) X$ for $X \in \mathfrak{M}$ and $k \in K_{0}$.

Lemma 1. $X+\zeta^{-1}[Z, X] \in \mathfrak{U}$ for $X \in \mathfrak{F}_{+}$.
Proof of Lemma 1. It suffices to verify for $X=T_{i}(1 \leq i \leq n)$. From (*) we obtain

$$
T_{i}+\zeta^{-1}\left[Z, T_{i}\right]=T_{i}+\zeta^{-1} r_{i}(Z) S_{i}=T_{i}+\zeta^{-1} \zeta S_{i}=T_{i}+S_{i} \in \mathfrak{U}
$$

which proves Lemma 1.

We shall now construct K－invariant Riemannian metric $<, \gg$ on $M=$ K / K_{0} ．Let $T_{0}(M)$ be the tangent space of $M=K / K_{0}$ at the origin o ．Under the natural identification of \mathfrak{M} with $T_{0}(M)$ ，the adjoint action of K_{0} on \mathfrak{M} corresponds to the linear isotropy representation of K_{0} on $T_{o}(M)$ ．We set

$$
《 X, Y \gg=-(\zeta X, Y) \text { for } X, Y \in \mathfrak{M}
$$

Since（，）is negative definite on Ω and ζ commutes with $A d k$ on \mathfrak{M} for every $k \in K_{0}$ ，it follows that \ll ，》 is a K_{0}－invariant positive definite symmetric bilinear form on \mathfrak{M} ．Hence $<$ ，》 can be extended uniquely to a K－invariant Riemannian metric \ll, \gg on $M=K / K_{0}$ ．

Let $X \in \mathfrak{ß}$ and let u_{X} denote the linear functional on $\mathfrak{\beta}$ defined by $u_{X}(Y)$ $=(Y, X)$ for $Y \in \mathfrak{P}$ ．Let φ be the imbedding of M into \mathfrak{P} defined in $\S 2$ ，and set $f_{X}=u_{X} \circ \varphi$ ．In other words，f_{X} is defined by

$$
f_{X}(k o)=((A d k) Z, X) \quad \text { for } \quad k \in K
$$

Lemma 2．For every $X \in \mathfrak{B}, d f_{X}$ is the 1 －form（i．e．，the covariant vector） corresponding to the vector field（i．e．，the contravariant vector）generated by X under the duality defined by the Riemnnian metric $<$ ，》．

Proof of Lemma 2．We denote by the same letter X the vector field on M generated by X ．The value of X at a point ko of M will be denoted by $X k o$ ．Similarly，for $Y \in \mathfrak{M}, k Y o$ denotes the vector at ko obtained from the vector $Y o \in T_{o}(M)$ by a transformation $k \in K$ ．Then Lemma 2 may be stated as follows：

$$
\left\langle\left(d f_{X}\right)_{k o}, k Y o\right\rangle=\langle X k o, k Y o \gg \text { for } \quad Y \in \mathfrak{M} \quad \text { and } \quad k \in K
$$

We calculate the left hand side first．

$$
\begin{aligned}
<\left(\mathrm{df}_{X}\right)_{k o}, k Y o> & =\left.\frac{d}{d t} f_{X}((k \cdot \exp t Y) o)\right|_{0}=\left.\frac{d}{d t}((A d k \cdot \exp t Y) Z, X)\right|_{0} \\
& =\frac{d}{d t}\left((A d \exp t Y) Z,\left.\left(A d k^{-1}\right) X\right|_{0}=\left([Y, Z],\left(A d k^{-1}\right) X\right)\right. \\
& =\left(Y,\left[Z,\left(A d k^{-1}\right) X\right]\right)
\end{aligned}
$$

We decompose $\left(A d k^{-1}\right) X \in \Re$ as follows：$\left(A d k^{-1}\right) X=X_{0}+X_{+}$，where $X_{0} \in \mathfrak{B}_{0}$ and $X_{+} \in \mathfrak{P}_{+}$．Then we have

$$
<\left(d f_{X}\right)_{k o}, k Y o>=\left(Y,\left[Z, X_{+}\right]\right)
$$

We now calculate the right hand side．

$$
《 X k o, k Y o »=\ll\left(\left(A d k^{-1}\right) X\right) o, Y o 》
$$

Since we have $\left(\left(A d k^{-1}\right) X\right) o=\left(-\zeta^{-1}\left[Z, X_{+}\right]\right) o$ by Lemma 1, we obtain

$$
《 X k o, k Y o \gg=-\ll \zeta^{-1}\left[Z, X_{+}\right], Y 》=\left(\left[Z, X_{+}\right], Y\right) .
$$

This completes the proof of Lemma 2.
Theorem 3.1 now follows from Propositions 2.1 and 2.2 and from Lemma 2 just proved.

Remark 1. Given an R-space $M=G / U$ we may assume without loss of generality that G acts effectively on M, i.e., U contains no nontrivial normal subgroup of G. Then the minimum imbedding $\varphi: M \rightarrow \mathfrak{P}$ is substantial in the sense that $\varphi(M)$ is not contained in any (affine) hyperplane of \mathfrak{P}; otherwise there would exist a nonzero linear functional u_{x} of \mathfrak{F} such that the function $f_{X}=u_{X} \circ \varphi$ is constant on M. But Lemma 2 says that if $d f_{X}=0$ on M, then the vector field on M generated by X also vanishes identically on M. Hence, $X=0$.

Remark 2. Since $\beta \geq \Sigma \operatorname{dim} H_{i}\left(M, Z_{p}\right)$ by Morse theory, we may conclude that, for any R-space $M=G / U$, the inequality

$$
\sum \operatorname{dim} H_{i}\left(M, Z_{2}\right) \geq \sum \operatorname{dim} H_{i}\left(M, Z_{p}\right)
$$

holds for all prime numbers p.

4. Symmetric R-spaces and minimal submanifolds of spheres

Let G be a connected real semi-simple Lie group without center, and Z an element of 8 ss such that $a d Z$ is a semi-simple endomorphism of $\mathbb{C B}$ with eigenvalues $-1,0$ and 1 . Let $\mathbb{G}=\mathscr{G}_{-1}+\mathscr{S}_{0}+\mathscr{G}_{1}$ be the corresponding eigenspace decomposition, and U the parabolic subgroup of G with Lie algebra $\mathfrak{U}=\mathscr{\oiint}_{0}+\mathscr{E}_{1}$. Taking a Cartan decomposition $\mathscr{G}=\mathfrak{\Re}+\mathfrak{P}$ such that $Z \in \mathfrak{P}$, let K be the maximal compact subgroup of G generated by \Re. Let $K_{0}=\{k \in K ;(a d k) Z=Z\}$ and $\mathscr{\Re}=\Re_{0}+\mathfrak{M}$ as in $\S \S 2$ and 3 . Let \mathscr{S}_{c} be the complexification of \mathbb{G} and G_{C} the complex semi-simple Lie group without center generated by \mathbb{F}_{c}. Let θ denote the restriction to K of the inner automorphism of \mathscr{C}_{c} defined by $\exp (\pi i Z) \in G_{C}$. If we set $K_{\theta}=\{k \in K ; \theta k=k\}$, then K_{0} lies between K_{0} and the identity component of K_{θ}. It follows that $M=K / K_{0}$ is a symmetric space defined by the involutive automorphism θ of K. (By results of Nagano [13] (cf. also Kobayashi-Nagano [8] and Takeuchi [16]), the converse is also true; namely, if $M=G / U$ is an R-space such that $M=K / K_{0}$ is symmetric, then U is determined by an element $Z \in$ © such that $a d Z$ has eigen-values $-1,0,1$.) Throughout this section we shall consider a symmetric R-space $M=G / U=K / K_{0}$, where U is determined by such a $Z \in \mathbb{C}$. The main purpose of this section is to prove that, with respect to the imbedding $\varphi: M \rightarrow \Re$ defined in $\S 2, \varphi(M)$ is a minimal submanifold of the sphere of radius $\sqrt{2 n}$ in \mathfrak{P}, where $n=\operatorname{dim} M$.

With our notations in $\S 3$, we have $\gamma_{i}(Z)=1$ for $1 \leq i \leq n$ and $\zeta(X)=X$ for all $X \in \mathfrak{M}$. The Riemannian metric \ll, \gg on M is defined by $<X, Y 》$ $=-(X, Y)$ for $X, Y \in \mathbb{M}=T_{o}(M)$. From the formulas (*) in $\S 3$ it follows that the imbedding $\varphi: M \rightarrow \Re$ is isometric with respect to the Riemannian metric $<, \gg$ and the restriction of the Killing form (,) of $\mathbb{\leftrightarrow}$ to \Re.

From the definition of the imbedding $\varphi: M \rightarrow \Re$ it is clear that its image $\varphi(M)$ lies on the sphere of radius $(Z, Z)^{\frac{1}{2}}$ with center at the origin of \mathfrak{P}.

Proposition 4.1. For a symmetric R-space $M=G / U$, we have $(Z, Z)=$ $2 n$, where $n=\operatorname{dim} M$.

Proof. $\quad(Z, Z)=\operatorname{Tr}(a d Z)^{2}=\sum_{i=1}^{n} \gamma_{i}(Z)^{2}+\sum_{i=1}^{n}\left(-r_{i}(Z)\right)^{2}=2 n$.
Theorem 4.2. Let $M=G / U=K / K_{0}$ be a symmetric R-space with G simple. Then $\varphi(M)$ is a minimal submanifold of the sphere of radius $\sqrt{2 n}$ about the origin in \mathfrak{P}, where $n=\operatorname{dim} M$.

Proof. We identify $\varphi(M)$ with M. Let S denote the sphere of radius $\sqrt{2 n}$ about the origin in \mathfrak{P}, and α be the second fundamental form of M in S; at each point $x \in M$, it defines a symmetric bilinear mapping $T_{x}(M) \times T_{x}(M)$ $\rightarrow T_{x}^{\perp}$, where T_{x}^{\perp} denotes the normal space to M in S at x. Choosing an orthonormal basis e_{1}, \cdots, e_{n} for $T_{x}(M)$, we define the mean curvature normal ξ_{x} by

$$
\xi_{x}=\sum_{i=1}^{n} \alpha\left(e_{i}, e_{i}\right)
$$

Then ξ_{x} is independent of the choice of e_{1}, \cdots, e_{n}. The submanifold M is minimal if and only if $\xi_{x}=0$ at every point x of M. In the present case, since the imbedding φ is K-equivariant, the field ξ of mean curvature normals is invariant by the adjoint action of K in \Re. It suffices therefore to prove that ξ vanishes at the origin o of M. The tangent space $T_{o}(M)$ is parallel to [Z, \mathfrak{M}] $=\mathfrak{B}_{+}$in \mathfrak{P} (cf. formulas (*) in $\S 3$). Since Z is normal to the sphere S at o, ξ_{0} is perpendicular to Z as well as to \Re_{+}. Hence ξ_{0} can be identified with an element of \Re_{0} which is perpendicular to Z and is invariant by the adjoint action of K_{0} in \Re_{0}. The proof of the theorem is now reduced to that of the following lemma.

Lemma. Let $M=G / U$ be a symmetric R-space with G simple. Then the space $\left\{X \in \Re_{0} ;(A d k) X=X\right.$ for all $\left.k \in K_{0}\right\}$ is spanned by Z.

Proof of Lemma. Consider first the case where the complexification $\mathbb{E S}_{c}$ of \mathscr{C} is not simple. In this case, \mathbb{R} is compact and simple, and \mathscr{S}° admits a complex structure J such that $\mathfrak{\beta}=J \Re$ and $\Re_{0}=J \Re_{0}$. Moreover, \Re_{0} has center of dimension 1 (cf. Helgason [3]). Our lemma is clearly true in this case.

Consider now the case where $⿷_{c}$ is simple. In this case, the center of \mathscr{G}_{0} is spanned by Z (cf. Kobayashi-Nagano [8] and Takeuchi [16]). Let $\mathbb{G}_{0}^{\prime \prime}=$ $\left[\mathscr{G}_{0}, \mathscr{O}_{0}\right]$ and $\mathfrak{F}_{0}^{\prime}=\mathscr{E}_{0}^{\prime} \cap \mathfrak{B}_{0}$. Then $\mathscr{E}_{0}^{\prime}=\mathfrak{\Re}_{0}+\mathfrak{B}_{0}^{\prime}$ is a Cartan decomposition
of a semi-simple Lie algebra $\mathscr{S}_{0}^{\prime \prime}$. It follows that no nonzero element of $\mathfrak{P}_{0}^{\prime}$ is invariant by Ω_{0} (cf. Helgason [3]). Since the center of \mathscr{G}_{0} is spanned by Z, we have $\mathfrak{B}_{0}=\mathfrak{P}_{0}^{\prime}+\{Z\}_{R}$.

Remark. The lemma above may be derived also from Frobenius reciprocity and the theorem of E. Cartan to the effect that every complex irreducible representation of K appears with multiplicity at most 1 in the regular representation of K on K / K_{0}.

5. Eigen-values of the Laplacian

Let \boldsymbol{R}^{N+1} be a Euclidean space of dimension $N+1$ with natural coordinate system $y=\left(y^{1}, \cdots, y^{N+1}\right)$. Let $S^{N}(r)$ be the sphere of radius r about the origin of \boldsymbol{R}^{N+1}, M an n-dimensional submanifold of $S^{N}(r)$ with local coordinate system x^{1}, \cdots, x^{n}, and

$$
y=y\left(x^{1}, \cdots, x^{n}\right)
$$

the local equation defining M. At each point of M, we choose an orthonormal system of unit vectors $\xi_{0}, \xi_{1}, \cdots, \xi_{N-n}$ such that ξ_{0} is normal to $S^{N}(r)$ and $\xi_{1}, \cdots, \xi_{N-n}$ are tangent to $S^{N}(r)$ but normal to M. Then

$$
\frac{\partial^{2} y}{\partial x^{j} \partial x^{k}}=\sum_{i} \Gamma_{j k}^{i} \frac{\partial y}{\partial x^{i}}+\sum_{\lambda=1}^{N-n} b_{j k}^{\lambda} \xi_{2}+b_{j k}^{0} \xi_{0} .
$$

If we set $g_{j k}=\left(\frac{\partial y}{\partial x^{j}}, \frac{\partial y}{\partial x^{k}}\right)$ and denote by $\left(g^{j k}\right)$ the inverse matrix of $\left(g_{j k}\right)$, then the Laplacian of $y=\left(y^{1}, \cdots, y^{N+1}\right)$ as a system of functions on M is given by

$$
\Delta y=\sum_{j, k} g^{j k} \nabla_{j} \nabla_{k} y=\sum_{k, j, k} g^{j k} b_{j k}^{\lambda} \xi_{\lambda}+\sum_{j, k} g^{j k} b_{j k}^{0} \xi_{0},
$$

where ∇_{j} denotes the covariant differentiation with respect to $\partial / \partial x^{j}$. The first term on the right hand side is nothing but the so-called mean curvature normal on M as a submanifold of $S^{N}(r)$. Hence, M is a minimal submanifold of $S^{N}(r)$ if and only if

$$
\Delta y=\sum_{j, k} g^{j k} b_{j k}^{0} \xi_{0}
$$

To simplify the right hand side, we note that

$$
\begin{gathered}
(y, y)=r^{2}, \quad\left(\frac{\partial y}{\partial x^{j}}, y\right)=0, \\
\left(\frac{\partial^{2} y}{\partial x^{j} \partial x^{k}}, y\right)+\left(\frac{\partial y}{\partial x^{j}}, \frac{\partial y}{\partial x^{k}}\right)=0 .
\end{gathered}
$$

Since $y=r \xi_{0}$ on M, the last equality above may be rewritten as follows:

$$
r b_{j k}^{0}+g_{j k}=0
$$

Hence, $\sum_{j, k} g^{j k} b_{j k}^{0} \xi_{0}=-\frac{n}{r^{2}}$ y. We may now conclude
Proposition 5.1. A submanifold M of $S^{N}(r)$ is a minimal submanifold of $S^{N}(r)$ if and only if

$$
\Delta y=-\frac{n}{r^{2}} y
$$

where $n=\operatorname{dim} M$.
From Theorem 4.2 and Proposition 5.1 we obtain
Theorem 5.2. Let $M=G / U=K / K_{0}$ be a symmetric R-space with G simple, and $\varphi: M \rightarrow \mathfrak{F}$ the imbedding defined in §2. For each linear functional u of \mathfrak{P}, we set $f=u \circ \varphi$. Then with respect to the metric \ll, \gg on M, f satisfies $\Delta f=-\frac{1}{2} f$.

Remark. The fact that $\Delta f=\lambda f$ for some λ (independent of f) may be derived from the theorem of Cartan quoted in the remark at the end of $\S 4$. We can then verify $\lambda=-1 / 2$ using the special function $f_{z}=u \circ \varphi$.
We wish to relate this eigen-value $-1 / 2$ with the scalar curvature of M. We denote by (,) © and (, $)_{\curvearrowright}$ the Killing forms of \mathscr{C} and \Re, respectively. The curvature tensor R of the symmetric space $M=K / K_{0}$ is given by

$$
R(V, X) Y=-[[V, X], Y] \text { for } V, X, Y \in \mathfrak{M} ;
$$

its Ricci tensor S is given by

$$
\begin{aligned}
S(X, Y) & =\text { trace of the map } V \rightarrow R(V, X) Y \\
& =\text { trace of the map } V \rightarrow-[[V, X], Y] \\
& =- \text { trace }\left.((\operatorname{ad} Y)(\operatorname{ad} X))\right|_{\mathfrak{R}} .
\end{aligned}
$$

If we construct an orthonormal basis for \Re with respect to $-(,) \notin$ by choosing first an orthonormal basis for \Re_{0} and then one for \mathfrak{M}, ad X acting on \Re is given by a matrix of the form

$$
\left(\begin{array}{cc}
0 & A(X) \\
-^{t} A(X) & 0
\end{array}\right)
$$

Hence, $(a d Y)(a d X)$ acting on Ω is given by a matrix of the form

$$
\left(\begin{array}{cc}
-A(Y)^{t} A(X) & 0 \\
0 & -^{t} A(Y) A(X)
\end{array}\right)
$$

It follows that

$$
\begin{aligned}
(X, Y)_{\Re} & =\left.\operatorname{trace}(\operatorname{ad} Y)(\operatorname{ad} X)\right|_{\Re}=-2\left(\operatorname{trace}^{t} A(Y) A(X)\right) \\
& =\left.2 \operatorname{trace}(\operatorname{ad} Y)(\operatorname{ad} X)\right|_{\Re}=-2 S(X, Y) .
\end{aligned}
$$

Proposition 5.3. The Ricci tensor S of a symmetric space $M=K / K_{0}$ is given by

$$
S(X, Y)=-\frac{1}{2}(X, Y)_{\mathfrak{R}} \quad \text { for } \quad X, Y \in \mathbb{R}
$$

It we multiply the metric tensor of M by a positive constant a, then both the scalar curvature c of M and the Laplacian Δ of M are multiplied by $1 / a$. It is therefore desirable to express the eigen-values of Δ in terms of c. Now we calculate c for some R-spaces. If there exists a positive number μ such that

$$
(X, Y)_{\Re}=\mu \cdot(X, Y)_{\mathscr{G}} \quad \text { for } \quad X, Y \in \mathscr{R}
$$

then the scalar curvature c is given by

$$
c=\frac{1}{2} n \mu \quad(n=\operatorname{dim} M)
$$

In fact, for $X, Y \in \mathfrak{M}$, we have

$$
S(X, Y)=-\frac{1}{2}(X, Y)_{\Re}=-\frac{\mu}{2}(X, Y)_{\circledast}=-\frac{\mu}{2} \ll X, Y \gg
$$

and hence $c=\frac{1}{2} n \mu$. For the following six classes of symmetric spaces, this method enables us to calculate the scalar curvature c. (For calculation of μ, we refer the reader to Iwahori [5].)
(1) Irreducible hermitian symmetric space of compact type:

$$
\mu=\frac{1}{2}, \quad c=\frac{n}{4} .
$$

(2) Real Grassmann manifold of non-oriented p-planes in \boldsymbol{R}^{p+q}, $(p+q>2)$:

$$
\mu=\frac{p+q-2}{2(p+q)}, \quad c=\frac{p q(p+q-2)}{4(p+q)} .
$$

(3) Quaternionic Grassmann manifold of p-planes in quaternionic vector space of dimension $p+q$:

$$
\mu=\frac{p+q+1}{2(p+q)}, \quad c=\frac{p q(p+q+1)}{p+q}
$$

(4) Group manifold $S O(m),(m>2)$:

$$
\mu=\frac{m-2}{2 m-2}, \quad c=\frac{1}{8} m(m-2)
$$

Group manifold $S p(m)$:

$$
\begin{equation*}
\mu=\frac{m+1}{2 m+1}, \quad c=\frac{1}{2} m(m+1) \tag{5}
\end{equation*}
$$

(6) n-sphere, $(n>1)$:

$$
\mu=\frac{n-1}{n}, \quad c=\frac{1}{2}(n-1) .
$$

By calculating the eigen-values of the Casimir operator, Nagano [12] determined the eigen-values of the Laplacian Δ acting on the space of functions on a compact symmetric space K / K_{0} with K simple and K / K_{0} simply connected (with respect to the invariant Riemannian metric induced from the Killing form of \Re). From Nagano's table we see that, for (1), (3) and (6), there is no eigen-value of Δ between 0 and $-\frac{1}{2}(=-c /(n \mu))$. Every eigen-value of Δ for functions on the Grassmann manifold of non-oriented p-planes in R^{p+q} appears as an eigen-value of Δ for functions on the Grassmann manifold of oriented p-planes in R^{p+q}, but not vice versa. From Nagano's table we see that the Laplacian Δ for functions on the Grassmann manifold of non-oriented p-planes in \boldsymbol{R}^{p+q} has no eigen-value between 0 and $-\frac{1}{2}\left(=-\frac{2 c(p+q)}{p q(p+q-2)}\right)$ at least if $p \geq 3$ and $p+q \geq 17$. But we do not know if this is true for all p and q. By the same method we can verify that the Laplacian acting on the space of functions on the group manifold $S O(m)($ resp. $S p(m))$ has no eigen-value between 0 and $-\frac{1}{2}\left(=-\frac{4 c}{m(m-2)}\right)$ (resp. 0 and $\left.-\frac{1}{2}\left(=-\frac{c}{m(m+1)}\right)\right)$. For eigen-values of the Laplacian for the spaces (1) and (6), see also Obata [14].

Bibliography

[1] S.S. Chern \& R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) 306-318.
[2] -, On the total curvature of immersed manifolds II, Michigan Math. J. 5 (1958) 5-12.
[3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[4] W. Y. Hsiang, On the compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. U. S. A. 56 (1966) 5-6.
[5] N. Iwahori, Theory of Lie Groups. II (in Japanese), Iwanami, 1957.
[6] S. Kobayashi, Imbeddings of homogeneous spaces with minimum total curvature, Tôhoku Math. J. 19 (1967) 63-70.
[7] -, Isometric imbeddings of compact symmetric spaces, Tôhoku Math. J. 20 (1968) 21-25.
[8] S. Kobayashi \& T. Nagano, On filtered Lie algebras and geometric structures I, J. Math. \& Mech. 13 (1964) 875-908.
[9] N. H. Kuiper, Immersions with minimal total absolute curvature, Colloque de geometrie differentielle globale, Bruxelles, 1958, 75-88.
[10] -, Der Satz von Gauss-Bonnet für Abbildungen in E^{N} und damit verwandte Probleme, Jahresbericht der DMV 69 (1967) 77-88.
[11] H. Matsumoto, Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan 16 (1964) 419-446.
[12] T. Nagano, On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers College Gen. Educ. Univ. Tokyo 11 (1961) 177-182.
[13] -, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965) 428-453.
[14] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, 1965, 101-114.
[15] S. S. Tai, On minimum imbeddings of compact symmetric spaces of rank one, J. Differential Geometry 2 (1968) 55-66.
[16] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sec. I, 12 (1965) 81-192.
[17] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380-385.

[^0]: Received November 9, 1967 and, in revised form, February 5, 1968. The work of the first author was partially supported by NSF Grant GP-6974, and that of the second author by NSF Grant GP-5798.

[^1]: ${ }^{1}$ in the sense of measure.

